
UNIVERSITÉ DE FRIBOURG

MASTER’S THESIS

Integration of DeepDive (Declarative
Knowledge Base Construction) and

Apache Spark

Author:
Ehsan FARHADI

Supervisor:
Pr. Philippe CUDRÉ-MAUROUX

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

eXascale Infolab
Department of Computer Science

August 18, 2017

http://www.unifr.ch
https://exascale.info
http://diuf.unifr.ch

i

Declaration of Authorship
I, Ehsan FARHADI, declare that this thesis titled, “Integration of DeepDive (Declara-
tive Knowledge Base Construction) and Apache Spark” and the work presented in
it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed: Ehsan Farhadi

Date: 17.08.2017

ii

“Processed data is information. Processed information is knowledge. Processed knowledge is
Wisdom.”

Ankala V. Subbarao

iii

Acknowledgements

I would like to express my very great appreciation to my thesis adviser Pr. Philippe
Cudré-Mauroux for his patient guidance and enthusiastic encouragement. He also
supported me in all my difficulties and problems during this thesis. I was not able
to finish this thesis without his guidance and support throughout my thesis.

I would also like to offer my special thanks to Alisa Smirnova for all the time and
effort she generous spent. Whenever I ran into a trouble during my thesis, the door
to Alisa’s office was always open.

Finally I must express my very profound gratitude to my parents for providing
me with unfailing support and continuous encouragement throughout my entire
life.

Thank you very much.

iv

Université de Fribourg

Abstract
Faculty of Science

Department of Computer Science

Master of Science

Integration of DeepDive (Declarative Knowledge Base Construction) and
Apache Spark

by Ehsan FARHADI

DeepDive is a newly introduced framework and data management system for cre-
ating a knowledge base from a set of unstructured and usually noisy information.
Currently DeepDive is based on the relational databases and a powerful statistical
analytics engine (Dimmwitted) for learning and inference.

Nowadays, one of the biggest challenges in computer science is dealing with
tremendous amount of data; DeepDive is not an exception either. In this thesis we
redesign DeepDive’s core to integrate it with Apache Spark without losing Deep-
Dive flexibility and power. We extend DeepDive to store the data on Hadoop file
system and to process it with Spark and Spark-SQL for higher performance. By
leveraging Spark’s power of parallelization, we improve DeepDive’s runtime up to
20% for large datasets.

Additionally we implemented a Gibbs sampler, similar to DeepDive’s statistical
analytics engine for a coherent implementation of DeepDive on Spark framework.

http://www.unifr.ch
http://www.unifr.ch/science/fr
http://diuf.unifr.ch

v

Contents

Declaration of Authorship i

Acknowledgements iii

Abstract iv

1 Introduction 1

2 Preliminaries 2
2.1 Knowledge Base Construction (KBC) . 2

2.1.1 KBC Model . 2
2.1.2 KBC Process . 3

2.2 Factor Graph . 4
2.2.1 Probability Distribution . 5
2.2.2 Gibbs Sampling . 5
2.2.3 Weight Learning . 6

2.3 Apache Spark . 6

3 DeepDive Framework 8
3.1 DeepDive Application . 8
3.2 DeepDive Architecture . 10
3.3 Statistical Analytics . 10
3.4 Dimmwitted engine . 11

3.4.1 Materializing the factor graph 12
3.4.2 Page-oriented Layout . 13
3.4.3 Buffer-Replacement Policy . 13

3.5 Conclusion . 13

4 DeepDive and Spark Integration 14
4.1 Adding Spark Compatibility to DeepDive 14

4.1.1 Challenges . 14
4.1.2 Design Choice . 15
4.1.3 Spark/HDFS connector . 15
4.1.4 Runner . 16
4.1.5 Extra components . 17

4.2 Gibbs Sampling on Spark . 18
4.2.1 Challenges . 18
4.2.2 Spark Tools . 18
4.2.3 Materializing the factor graph 19
4.2.4 Page-oriented Layout, Buffer-Replacement Policy 19

4.3 Conclusion . 20

vi

5 Experiments 21
5.1 Experiment setup . 21
5.2 Efficiency . 22

5.2.1 Time Efficiency . 22
5.2.2 Space Efficiency . 23
5.2.3 Scalability . 24

5.3 Gibbs sampler . 24

6 Conclusion and Future Work 26
6.1 Future Work . 26
6.2 Lessons Learned . 26

Bibliography 28

vii

Softeware, Data and Results

• Spark-compatible version of DeepDive is available at:
https://github.com/farhadie/deepdive

• The implementation of Gibbs sampler on Spark is separately available at:
https://github.com/farhadie/ddEngine-spark

• The implementation of birth place application which we used for our experi-
ments is available at:

– Spark version: https://github.com/farhadie/birth_place_spark

– Local/NUMA version: https://github.com/farhadie/birth_place_local

• All the results and log files produced by DeepDive in our experiments are
available at: https://github.com/farhadie/dd_results

https://github.com/farhadie/deepdive
https://github.com/farhadie/ddEngine-spark
https://github.com/farhadie/birth_place_spark
https://github.com/farhadie/birth_place_local
https://github.com/farhadie/dd_results

viii

List of Figures

2.1 KBC model . 3
2.2 factor graph . 4
2.3 factor graph . 5
2.4 Spark cluster overview [9] . 7

3.1 DeepDive application example . 9
3.2 Strategies V-Coc and F-Coc . 12

4.1 DeepDive Architecture . 16
4.2 UDF wrapper . 17

ix

List of Tables

3.1 I/O cost for V-Coc and F-Coc . 13

5.1 Data size comparison . 23
5.2 Dimmwitted vs Spark Gibbs sampler . 25
5.3 F1-score for Dimmwitted and our implemented sampler 25

1

Chapter 1

Introduction

Creating a knowledge base from a collection of heterogeneous data is a process
called knowledge base construction. The input of a KBC system can be in any form,
type and volume ranging from a terabytes of noisy and unstructured pile of articles
to an incomplete knowledge base. Extracting meaningful, structured information
from these sort of data can answer a lot of key scientific question.

DeepDive is a framework for creating Knowledge base construction systems. It
offers a declarative language alongside with many other features, that helps domain
experts to define and build an end-to-end KBC system without worrying about the
details of data management, scalability and underlying algorithms.

On the other hand we have Apache Spark: a general-purpose high-performance
cluster-computing framework. Spark is a popular framework among data scientists
because it runs applications up to 100 times faster than Hadoop [12] and handles
terabytes of data.

The main goal of this thesis is to bring DeepDive and Spark together, leveraging
the power of Spark in DeepDive’s context. Considering Apache Spark popularity
and its promising performance for big data, it is a good match for DeepDive to im-
prove its performance. By integrating these two technologies, instead of relying on
relational databases, we store the data on Hadoop file-system (HDFS) and perform
all data-processing tasks with Spark.

One of the key challenges that we have to overcome is keeping DeepDive’s flex-
ibility, DeepDive sends the data to each function and receives the results. DeepDive
supports user-defined function for data processing. Moreover DeepDive provides
user with full control over execution of each and every step in a DeepDive appli-
cation (which is a KBC system). These two feature are essential parts of DeepDive.
Therefor, we mapped every DeepDive’s underlying operation to an appropriate ap-
plication for Spark and HDFS, in order to preserve DeepDive’s core abilities.

We also implement a statistical analytics engine on Spark for learning and in-
ference. Although we will observe that Dimmwitted engine (DeepDive’s original
high-performance Gibbs sampler) is very efficient, nevertheless it was interesting to
have all the parts running on Spark.

By joining DeepDive and Spark, we manage to reduce DeepDive’s data process-
ing runtime up to 20%, which is a noticeable improvement considering the tremen-
dous volume of a KBC system input.

2

Chapter 2

Preliminaries

In this chapter we address three important background materials for this thesis to set
up the notations and definitions that the rest of this document consistently exploits:

1. Knowledge Base Construction: We briefly explain the structure of a knowl-
edge base construction system and its operations.

2. Factor Graph: Factor graph is a probabilistic graphical model using by Deep-
Dive for learning and inference in order to make prediction of the variable we
need to extract from the input.

3. Apache Spark: We need to understand how Spark manages and distribute
large data over cluster and parallelizes tasks and operations.

2.1 Knowledge Base Construction (KBC)

Knowledge base construction is the process of creating a structured knowledge base
with the data extracted from a set of inputs. The input of KBC is usually a collection
of heterogeneous and noisy data; it could be in any form, ranging from text docu-
ments and articles, tables, images, PDFs, audios, ..., or even another KB. The output
of KBC is a structured knowledge base, populated with the facts extracted from the
input. This process usually involves extraction, cleaning and integration of the data.

2.1.1 KBC Model

In a standard KBC model, there are four types of objects that we need to extract from
the inputs:

• Entity: An entity is a distinct existence that could be anything in real world.
For example it is a person, a place, an object, etc.

• Mention: A mention is any form of referring to an entity. A phrase, an ab-
breviation, an image, ..., all can be different forms of a mention. For example
"Jon", "Jon Snow", "The white wolf" are three different mentions to the same
entity of "Jon Snow".

• Relation: A relation is the way two (or more) entities are connected. Again,
for example entity "Jon" is associated with entity "Sam" with a "friendship"
relation.

• Relation Mention: A relation mention is the representation of a relation. For
instance, the sentence "Jon and Sam are old friends.", is a representation of the
relation "friendship" between two entities "Jon Snow" and "Samwell Tarly".

Chapter 2. Preliminaries 3

FIGURE 2.1: An illustration of the KBC model

2.1.2 KBC Process

The process in a typical KBC system consists of four consecutive tasks:

• Data Preprocessing: In this step KBC system cleans and prepares data be pro-
cessed. For example if the input of the system is a set of PDF files, we need
to convert PDF files into a text format, then we have to extract each sentence
and apply natural language processing on it so that it is understandable for
machine and processed.

• Feature Extraction: A feature is a measurable property or characteristic of a
variable. Feature is an important concept in machine learning because by
extracting the features of a phenomenon or a variable, we can measure and
compare it, and in general use it as evidence to make prediction about the
associated variable. Therefore feature extraction is one the main steps in a
KBC system. For example given the sentence "Jon and Sam are old friends.",
"...are...friends." is a feature that is extracted from the sentence and used to
predict the relation between "Jon" and "Sam".

One thing to notice is that different features might have different weights (or
influence). For example, given two sentences "Jon and Sam are old friends."
and "Sam have known Jon for 10 years.", "being friends" is a much stronger
feature than "have known for 10 years" for predicting the relation "friendship"
between two entities "Jon" and "Sam".

• Supervision: One important step in machine learning is collecting training
data. Since in real-world problems there is not enough training examples for
each relation, and even if there is, it is tedious and expensive task, we need to
be able to create a training set from the existing data. One common solution to
this problem is distant supervision. Distant supervision maps an incomplete
and small knowledge base (training data) to the noisy existing data and creates
a larger training set. For example, knowing that "Jon" and "Sam" are friends,
we find all the sentences containing the mentions of these two entities and use
them as training data.

Chapter 2. Preliminaries 4

FIGURE 2.2: A factor graph representation of g(x1, x2, x3, x4, x5) =
f1(x1, x2).f2(x2, x3).f3(x2, x3, x4).f4(x3, x5)

• Statistical Inference and Learning: After creating a training data, KBC sys-
tem learns the weight of each feature and using these weights, it predicts the
probability of each variable taking a particular value. This is the main step in a
KBC system where system actually finds the relations between all entities and
put them in a KB.

• Iterative Refinement: After performing four previous steps, we do not neces-
sarily produce a correct and complete KB. Every system need to be tuned in
order to achieve the best results, a KBC system is not an exception. One must
observe the results from previous steps and improve the system by refining
each step (for example by defining additional features, new inference rules,
providing training data, changing user-defined functions and etc.) so that the
result becomes as accurate as possible.

2.2 Factor Graph

As we will see later in chapter 4, DeepDive heavily relies on a factor graph, a proba-
bilistic graphical model, for its statistical inference and learning. Here we introduce
factor graphs in a brief.

In figure 2.2 we show an example of a factor graph. Factor graph is a bipartite
graph representing the factorization of a function with two types of nodes, variable
nodes for each variable and factor nodes for local factors. Edges in factor graph
are only between one variable node and one factor node. An edge exists between
variable node xi and factor node fj if and only if xi is an argument of fj [5].

In DeepDive context, we define a probabilistic database to be D = (R,F) where
R is the user schema, containing the random variable we defined in DeepDive ap-
plication, and F is the correlation schema which holds the probability distribution
over the factor graph by showing the correlation between random variable in user
schema. In the user schema, each tuple has a unique ID taking values from the
domain D and is associated with a value, taken from the domain V. Each dis-
tinct variable assignment σ : D 7→ V, defines a possible world Iσ [10]. We can see
an illustration of this process in figure 2.3. In correlation schema F , each corre-
lation relation Fj ∈ F represents the correlation between variables in D and has
the form Fj(fid, v) where Fid is a unique ID taken values from domain F, and
v ∈ Daj where aj is the number of random variables that are correlated by each
factor. To specify how Fj is associated with a function fj : Vaj 7→ R and a real-
number weight wj , given a possible world Iσ, for any t = (fid, v1, ..., vaj) ∈ Fj ,
define gj(t, Iσ) = wjfj(σ(v1), ..., σ(vaj)).

Chapter 2. Preliminaries 5

FIGURE 2.3: An illustration of factor graph, representing user schema
and correction schema, and random assignments in DeepDive; taken

from [14].

2.2.1 Probability Distribution

Given the set of all possible worlds I, the probability of a possible world I ∈ I is
[14]:

Pr[I] = Z(I)

(∑
J∈I

Z(J)

)−1
. (2.1)

where Z(I) is the normalizing constant (known as partition function) and it is
defined Z : I 7→ R+ over any possible world I ∈ I as [14]:

Z(I) = exp

∑
Fj∈F

∑
t∈Fj

gj(t, I)

 (2.2)

In this factor graph which defines a probability distribution of all the variables,
(marginal) inference refers to computing the probability of a random variable taking
a particular value. For example in a factor graph with boolean variables, for each
variable vi let I+e be the all possible worlds where variable vi is TRUE, and I−e be
the all possible worlds where variable vi is FALSE. The marginal probability of vi is
defined as follows:

Pr[vi] =

∑
I∈I+e Z(I)∑

I∈I+e Z(I) +
∑

I∈I−e Z(I)
(2.3)

2.2.2 Gibbs Sampling

Inference in factor graph is computed using sum-product algorithm [5], however ex-
act inference is known to be intractable in large factor graphs [7, 11], thus a common
solution for computing inference is to use Gibbs sampling. The main concept is that
by taking samples from the probability distribution we estimate the probability of
each variable with high accuracy [4].

Chapter 2. Preliminaries 6

Gibbs sampling algorithm is defined as the following three steps:

1. Let Vi be a randomly assigned value for variable vi. We choose a random pos-
sible world I0 = {V1, V2, V3, ..., Vn}.

2. For each variable vi we sample a new value for that variable according to
the conditional probability Pr[vi|V1, V2, ..., Vi−1, Vi+1, ..., Vn] and update vi with
this new value. After iteration over all variables and updating all variables,
we obtain I1. For sampling next variables sampler should use updated values,
otherwise the quality of samples and convergence rate decreases.

3. Repeating previous step for k times, which gives us k samples. Then we simply
compute the marginal probability of vi over these samples. Using the Law of
total probability, the marginal probability of vi is the sum of probabilities of
possibles worlds that are consistent with vi taking a particular value.

One interesting feature of Gibbs sampling is that for each sample, we actually
don’t need to compute the probability of Vi given all other variablesPr[vi|V1, V2, ..., Vn],
instead the probability of vi depends only on the variables that are correlated with
vi. This notion is call Markov blanket.

Markov Blanket: Defining vars(fid) =
{
v1, ..., vaj

}
as set of variables associated

with each factor, for each variable node in factor graph we define Markov blanket of
vi, denoted mb(vi), as:

mb(vi) = {v|v 6= vi,∃fid ∈ F s.t. {v, vi} ⊆ vars(fid)} (2.4)

This equation simply means that mb(vi) is a set of variables that are connected to
vi with only one factor in between. For example in the sample factor graph in figure
2.2, mb(x2) = {x1, x3, x4}. DeepDive uses this technique to perform Gibbs sampling
in parallel for the variables that do not have overlapping Markov blankets. This is
the technique used in Dimmwitted engine, and the one we leverage in Spark for
parallelizing learning and inference phase.

2.2.3 Weight Learning

Another important operation over the factor graph is learning the weights associated
with each factor. We define Ie as set of possible worlds consistent with our evidence
variables. For weight learning we need to maximize the probability of Ie:

argmaxwj

∑
I∈Ie Z(I)∑
I∈I Z(I)

(2.5)

There are multiple approaches for solving this problem. DeepDive uses stochastic
gradient descent (SGD) and estimate the gradient with samples draw from Gibbs
sampling.

2.3 Apache Spark

Spark is a highly-scalable, high-performance and general-purpose cluster comput-
ing framework. It is claimed to be up to 10x faster than Hadoop in iterative machine
learning operations [13] and also it supports several programming languages. A
Spark cluster uses master/worker architecture and consists of a Driver Program, a

Chapter 2. Preliminaries 7

FIGURE 2.4: Spark cluster overview [9]

Cluster Manager and several Worker Nodes. As we can see in Figure 2.4, an Spark ap-
plication runs as independent sets of processes called Executors (which are respon-
sible for actual computations and storing the data) on the cluster, coordinated by
driver program.

Spark uses several techniques for parallel computation which we briefly look
into:

• Resilient Distributed Dataset (RDD), DataFrame and DataSet: Resilient Dis-
tributed Dataset is the main abstraction in Spark. It represents collection of
objects partitioned over a cluster of machines as one object. RDDs are used to
process huge amount of data in parallel, and if a partition of data is lost due to
a machine failure, it is quickly rebuilt. RDD data can be stored on disk, cached
on the memory for faster operation, or even replicated across the cluster; giv-
ing the user the choice between cost of space or access time.
DataSet and DataFrame are improved versions of RDD. The key differences
are: (1) they organize data into named columns, so it is more convenient for
storing and processing relational queries. (2) Dataframe is faster for large data
because it only transmit data without the schema between Spark nodes instead
of serializing them.
One important thing to have in mind, is that all three representations are im-
mutable objects. Thus it is not possible to update a variable in an RDD, instead
for every operation the whole RDD is recomputed.

• Shared Variables: Other than RDDs Spark lets users create two other types
of variables. Broadcast variables, which are read-only variables replicated on
every worker node for faster access time. Accumulators, which are variables
that executors can only "add" to them, they are mostly used for implementing
counters.

• Parallel Operations: There are two types of operation user can perform on
RDDs: Transformations which create a new dataset from an existing one, and
actions, which return a value to the driver program after running a compu-
tation over dataset. One should always have in mind that by performing an
action on a large dataset, the returned data might exceed the memory of the
driver program and crashes whole program.

8

Chapter 3

DeepDive Framework

In this chapter we review the structure and semantics of DeepDive framework. We
see how one can design a KBC system with DeepDive, how it executes each step
of a KBC system and finally we explain Dimmwitted engine and its optimization
techniques to see how it is designed and how can we implement a similar Gibbs
sampler in Spark.

3.1 DeepDive Application

For Defining a KBC system in DeepDive, we need to specify all the steps. DeepDive
provides a Datalog-like language for defining a KBC system. Using this language we
specify the data flow in our KBC system, feature extraction methods, entity-linking,
supervision and learning and inference rules.

First, let’s take a look at a DeepDive application structure. A DeepDive applica-
tion consists of:

• DeepDive Program: In every application we have a main file called app.ddlog.
This is where we actually define the data flow in our KBC system using the
Datalog-like syntax called DD-log. In this file we define all the inputs, vari-
ables and relations, feature extraction, candidate generation, labeling and the
statistical model that we’re going to use for learning and inference.

• DeepDive Configurations: Before running the DeepDive application we have
to configure DeepDive. We need to specify the Database engine that we are go-
ing to use, number of NUMA1 nodes. We also need to configure the Dimmwit-
ted engine according to our application (e.g. number of samples we need in
Gibbs sampling).

• User Defined Function: DeepDive relies on relational databases for its oper-
ation, but it gives the user freedom of using functions written in any other
language, for further data processing. This is what makes DeepDive very flex-
ible. At each step, in addition to normal derivation rules that we define with
DDlog, we can use external functions by specify the input and output of them.
DeepDive integrates external functions and glue them together as a unified
system, by automatically sending the appropriate data to each function and
fetching the results.

Now Since we have an understanding of the structure of a DeepDive application we
explain phases of a DeepDive program. A DeepDive program generally consists of
several consecutive phases:

1Non-Uniform Memory Access: A memory architecture for multiprocessors where processors have
access to a distributed shared memory.

Chapter 3. DeepDive Framework 9

FIGURE 3.1: An example of DeepDive program in DDlog language,
defining "sentences" relation, extracted from "articles" after applying

natural language processing in a user defined function

• Data Preprocessing, Candidate Generation and Feature Extraction: The first
phase is to preprocess raw inputs and populate the database with clean and
machine-understandable data. Then we need to generate candidates. Can-
didates are the possible mentions, entities and relation mentions in the noisy
input. Afterwards, we need to extract the features correlated with each candi-
date using a user-defined function. For example, for a dataset of articles, we
apply the natural language processing (NLP) on all sentences, and then use NLP
tags as features. All these steps are translated into a collection of SQL queries
and UDFs that user defines in the program and all the data is stored in the
database.

• Supervision: DeepDive has two techniques for generating training data:

– Hand Labeling: By labeling candidates we can add training data for our
model. Labeling can be a manual task or a user-defined function finding
candidates with a specific property.

– Distant Supervision: This is a popular technique for generating training
data using a small set of evidences and a large unlabeled data. In Distant
supervision, given an evidence relation between multiple entities, we find
all the relation mentions containing those entities and heuristically label
them as true evidence

• Learning and Inference: In this phase, DeepDive uses the extracted features
and inference rules defined in application to ground a factor graph. Grounding
is the process of creating a factor graph from entities and relations extracted
from the input, and storing the factor graph to disk so that it can be used
to perform inference. After grounding DeepDive performs weight learning
and marginal inference to predict the probability of variables having a specific
value.

Chapter 3. DeepDive Framework 10

3.2 DeepDive Architecture

In this thesis we expand the underlying architecture of DeepDive to make it compat-
ible with Spark. For this purpose, it is necessary to explain the underlying structure
of it. We briefly mention important components of DeepDive framework and their
role.

Compiler: Every DeepDive application needs to be compiled before its execu-
tion. DeepDive compiler takes an application code, convert it to a JSON file which
describes the whole system like a blueprint. Then DeepDive uses this blueprint to
create executable scripts specified for each step of application, according to config-
urations of the application. These executable files are stored in the same location as
the application itself, and each of them can be executed by DeepDive user interface.

Database Connector: We already explained that DeepDive relies on relational
databases. DeepDive has connectors for each type of database. These connectors
translate DeepDive internal and underlying commands into the queries understand-
able for the database. This way DeepDive abstracts the database layer from other
components by offering a unified interface for all supported databases.

Runner: A DeepDive application can run on a single core, several cores, or even
several machines in parallel. The runner abstracts the execution resources from the
other components. The runner consists of several compute drivers for each execution
mode (i.e. local and cluster). Most of the scripts produced by compiler, are SQL
queries that DeepDive passes to the database; but the other important part, user-
defined functions, are normal application and the need to be executed in operation
system environment. For each UDF, DeepDive has to (1) prepare the appropriate
input by fetching them from database, (2) splitting fetched data to the number of
process and passing them to UDF, (3) execute the UDF, and finally, (4) write back
the output to the database. Moreover this is the component that handle the parallel
execution of UDF on a cluster of machines. It partitions and sends the jobs to each
machine over SSH and retrieves the results.

Inference: For learning and Inference DeepDive has a statistical analytic engine
called Dimmwitted engine. This component takes the grounded factor graph and
passes it to Dimmwitted engine for learning and inference and at the end writes the
results to the database.

User Interface: DeepDive has a simple user interface for controlling the execu-
tion of each step of the application. Each step can be executed separately from rest of
the application. additionally, A user can execute SQL queries on the database, using
DeepDive UI. This is a great tool for debugging and analyzing an application.

3.3 Statistical Analytics

A factor graph is used in DeepDive for its ability to model complex correlations
among random variables. But as we mentioned in chapter one, it is intractable to
compute the exact inference over large factor graphs [11]. One of the popular meth-
ods to overcome this problem is Gibbs sampling. Combining factor graph and Gibbs
sampling is not a new approach, for example OpenBUGS framework has been using
this technique since 1980s [6]. Using Gibbs sampling for any factor graph, we can
estimate the probability distribution of variables. Clearly, by getting more samples
from the factor graph, we obtain results with higher quality and accuracy [8].

Chapter 3. DeepDive Framework 11

As we described in chapter 2, the input of Gibbs sampler is a bipartite factor
graph G = (X,Y,E) where X is the set of random variable we want to predict, Y
is the set of factors representing the correlation between random variables X , and E
is the set of edges connecting variable and factors. In Gibbs sampler we perform 3
steps for each variable vi on each step of the computations:

1. Retrieve Markov blanket of the variable vi.

2. Evaluate factors in mb(vi) given the assignments of variables in that step.

3. Aggregate evaluations of all factors in mb(bi), compute the probability of vi
and update the factor graph with new sample taken from P [vi|mb(vi)].

These three steps are the core operation we loop over for every variable on each
step, to achieve high-quality samples. Because 99% of the execution time is spent on
core operation [14], we need to focus on optimizing this operation. There are three
trade-offs for optimizing core operation [14]:

1. Materialization trade-offs: Materialization is the process of computing a query
and storing the results for further use. During core operation we access the fac-
tor graph many times, not only reading from it, but also updating variables.
One of the obvious optimization is to materialize only a portion of factor graph
to minimize repeated accesses to it.

2. Page-oriented layout: Beside materialization, we have to optimize the vari-
ables and factors assignment to each page to minimize number of the page
fetches from the storage (i.e disk). Since Gibbs sampling iterates through vari-
ables in a random pattern (for better convergence speed), we need to design a
layout that has good average-case performance.

3. Buffer-Replacement Policy: One of the main challenges with large data, is to
decide which page in memory has to be replaced when memory is full and
we need to load another page from the storage. A good policy regarding the
access pattern of our application helps avoid repeated page replacements.

3.4 Dimmwitted engine

in chapter 2, we introduced the user schema and correlation schema in chapter one
and how we map them to a factor graph. Here we define two other relations for
representing the factor graph,the edge relation:

E(v, f) = {(v, f)|f ∈ F, v ∈ vars(f)} (3.1)

and a sampled possible world:

A(v, a) ⊆ D× V (3.2)

In equation 3.2, A is a set of pairs containing a variable and its assigned value and A
is modified in each iteration over variables during Gibbs sampling.

According to these equations, the input of Gibbs sampler would be:

Q(v, f, v′, a′)← E(v, f), E(v′, f), A(v′, a′), v 6= v′ (3.3)

Chapter 3. DeepDive Framework 12

FIGURE 3.2: Strategies V-Coc and F-Coc. [14]

Dimmwitted groups all the Q tuples by their first field v. It simply put, each
grouped tuples of Q, contains all the variables that exist in mb(v) and their assign-
ment, along with all the factors connecting them to v. This is all the information that
we need to sample v by computing the probability Pr [v|mb(v)].

For better convergence in Gibbs sampling, we need to sample variable randomly.
Dimmwitted proceeds by randomly sampling variables in a group of Q, after one
pass through Q, there will be a new possible world. Repeating this process gives
us multiple samples and as we explain using samples we can compute marginal
probability of v.

Now we briefly introduce Dimmwitted’s optimizations for each of the men-
tioned trade-offs for accessing Q.

3.4.1 Materializing the factor graph

Materialization reduces number of random reads, but we have to be aware that the
relationA is updated on every iteration over theQ groups, and this causes to random
writes as well. There are two strategies that Dimmwitted is using for materializing
[14]:

• V-CoC: If we consider Q as 3 joins between 2 relations E and A, we need to to
improve performance of computing these joins. One strategy is to co-cluster
on the variable side of the Q:

QV (v, fv′)← E(v, f), E(v′, f), v 6= v′.

Meaning that we compute QV and store the result in memory for further use.
Using this strategy we eliminate random reads on E, and we write to A once
after passing over all Q tuples.

• F-CoC: like the previous strategy, except we co-cluster on factor side

QF (f, v′, a)← E(v′, f), A(v′, a).

In this strategy, we removed random reads onA, but we have to updateA after
each iteration on variables in Q.

So if we consider the cost as total number of random reads and writes we can see
the final cost for each strategy in table 3.1. Before starting to sample, Dimmwitted

Chapter 3. DeepDive Framework 13

Reads Writes
From A From E To A

V-Coc |mb(v)| 0 1
F-Coc 0 dv dv

TABLE 3.1: I/O cost for materialization strategies. For a variable v,
dv is the number of factors connected to v. The cost is total number of

reads and writes.

decides which strategy is more efficient and uses that strategy for materializing the
factor graph.

3.4.2 Page-oriented Layout

Even though the iterations over variables (either in E, or A) are random, if we cap-
ture the order of iterations over variables for each step and use it to pack them in the
same order in pages, it shows that it has an order of magnitude improvement over a
randomly packed variables [14].

3.4.3 Buffer-Replacement Policy

For large dataset that does not fit in the memory, we need a strategy for replacing
pages in memory. We have to decide which page has to be evicted from the mem-
ory. When Dimmwitted passes over variables in Q for the first time, it records the
full sequence of the iteration and using it to define a theoretically optimal eviction
strategy: evict the item that will be used latest in the future [1].

For the factors, on the other hand, Dimmwitted logs the sequence of factor ref-
erences in a file. Then, for each reference it passes over this log file and computes
when each factor is going to be used next in the sequence and generates a log file
consisting of pairs, and when they will appear next.

3.5 Conclusion

In this chapter we reviewed the underlying architecture of DeepDive framework
and laid down the necessary details of DeepDive to know what parts we have to
update in order to make it compatible with Spark. As we explained, DeepDive is
a solid and very well designed framework, specially Dimmwitted engine which is
one of the fastest Gibbs sampler among its competitors [14].

14

Chapter 4

DeepDive and Spark Integration

In previous chapter we explained DeepDive structure and important parts. In this
chapter we go through our contribution to make DeepDive work on Spark as well.
First we explain how can use Spark for general data processing, afterwards we ex-
plain how we create our own statistical analytic engine similar to Dimmwitted on
Spark.

4.1 Adding Spark Compatibility to DeepDive

In order to add Spark Compatibility to DeepDive we make a several changes. Before
going through the rest of this section, we mention challenges we faced through this
thesis.

4.1.1 Challenges

We have two main challenge to integrate DeepDive with Spark:

• The main difference of Spark and a relational database that we have to have in
mind, is that Spark is not a database. Spark processes the data like a database
but it is not a storage system. Therefor, when we want to use Spark instead of
a database we need to think of storing the data in an efficient and accessible
way.

• Another challenge is that in Spark, the submitted application can not change
on the fly. Each application should be compiled, packed with all its dependen-
cies and sent to all worker nodes to be executed in parallel.

On the other hand, a DeepDive application consists of several independent
steps: each step can (and should, for debugging purposes) be executed sep-
arately. Plus there are user-defined functions that are autonomous basically
applications. Therefore we simply can not bundle all the steps and UDFs to-
gether and send them to Spark as one application.

Keeping the mentioned points above in mind, we continue to explain our contri-
bution to in this thesis.

Chapter 4. DeepDive and Spark Integration 15

4.1.2 Design Choice

Spark is compatible with several storage system but because the benefits of running
Spark on top of YARN1 and HDFS2 we decide to store the data on a Hadoop file
system and run Spark on top of YARN and HDFS. The advantages of running Spark
with Hadoop are:

• Using HDFS means that there’s no need to transfer data to the location of code.
Since we use same node for storing the data and for processing them, the code
and the data are in the same place.

• Each Spark job runs on the same node which is storing the data without any
need to retransmit the data even between the nodes of the cluster (data local-
ity).

• Leveraging existing Hadoop cluster.

DeepDive has two important features, user-defined functions and interactive in-
terface. DeepDive allows user to process data in any way and any language it suits
them and also to execute each step of DeepDive program separately for debugging
and testing.

In DeepDive, compiler converts application code (App.ddlog) into a set of inde-
pendent executable files, one for each step of DeepDive application. Each executable
file contains a set of database queries and shell commands. Clearly our design also
had to conform the two features, that is why we decided to keep DeepDive compiler
and user interface unchanged. To do so, we only changed the underlaying parts
of DeepDive and mapped database queries and shell commands to an Spark appli-
cation. This way each step of DeepDive application is sent to Spark and executed
separately. The trade-off for this design is that in Spark, for executing each step of
DeepDive application you have to allocate resources, load data from HDFS, process
the data, save results on HDFS and release resources afterwards. This put a constant
overhead on every step separately disregarding the volume of the data. Therefore
for DeepDive applications with small input, the Spark overhead is considerable, but
for large datasets this constant is rather negligible.

4.1.3 Spark/HDFS connector

In order to replace Spark with a database, an special database connector should be
deigned to store data in Hadoop and process them using Spark. First thing to notice
is that not every database query can be passed to the Spark directly. Some queries
can be parsed and passed to HDFS instead of Spark (e.g. dropping a table in a
relational database, is simply a delete in HDFS). Therefore, we divide DeepDive
commands into two groups, create a mini-connector for each: (1) HDFS-connector
and (2) Spark-connector. Additionally we use a switching script to send each query
to the corresponding mini-connector. The first group of queries that do not need
Spark processing, are sent to HDFS-connector, they are parsed, transformed and
executed directly by calling an HDFS command. The second group on the other
hand, get passed to Spark-connector which itself is a Spark application for further
parsing and executing on Spark cluster.

In the Spark-connector which most of the work is done, the data from an HDFS or
a local directory is transformed into Datasets and after processing, stored in HDFS.

1Yet Another Resource Negotiator: http://yarnpkg.com/
2Hadoop Distributed File System: http://hadoop.apache.org/

Chapter 4. DeepDive and Spark Integration 16

(A) Original Architec-
ture of DeepDive

(B) modified version of
DeepDive with Spark
support (Yellow boxes
are modified compo-

nents)

FIGURE 4.1: An illustration of DeepDive architecture

There are multiple data formats that we can use for storing data (e.g. Parquet, HBase,
kudo, etc.), we discuss the two main data formats:

• Parquet format: The most important feature of parquet is that it is a columnar
data storage format, thus, it has better read and write speed when it is needed
to access only a few columns of a relation and it makes parquet an efficient
data format for data analytics. Additionally, parquet includes optimization
encodings (i.e. RLE, Dictionary, Bit packing) for better data compression.

• Avro format: Unlike parquet, avro is a row-oriented format. Avro has lightweight
and fast data serialization and deserialization, and even though it does not
have internal index it uses directory-based partitioning techniques for fast ran-
dom accesses.

Parquet has better overall performance over other storage formats including
avro. With Parquet and Snappy compression3, we can reduce total volume of data
by factor of 10 [2].

Most of the SQL queries (e.g. select, join, etc.) that are created by DeepDive’s
compiler and passed to Spark-connector and, are processed by Spark-SQL. Each
query has to be parsed to be compatible with Spark-SQL syntax (which is Hive SQL).
Spark-SQL executes these queries against a Dataframe in parallel and returns the re-
sult in a new Dataframe.

4.1.4 Runner

As we described earlier, an important feature of DeepDive is user defined functions.
DeepDive has to be able to provide the right input for each function, and fetch the
result of each as well. In order to do that, we add a compute-driver to Runner called

3A fast data compressor/decompressor: https://google.github.io/snappy

Chapter 4. DeepDive and Spark Integration 17

FIGURE 4.2: An example of using Spark wrapper in user-defined
functions in Scala

Spark-driver. This driver is compatible with other components of DeepDive and sub-
mit each one to the Spark cluster, letting them to be executed directly on Spark and
in parallel.

In a locally executed DeepDive application, inputs should be fetched from the
database, prepared and passed to each UDF. But in this case, considering that data is
already stored on HDFS, this driver only has to point to the input data. This makes
DeepDive more efficient and faster specially for large data.

Because these UDFs are executed separately, they should be compatible with
Spark. User defined functions can be in any language that Spark can support (i.e.
Java, Scala, Python), and like local UDFs, they have to implement a common API for
communicating with DeepDive.

Just like DeepDive original design, we create a wrapper Class for user-defined
functions in Scala and Python languages. User should extend this class when they
are writing a UDF. This class have two methods: (1) load_table: which helps Deep-
Dive to find the right table on HDFS and load them into Spark Session, so Spark-
SQL can run queries on them. (2) save: which helps DeepDive to store the output of
a UDF in the correct manner in HDFS. We can see an example of DeepDive wrapper
in figure 4.2

4.1.5 Extra components

DeepDive ships with two extra component for two major common tasks in most
KBC systems: natural language processing engine and feature extraction library.

• Natural Language Processing: One of the most common operation in a KBC
system is to parse and process text documents. DeepDive includes Stanford
NLP Core for this task. NLP core gets a whole article as input, strips sentences,
add multiple NLP markups (e.g. NER tags, POS tags, etc.) to them, and pro-
duces a clean and structured table. To make NLP Core compatible with Spark,
we use a NLP Core wrapper developed by databricks [3].

• Feature Extraction Library: Every KBC system needs a specific feature extrac-
tion algorithm. But DeepDive has a general feature extraction library written
in Python (called DDlib) for obtaining features of a sentence, using the NLP
markups generated by Stanford NLP core. Since Spark supports python, we
add a wrapper for this library to make it compatible with Spark.

Chapter 4. DeepDive and Spark Integration 18

4.2 Gibbs Sampling on Spark

Dimmwitted engine is a high-throughput Gibbs sampler designed and tailored for
DeepDive and its statistical analytic operations. Dimmwitted engine is written mostly
in C++, therefor as we explained, it can directly manages memory for better perfor-
mance. On the other hand, Spark is a general purpose framework. So it is reasonable
to assume Dimmwitted performance surpasses any Gibbs samplers implemented on
Spark. Although we can still use spark for processing data in all the previous steps
of DeepDive (e.g. Feature extraction, candidate generation, etc.), and then pass the
generated factor graph to Dimmwitted engine for best performance. Nevertheless,
we implement a Gibbs sampler on Spark in order to make our contribution coherent.
In this section we discuss how we implement a Gibbs sampler similar to Dimmwit-
ted, compatible with Spark.

In this section first we introduce the challenges we are facing in implementation
of Gibbs sampler on Spark, then we go through trade-offs we introduced in previous
chapter, and we describe our implementation.

4.2.1 Challenges

One of the Spark limitations is lack of a shared memory between its worker nodes.
RDDs and DataFrames are immutable objects and updating them are costly, spe-
cially when we’re dealing with large data. Although there are some shared variables
like broadcast variable and accumulator that we can use, but they are not flexible
enough for a shared read and write variable between nodes.

The other issue is that Spark framework only offers limited control over memory
and storage management, so obviously we can not implement every strategy used
in Dimmwitted on Spark and we have to find a workaround for this problem.

4.2.2 Spark Tools

We quickly review the configurations and tunning techniques in Spark that we can
leverage for our purpose:

• Partitioning: As we described in chapter 2, RDDs, DataFrames and DataSets
are the main abstractions of Spark over the data. RDDs are partitioned among
worker nodes, and operations are applied on each partition separately and
parallel. In Spark we can control the partitioning process. We can group our
data and put each group in different nodes.

• RDD Persistence: By default each RDD is recomputed each time we execute
an action on it. However we can persist an RDD to avoid re-computations.
There are several persisting levels in spark:

– Memory Only: Persist RDD as deserialized objects on memory. If RDD
does not fit on memory some partitions simply will not be cached and
will be re-computed on the fly.

– Memory and Disk: Persist RDD as deserialized objects on memory. If
RDD does not fit in memory, some partitions will be stored on disk.

– Memory Only Serialized,: Same as Memory Only levels, except the ob-
jects are serialized; therefor, they are space-efficient but more CPU inten-
sive for reading.

Chapter 4. DeepDive and Spark Integration 19

– Memory and Disk Serialize: Same as Memory and Disk Only levels, except
the objects are serialized.

– Disk Only: Store RDD only on disk.

4.2.3 Materializing the factor graph

In previous section we described the strategy for materialization in Dimmwitted, we
use the same strategy in Spark as well. First we turn all the data into DataSets with
specifically defined class: variable, factors, weights. Then as we explained in Chapter
3, we create edge out of factors and variable. After these steps, based on the cost of
two strategies, V-CoC and F-CoC, we decide how to materialize our factor graph for
better performance. Based on that, we compute QV or QF and cache it on memory
to minimize the cost.

One important feature of DataFrame and RDDs in Spark is that they are not
mutable. Unlike NUMA, there is no shared memory between Spark worker nodes.
Therefor, after materializing, we can not directly update A on the Spark cluster.

After materializing QV or QF in memory, Because A is the the DataSet that we
updates repeatedly, we replicate A (or QF in case we choose F-CoC strategy) on ev-
ery executor, as a broadcast variable. A broadcast variable is a read-only variable
therefor we can not write updated values of A, directly back into it. Thus, each ex-
ecutor, using a MapPartition transformation4 iterates through local variables in each
node, finds corresponding values of A using a lookup in the broadcast variable and
updates the corresponding values in the local copy of A. After iterating over all
variables inQ, the driver program collects new values ofA into driver program, and
re-broadcast them to all executors as the new sampled possible world for comput-
ing next sample. This way we guarantee the quality of samples, but collecting and
re-broadcasting the data on each step is costly, especially for large data. We can see
the pseudo code of core operation in Spark in algorithm 1.

Algorithm 1 Gibbs sampler core operation in Spark

1: function SAMPLING(QV, possible world0, iterations)
2: samples← DataFrame(possible world0)
3: A← broadcast(possible world0)
4: for iteration do
5: for all v in QV do
6: new_value = sample(v,mb(v), A)
7: A.update(v, new_value)
8: A.collect
9: A← broadcast(A)

10: samples.join(A)
11: samples.cache . cache for next join
12: return(samples)

mapPartitions transformation

4.2.4 Page-oriented Layout, Buffer-Replacement Policy

In Spark we simply can not specify the layout for memory pages or buffer-replacement
policy on each node. Instead we assume that page layout in Spark is equivalent to

4A transformation which passed each partition of a RDD through a function

Chapter 4. DeepDive and Spark Integration 20

partitioning layout in Spark; In Spark we assign each Q to a specific RDD partition.
Each partition plays the role of a memory page in Spark.

Again buffer-replacement policy equivalent in Spark is the partition-replacement
policy, Spark is using Least Recent Used algorithm (LRU) for partition eviction. The
twist is that even though we can control partitioning layout, we can not explicitly
define which partitions should be evicted and which should not. The solution is to
remove unnecessary partition from memory by unpersisting them manually in our
implementation and only cache high-complexity DataFrames in memory to mini-
mize the number of partition replacements.

4.3 Conclusion

In this chapter we reviewed our contribution in this thesis. Adding Spark extension
for DeepDive in a way that the flexibility of DeepDive is kept and user feels no
difference between running an application locally or on a Spark cluster.

We know that Dimmwitted engine is very well designed to have maximum through-
put, and we tried to use its techniques in our implementation.

One thing to notice is that in our design, for every SQL query or UDF, one or
multiple Spark jobs are submitted to Spark cluster through Spark-connector/HDFS-
connector. Thus, for each step of DeepDive application, resources on the cluster
should be allocated. This create a constant overhead over the application, but with
large datasets, this overhead are insignificant compare to the actual computations.

21

Chapter 5

Experiments

In this chapter we validate that integrating DeepDive with Spark, actually improves
the performance. Then, we compare Dimmwitted engine with our Gibbs sampler on
Spark to see how much we can get close to Dimmwitted engine in terms of through-
put and accuracy.

5.1 Experiment setup

To correctly measure the efficiency of our contribution, first we have to have a single
DeepDive application to run on both NUMA machine (the default version of Deep-
Dive) and on Spark. We designed a rather simple KBC system for finding birth place
of every person mentioned in a given dataset of articles. This KBC takes simple text
articles and has following steps:

1. Apply natural language processing on each article and add NLP tags to each
word.

2. Find all mentions of all places, persons and their nationalities.

3. Link nationalities to countries as possible birth place.

4. Filter sentences containing a person mention and a place mention (or nation-
ality mention).

5. Extract relation candidates between a person and a place pair.

6. Label each candidate based on some simple rules. For example if the verb
"born in" in a sentence is between a person mention and place mention, that
relationship is labeled as true.

7. Distant supervision, which find sentences with true relationships and use them
as training dataset.

8. Extract features of sentences containing pairs of person and place mentions.

9. Perform learning and inference on the graph created by all the possible rela-
tions (as variables), extracted feature (as factors) and simple inference rules
(e.g. if a person was born in a place, then he could not be born in another)

Datasets: For our experiments, we use a dataset with around 600,000 articles
from Wikipedia’s biography portal. We use different portions of this dataset for
efficiency experiments. Additionally we use a small knowledge base of names of
countries and their adjective forms for entity liking.

Chapter 5. Experiments 22

FIGURE 5.1: DeepDive’s run-time (without inference) on NUMA and
Spark with 8 parallel processes/executors

Metrics: We use two metrics for experiments: (1) runtime of the DeepDive appli-
cation for comparing the performances. (2) the F1 score of final result of Dimmwit-
ted engine and our inference engine on Spark to compare the quality of both Gibbs
samplers.

Computational systems: We execute DeepDive on a local machine with 4 NUMA
nodes (each with 6 CPUs and 16Gb of memory) and a standalone postgreSQL server.
Our Spark cluster consists of 21 nodes (with 168 virtual cores and 220Gb memory in
total) which is running on Spark v2.1.0 on YARN v2.6.0.

5.2 Efficiency

5.2.1 Time Efficiency

In the first set of experiments we measure how much Spark leverages the perfor-
mance of DeepDive on similar systems. We run our application with different datasets,
and configure DeepDive to run on 8 parallel process (and 8 executors for Spark).
First we measure run-times of DeepDive without "learning and inference" step.

As we see in figure 5.1, DeepDive on NUMA nodes performs much better for
small datasets, because executing functions and queries on the local database is in-
stant and almost without any overhead. By increasing the volume of datasets, Deep-
Dive on Spark shows better performance and throughput. User defined functions
which are the important part of the system have better performance on Spark. Also
it is interesting to notice Spark overhead. As we explained before the overhead of
Spark is due to allocating and releasing resources cluster and it is independent from
dataset volume, therefore, it is a constant value for each DeepDive application as it
is clear in figure 5.1. By knowing the number steps of a DeepDive application we
estimate this value: for n steps in an application we have

overhead ≈ n× 80 seconds.

Chapter 5. Experiments 23

FIGURE 5.2: DeepDive’s run-time separated by steps for 500K articles

Stored data volumes
Dataset (#articles) 25K 50K 100K
PostgreSQL (Mb) 2580 4640 9010

Parquet + Snappy (Mb) 250 420 800

TABLE 5.1: Stored data sizes on PostgreSQL and HDFS in megabytes.

We break down the total runtime of the DeepDive application into 4 categories:
loading data into database (or HDFS), natural language processing, user-defined
functions and SQL queries. In figure 5.2 we see that Spark (without its overhead)
is faster than "NUMA + PostgreSQL" in all external functions. As we see in figure
5.2, natural language processing is the most time consuming step in the KBC and
it is much faster on Spark. The difference between other steps are not really sig-
nificant compare to NLP step. In Spark, the data is stored on HDFS and has to be
loaded into a RDD or DataFrame before applying a query using Spark-SQL. Thus,
SQL queries are measured faster on a local database. It is needless to mention that
Spark is a highly scalable framework. With more executors for our application, the
performance improves drastically. For example in table ?? we can see the effect of
the number of executors on runtime:

5.2.2 Space Efficiency

One interesting advantage of Spark is parquet format and snappy compression. The
data can be compressed up to 10 times on disk when we use parquet format, we see
the difference between the volume of stored data on the PostgreSQL and on HDFS
in table 5.1. Space efficiency is not data scientists main concern, but when it comes
to storing terabytes of data it is an issue to consider.

Chapter 5. Experiments 24

FIGURE 5.3: Scalability with different number executors.: DeepDive’s
run-time on 200k articles

5.2.3 Scalability

We compared the performance of DeepDive on NUMA and on Spark on similar
setups in previous section. Here we check Spark scalability by adding more ex-
ecutors to the cluster. We use a dataset with 200,000 articles and measure run-
time of DeepDive (without inference). As we see in figure 5.3, the speedup of
of Spark is not too far from optimal curve. The optimal curve represents optimal
speedup by parallelization: Doubling number of executors leads to double speedup
(2×nexecutors −→ 2×speedup) At the beginning, because the dataset is large for 4 and
8 executors, by doubling the number of executors, the speedup is nearly doubled as
well. The effect of overhead is negligible for large datasets. By adding more execu-
tors, each executor has less computations to do (because the dataset is distributed
among executors), instead the overhead shows itself: the velocity of slope reduces
to zero slope and the total runtime equals to the constant overhead.

5.3 Gibbs sampler

We explain in chapter 4 that because there’s no shared memory in Spark, we collect
and re-broadcast new values of a sampled possible world for generating next sam-
ples. This is a costly operation and there is no workaround to this limitation in Spark.
As we can see in table 5.2 the performance of Dimmwitted is better since Dimmwit-
ted directly manages memory. Plus, in NUMA architecture processors have access
to a shared memory, so there is no need for transmitting updated values of A to each
node unlike Spark.

Although the performance of Dimmwitted surpassed our Gibbs sampler, the
quality of our implementation was comparable to Dimmwitted engine. We used
F1-score to measure the accuracy of our sampler:

F1 = 2 · percision · recall
precision+ recall

.

Chapter 5. Experiments 25

10K 25K 50K 100K
#variables 22865 47652 96009 190607

#factors 13769 2539555 5118857 10176100
Dimmwitted runtime (sec) 23 44 84 170

Spark sampler runtime (sec) 330 510 945 2140

TABLE 5.2: Number of variables and factors, and runtime of
Dimmwitted engine and implemented Gibbs sampler on Spark for

1000 samples.

Recall Precision F1-score
Dimmwitted 0.62 0.93 0.74

Spark sampler 0.58 0.9 0.70

TABLE 5.3: F1-score for a 100 random articles, with 1000 samples.

As we explained in chapter 4, since we don’t have a write access to a shared
memory among executors, we can not update the values of variable. Updates are
local during each step and only at the end of a step, new value are broadcasted to all
executors. Therefore the as we can see in table 5.3, convergence rate of our sampler
is slower than Dimmwitted engine. On the other hand, Dimmwitted writes updates
instantly on the shared memory so all NUMA nodes have access to the most updated
value, thus it has better convergence rate.

26

Chapter 6

Conclusion and Future Work

In this thesis, we integrate DeepDive: a framework for knowledge base construc-
tions, with Apache Spark: a general purpose data-processing framework. We re-
design parts of DeepDive’s structure to support Spark on all steps, while preserving
DeepDive’s flexibilities and features. A user can run the same DeepDive application
which is written for a local machine, on Spark with only changing the configurations
of the application. Finally even though DeepDive is very well designed, we manage
to improve the performance of DeepDive using the parallelization power of Spark.
This improvement may not be significant for small datasets, but it is considerable for
larger ones. Ideally A user is should develop a DeepDive application, test and de-
bug it locally, and afterwards use the same application to process large datasets with
Spark. Of course Dimmwitted engine is one of the fastest Gibbs samplers because of
its low-level design, and our Gibbs sampler on Spark was not as fast as Dimmwitted
on NUMA. Therefore, the best performance is obtained by using Spark for all the
steps, except learning and inference phase, and then pass grounded factor graph to
Dimmwitted engine for inference. With this technique we achieve 20% of improve-
ment for overall performance.

6.1 Future Work

In the future work, we continue to reduce the overhead over Spark applications. By
changing DeepDive’s compiler we might combine many of DeepDive underlying
commands as one Spark application to reduce the overhead. Although this may
need to change the compiler and fabric of DeepDive itself.

Another goal can adding the feature of generating a packed Spark Application
corresponding to a whole KBC system. So that user can run the whole DeepDive ap-
plication without any overhead on Spark. This task needs to define a new compiler
for DeepDive to combine and convert all the executables and queries into one Spark
Application.

6.2 Lessons Learned

Overall, integration of DeepDive and Spark is a good practice for running a KBC
system on large amounts of data, except for inference engine. Gibbs sampling needs
a huge number of writes and updates in memory and since there is no shared mem-
ory in Spark, it is not feasible to implement a Gibbs sampler faster that Dimmwitted
on Spark. Spark is not designed for such computations. It was not beneficial to im-
plement a Gibbs on Spark. Instead, we could go deeper on integration of data pro-
cessing phases and reduce the overheads more. The other option might be changing
DeepDive’s model for inference, instead of using factor graph and Gibbs sampler

Chapter 6. Conclusion and Future Work 27

maybe we can use a model more adaptable with Spark, or the models which are
already implemented in MLlib1 of Spark.

1Machine Learning Library of Spark

28

Bibliography

[1] Laszlo A. Belady. “A study of replacement algorithms for a virtual-storage
computer”. In: IBM Systems journal 5.2 (1966), pp. 78–101.

[2] Cloudera. Benchmarking Apache Parquet: The Allstate Experience. 2016. URL: http:
//blog.cloudera.com/blog/2016/04/benchmarking- apache-
parquet-the-allstate-experience/ (visited on 07/24/2017).

[3] databricks. Stanford CoreNLP wrapper for Apache Spark. 2016. URL: https://
github.com/databricks/spark-corenlp (visited on 07/24/2017).

[4] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
Techniques - Adaptive Computation and Machine Learning. The MIT Press, 2009.
ISBN: 0262013193, 9780262013192.

[5] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. “Factor graphs and
the sum-product algorithm”. In: IEEE Transactions on information theory 47.2
(2001), pp. 498–519.

[6] David Lunn et al. “The BUGS project: evolution, critique and future direc-
tions”. In: Statistics in medicine 28.25 (2009), pp. 3049–3067.

[7] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufmann, 2014.

[8] Jorge R Sobehart et al. “Moody’s public firm risk model: A hybrid approach
to modeling short term default risk”. In: Moody’s Investors Service, Global Credit
Research, Rating Methodology, March (2000).

[9] Apache Spark. Apache Spark Documentation: Cluster Mode Overview. 2016. URL:
https://spark.apache.org/docs/latest/cluster-overview.
html (visited on 07/24/2017).

[10] Dan Suciu et al. “Probabilistic databases”. In: Synthesis Lectures on Data Man-
agement 3.2 (2011), pp. 1–180.

[11] Martin J Wainwright, Michael I Jordan, et al. “Graphical models, exponential
families, and variational inference”. In: Foundations and Trends R© in Machine
Learning 1.1–2 (2008), pp. 1–305.

[12] Matei Zaharia et al. “Fast and interactive analytics over Hadoop data with
Spark”. In: USENIX Login 37.4 (2012), pp. 45–51.

[13] Matei Zaharia et al. “Spark: Cluster computing with working sets.” In: Hot-
Cloud 10.10-10 (2010), p. 95.

[14] Ce Zhang and Christopher Ré. “Towards high-throughput Gibbs sampling at
scale: A study across storage managers”. In: Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data. ACM. 2013, pp. 397–408.

http://blog.cloudera.com/blog/2016/04/benchmarking-apache-parquet-the-allstate-experience/
http://blog.cloudera.com/blog/2016/04/benchmarking-apache-parquet-the-allstate-experience/
http://blog.cloudera.com/blog/2016/04/benchmarking-apache-parquet-the-allstate-experience/
https://github.com/databricks/spark-corenlp
https://github.com/databricks/spark-corenlp
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html

	Declaration of Authorship
	Acknowledgements
	Abstract
	Introduction
	Preliminaries
	Knowledge Base Construction (KBC)
	KBC Model
	KBC Process

	Factor Graph
	Probability Distribution
	Gibbs Sampling
	Weight Learning

	Apache Spark

	DeepDive Framework
	DeepDive Application
	DeepDive Architecture
	Statistical Analytics
	Dimmwitted engine
	Materializing the factor graph
	Page-oriented Layout
	Buffer-Replacement Policy

	Conclusion

	DeepDive and Spark Integration
	Adding Spark Compatibility to DeepDive
	Challenges
	Design Choice
	Spark/HDFS connector
	Runner
	Extra components

	Gibbs Sampling on Spark
	Challenges
	Spark Tools
	Materializing the factor graph
	Page-oriented Layout, Buffer-Replacement Policy

	Conclusion

	Experiments
	Experiment setup
	Efficiency
	Time Efficiency
	Space Efficiency
	Scalability

	Gibbs sampler

	Conclusion and Future Work
	Future Work
	Lessons Learned

	Bibliography

