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Abstract 

 Extracting relations from an unlabelled raw corpus is a complex task. Moreover, since 
the emergence of big data and its growing importance, the scientific world has to adapt and 
create tools to process larger and larger volume of data. 

 This master thesis work aims to improve the relation extraction task using the latest 
tools and technologies in the field of natural language processing and big data (like 
Word2vec and Spark). At this end, we will first define a framework that starts with a plain 
text and produces word embedding using the Word2Vec models. Word embedding project 
words from the corpus into a multi-vector space and thus, allow to perform vector operations 
in order to extract semantic relations. The objective of this project is to be able to rely on a 
relation between two words in order to extract new relations of the same type (e.g.: «Paris - 
France» in input, to extract new city - country relations like «Bern - Switzerland»). Moreover, 
we propose new methods for selecting the best relation pairs to use as input in order to 
improve the precision of the results and decrease the execution time. Furthermore, we 
propose a method using knowledge bases, to automatically evaluate the extracted relation 
pairs. 
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Introduction 

 This project aims to create a framework that clearly explains each stage from the raw 
corpus extraction and processing to the extraction of relation and their evaluation.  
Extracting relation from an unlabelled raw corpus is a complex task involving Natural 
Language Processing. We propose to use the word embeddings technology to solve this task, 
more specifically by using Word2Vec models. Word2Vec is a word embedding technic that is 
very efficient to find semantic/syntactic relations between words coming from a raw text 
corpus. In effect, transforming words into vectors allows to perform mathematical operations 
that can be very interesting in order to extract relations between words. 

 Most of the existing algorithms that use Word2vec models are only able to run on a 
single machine. However, machine learning models necessitates a lot of data and may take 
days to train. Thank to the growing of the big data, a lot of new tools have been created to 
help process these large volume of data. The latest technologies in the Big Data field like 
Spark allow to quickly and efficiently process large volume of data using distributed systems. 
We implemented all our solutions using a technology that allow to distribute the data and the 
calculations. 

 We also propose a method to automatically evaluate the extracted relations using a 
Free Knowledge Database (KB). Moreover, this thesis is also focused on maximising the 
number of « good » relations output, with as few pairs as possible in input. To this end, we 
propose four different methods for the input pairs selection. 

 The purpose of this master work is to solve all these problems, explain each step of 
the proposed solutions in the simplest manner, and implement each solution. 

Objectives 

 This thesis aims to complete various objectives in the extraction relation field. The 
relation extraction part of this project started by analyzing an already existing program 
created by Matúš Pikuliak. This program uses the Gensim framework and was designed to 
run on a single machine (local mode). Therefore the first objective was to deploy this 
program on Spark in order to make it operable in a distributed environment and by replacing 
Gensim with Spark and its MLLIB library we could compare the results from the two 
methods. We also wanted to create methods to obtain better results with fewer pairs in 
input. We expect that using fewer pairs as input will improve the computation time and the 
results. Finally, we want to measure the precision of the relations extracted from the corpus, 
with the help of a Knowledge Base. 

 This master thesis will therefore detail the various useful steps to clean a raw text, 
train and fit a Word2Vec model with Spark. Finally, we present methods that help select the 
best input pairs, extract similar relations and evaluate them. 
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1. Prerequisite 
 This chapter is briefly presenting the main technologies used for this project. 

1.1. Apache Spark 

 Working with big data sets requires a large amount of computational resources and 
execution time. Hence the advantage of using distributed storage systems like HDFS is to be 
able to save big data sets and reuse them for different calculations. 

 Apache Spark is an open source cluster computing framework [1]. It was 
implemented in Scala but it runs with JVM. Moreover Spark has an application programming 
interface for different languages Java, Python, Scala and R. It can work in standalone 
applications on cluster mode coupled with YARN if the data are stored in Hadoop 2.0. 
However, we can also run it in a local mode.  

 Spark provides a new data structure called the resilient distributed dataset (RDD), 
which is the basic abstraction. It represents an immutable, portioned collection of elements 
that can be operated on in parallel [2][3] with a fault tolerance. The idea behind this is to 
extend the limitation of the MapReduce (e.g. Hadoop), which works in steps instead of Spark 
which can work on all data at once. But Spark does not have a File System instead of 
Hadoop, but it can run on Hadoop Distributed File System. 

 

  Figure 1: Hadoop and Spark system [4] 

 Spark Core provides distributed task dispatching, scheduling, and basic I/O 
functionalities using interface centered on the RDD abstraction. This interface is a functional 
model programming. There is a driver program invokes parallel operations such as map, 
filter or reduce on an RDD by passing a function to Spark, which then schedules the 
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function’s execution in parallel on the cluster. All operations like joins, use RDDs in input and 
use it to produce a new one. Moreover resilient distributed datasets operations are lazy. 

1.2. Word2vec 

 Word2Vec was created by a team of researchers led by Tomas Mikolov at Google. The 
algorithm was implemented by many other programmers in many languages. This algorithm 
produce word embedding [5][6] which is intended to represent each word as vector from 
data sets. Moreover Word2Vec provides two different structure (see in 1.2.2) to create 
models. Each of theses models have two-layer neural networks that are trained to 
reconstruct linguistic contexts of words. 

1.2.1. Word Embedding 

 Word Embedding is Machine Learning feature from deep learning for Natural 
Language processing, where words from corpus are mapped to vectors of real numbers. So 
the idea is to project words to multi-dimensional space (vector space) in order to create 
mathematical operations. So this feature learning technique uses two-layer neural network 
and each of this neuron corresponds to one coordinate in the multidimensional space. 
Moreover we can obtain some connection without providing any information about its 
semantic. The most famous example of this vector word computation is « King - Man + 
Woman = ? » we obtain Queen. 

1.2.2. Skip Gram and CBOW 

 There are two existing algorithms to train Word2Vec models. As we can see in the 
figure 2, we have three parts in each model training architecture. W corresponds to the 
selected Word and W(t-x) corresponds to a word from the context. If we define a window 
size of 5, the algorithm will, for each word, select the 2 preceding and following words in the 
sentence. 

 The main differences between these two algorithms are: 

 • Continuous bag-of-words (CBOW) model learns each word using its context. It 
can be summarized as follows, given a context, what is the probability of finding a word. As 
we can see in the Figure2, the context is used as input. If we have a sentence like « Word 
Embedding is Machine Learning feature from deep learning » and we want to predict the 
word, « Machine ». CBow will use the window size to define the words context. Example the 
context of « Machine » is « Embedding (t-2) is (t-1), learning(t+1), feature(t+2) », if the 
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window size is 5. So during the training part if these 4 words appear together as input the 
CBOW model has to predict, « Machine ». 

 • Skip Gram does the opposite, for each word the algorithm has to guess the 
context [7]. A word is given as input and we obtain the words that are likely to appear in the 
word context with respect to the window size. If we use the same example as described in 
the CBOW presentation, given the word « machine » we end with the 4 words surrounding 
it. 

  Figure 2: Schema of the two Word2Vec algorithms 

  

 As we know, each of these models has two neural layers. So in figure 3, we can see 
these two layers for the skip gram model. In this example we have a vocabulary of 10 000 
words and 300 neurons. Each word is represented by 0 or 1, 1 is the hot vector (vector 
used). In this case the word is « ants », so it represents by 1 and all the other vectors by 0. 
The hidden layer is used like a weight matrix. The output layer use softmax [8] classifier 
because this function is useful to handle multiple classes and obtain a binary result. So, the 
output layer use an « activation function ». 

 Furthermore, during the training part, we have to adjust all of the neuron weights 
(hidden layers) slightly, so that it predicts that training sample more accurately(output 
layer). 
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  Figure 3: Skip Gram Neural Network Architecture 

1.2.3. Hierarchical Softmax & Negative sampling 

 These algorithms will both be used in order to optimise the computation time during 
the gradient descent phase, which consists to adjust weights of a neural network. 

 The hierarchical softmax uses a binary tree representation of the output layer with 
the W words as its leaves and, for each node, explicitly represents the relative probabilities 
of its child nodes. This defines a random path that assigns probabilities to words. The idea 
behind is to limit the amount of output vectors that must be updated per training 
instance. In the Figure 4, we can see an example of a path from the root to w2 which is 
highlighted. More precisely, each word w can be reached by an appropriate path from the 
root of the tree. This structure has a direct effect on the performance. In this case we use 
the binary Huffman tree, as it assigns short codes to the frequent words, which results in 
fast training. [9] 
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  Figure 4: An example of a binary tree for the hierarchical softmax. The white 
units are words in the vocabulary, and the dark units are inner units.  

 Negative Sampling is simply the idea that we only update a sample of output words 
per iteration. The target output word should be kept in the sample and gets updated. 
Moreover we have to add to the sample some selected words as negative samples using an 
unigram distribution (words occurrence). These negative output words need to be trained to 
output 0. Indeed, if the weight of a word is reduced or increased and the output doesn’t 
change, it can still influence the output of many other words. So the final idea is for each 
word in input, to just modify a subset of words instead of all the words. Because again one 
modification of one word weight can influence the whole network. Notice, the probability for 
selecting a word as a negative sample is related to its frequency, with more frequent words 
being more likely to be selected as negative samples. 

1.2.4. Gensim and MLLIB 

 Gensim [10] is a python framework used for many tasks in NLP and it also including 
an implementation of Word2Vec. However, it is limited to run on a single machine whereas 
MLLIB can run on distributed data-parallel system. MLLIB comes from the framework Spark 
[11] which contains many machine-learning algorithms, including Word2Vec. Notice that 
these two frameworks use subsampling for frequent words to decrease the amount of 
training examples.  

 In this paper we will use MLLIB to create Word2Vec model. But MLLIB can only use 
the skip gram algorithm, and the Hierarchical Softmax instead of the Negative sampling 
algorithm [12], which is used to reduce the computation time for updating the weights. 

1.3. WikiData 

 Wikidata is a Free Knowledge Database, more precisely a document-oriented 
database for Semantic Web. It is a collection of articles made up of data and key-value pairs, 
especially links to other articles, thus forming a semantically structured set of graphs. The 
ambition is to form a unique knowledge graph [13]. 
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 In this project, we use Wikidata to extract relations with SPARQL and send queries to 
the database through Wikidata query [14]. The goal is to get a JSON file and to compare it 
to our results in the evaluation process. In the figure 5, we can see an example of a query 
issued to obtain the Capital-Country relation. The "ID" contains the link of the subject, 
"sub" corresponds to the subject (which is the country), and "obj" is the object (in this 
case, the capital) as we can see in the figure 6 

 

  Figure 5: Query in SPARQL 

 Items are only identified by a "Q" followed by a number, such as country (Q6256). 
Properties in Wikidata have a "P" followed by a number, such as with capital (P36). Both 
can return values. wdt is used for truthy assertions about the data, links entity to value 
directly (predicates). And wd is used to return Wikibase entity. 

  Figure 6: JSON file extract from Wikidata with our structure 

2. Approach 
 In this part we explain the main steps of the project and the code [15]. The major 
improvements brought by this Master’s thesis are:  

•Adapting an existing project to make it work using an MLLIB model on Spark. 

•Replacing specific parts of the code with RDD operations, especially for the 
pairs generation part. 

•Simplifying the program. 

•Understanding and explaining how the existing code works. 

•Operating in a distributed environment with Spark and HDFS. 

•Creating a script that converts a Spark model to a Gensim one. This conversion 
aims to solve the compatibility problem and be able to compare the models. 
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SELECT ?id ?sub ?obj WHERE { 
    ?id wdt:P31 wd:Q6256. 
    ?id wdt:P36 ?capital. 
    ?id rdfs:label ?sub filter (lang(?sub) = "en") 
    ?capital rdfs:label ?obj filter (lang(?obj) = "en") 
} 
ORDER BY ?sub

[{"id":"http://www.wikidata.org/entity/Q889","sub":"Afghanistan","obj":"Kabul"}, 
{"id":"http://www.wikidata.org/entity/Q222","sub":"Albania","obj":"Tirana"}, 
{"id":"http://www.wikidata.org/entity/Q262","sub":"Algeria","obj":"Algiers"}, 
{"id":"http://www.wikidata.org/entity/Q228","sub":"Andorra","obj":"Andorra la Vella"},



•Creating methods for selecting the best pairs to use in input, in order to obtain 
better results with fewer input pairs. 

•Creating a script to automatically evaluate the extracted relations, with a 
knowledge base. 

2.1. Pre-processing 

 The first step is the selection of the text corpus that will be used to create the 
Word2vec model. The text inside the corpus will influence the model, if the text contains only 
financial articles, the model will not predict connections external to this field. In this thesis, 
we have selected a corpus that is meant to be general, i.e « enwiki dump » from Wikimedia 
dump [16]. Training a model with texts from various fields produces a versatile model. 

 The idea is to extract this corpus as a xml file and a convenient way to do that is to 
use the corpora.wikicorpus function from the Gensim Framework. Each article in the wiki 
corpus is formatted in a xml format. There is a need to parse these xml structures to only 
process and extract the individual words. The upper case words are replaced by a lower-case 
version in order to avoid word duplicates with different formats. A similar transformation is 
also performed on the words with accent(s), similarly to the upper case problem, we have 
decided to replace all the accent letters by the same letter without an accent. Furthermore, 
there are a lot of non-ASCII characters and the script should remove all of them as well. 
There are several ways to clean a text corpus and it depends on the final goal we want to 
achieve. However, for a higher precision of the model, all unnecessary words should be 
removed (see 2.1.2) or replaced as well.  

 The script 1_process_wiki.py was created for this purpose. To launch this script, one 
must call the script like this: « python3 1_process_wiki.py enwiki.xxx.xml.bz2 wiki.en.text ». 
The first argument is the wikimedia dump file name (ex: enwiki.xxx.xml.bz2) and the last 
argument is the name to give to the cleaned corpus file. 

2.1.1. N-Gram 
 N-Gram is the name given to a word sequence that is composed of 1 or more words. 
Simply speaking it is used to describe if a word is composed of several parts or not. For 
example, the words « new » and « york » are uni-gram because they are composed of one 
word. But each of them can be used in different contexts, indeed when they are associated 
we obtain a new word. In our corpus we handle the bi-gram (composed of two words), tri-
gram and quadri-gram. All the N-Gram are transformed into a single word, to do this we add 
one or more underscore(s) between the words, for example « new york times » is converted 
to « new_york_times ». The following formula was introduced in the paper [12] and it allows  
to compute a score used for validating or not a bigram. A high score means that the 
occurrence of the two words together is high compared to their occurrence alone. Therefore 
a high score increase the probability to validate a bi-gram. 
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 We have to define a threshold value and when a bi-gram score is higher than the 
threshold, it is validated. Moreover, we have to set a « min count » which refers to the 
number of occurrences of these two, three or four words together. As we can see in the 
formula, wi and wj refer to the first and second words and N is the total vocabulary size in 
the paper. Although this formula only works for two inputs, it is possible to provide an n-
gram for the arguments wi and/or wj. 

2.1.2. Stopword Lists 

 A stop word list is a list containing the most common words of a language. These 
words are often associated with many other words and so are not useful in the project 
context. For example, the word « The » is in the stop word list.  

The advantages of removing the words from a stopword list are: 

 • Reducing the size of the corpus. 

 • Avoiding a problem for the n-gram, because there is a high probability of 
having a lot of n-gram composed with these words. 

 • In Word2Vec we have to define a window size (described in 1.2.2) which refers 
to the context of an embedding word. So, if we remove these un-useful words, 
we only obtain a context composed of useful words and therefore a better 
representation in the vector space.  

2.2. Fitting the model 

 This step is about fitting and training the models, in this case we want to fit Word2Vec 
models with Mllib in Spark. This is an important step because each modification has an 
impact on the final results. Moreover we have to define the number of artificial neurons also 
named "vector size", which represents the number of coordinates of the words in the vector 
space. Increasing the number of vectors does not necessarily result in a better model. 
Another important thing to set is the window size, which is usually 5 or 10 and the learning 
rate which is defined between 0.025 or 0.05. The script to use is 
2_Mllib_Save_Load_Spark.py. 
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2.2.1. Parameters 
  

 To begin, we have to select the parameters to train the Word2Vec model. This is an 
important step to adjust the model as desired.  

•Vector Size: By default it is set to 100, but most of the time it is between 100 and 
300. This number represents the number of neurons in the neural network, so it 
impacts the computation time. Moreover, increasing this number does not 
necessarily increase the accuracy. A good way to test it is to start with 100, then 
150, etc. and evaluate model results. If the results are almost similar, it is better 
to keep the lowest value because it is the fastest one. In this project we chose to 
set a vector size of 100. 

•Learning Rate (default: 0.025): The learning rate is how quickly a network abandons 
old beliefs for new ones. The idea is to find a learning rate that is low enough so 
that the network converges to something useful, but high enough so that you 
don’t have to spend lots of time to training it. Most of the time with words 
embedding it is set between 0.025 and 0.05. In our case we chose 0.05 because 
we obtained better result. Unfortunately, as it is often the case there is no global 
optimal value. It is depending on the context in which the model will be used, we 
have to make several tests with the value that improve the model results. It is 
also depending on the corpus, the reprocessing phase, etc. 

•Number of Partitions (default: 1): This parameter is useful to considerably reduce the 
computation time to create a model, using a cluster. We chose to set this value to 
4 because we obtained good results without affecting the accuracy of the model. 
This is often a trade-off between time computation and accuracy. It can be noted 
that a larger and more varied corpus allows us to set a higher partition number 
than with a small corpus, that will be much more impacted by partitioning. 

•Number of Iterations (default: 1): First of all, this number has to be smaller than the 
number of Partition. Moreover increasing the number of iterations usually improve 
the quality of the word representations. In this case, the number of Partitions is 
low, so we don’t change the default value. Furthermore, increasing this value 
affects the computation time.  

•Min Count (default: 5): This parameter is useful to remove the « hapax legomena » 
which are the words that only occur once and the infrequent words. So, if it is set 
to 5, all the words that appear less than 5 times will be removed. Most of the time 
it is set between 5 and 10. Increasing this value reduces the computation time, 
because we have fewer words to handle. As we know, if we follow the Zipf’s law 
and we create a Rank-Frequency plot, we can see that the number of words that 
occurs fewer than 10 times is higher than words with higher occurrence. We don’t 
modify this value.  
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•WindowSize (default: 5): This parameter is the distance between the predicted and 
current word in a sentence. This value is usually set between 5 and 10. It is useful 
for the context of the predicted word, it’s that why we don’t have to choose a too 
high or low a value in order to obtain a good accuracy. Moreover, a higher value 
increases the computation time. In our case we set it to 10.  

2.2.2. Training and Fitting 

 It is a complex task to choose the optimal parameters, a good solution is to create a 
lot of models each time modifying a single parameter. With this solution, we see the impact 
of a single parameter on the model, and adapt it in consequence. Moreover, more accuracy 
means more iterations, more iterations means more partitions and finally more partitions 
means less accuracy. It is why there is no single perfect solution. In this project, our 
objective is to create a Word2Vec model in a quick way with a good accuracy and this setting 
correspond to our needing. Moreover with spark, the model created use skip grams structure 
with hierarchical softmax to update the weights.  

2.2.3. Model 

 We start by creating a Word2Vec instance which contains all the parameters needed. 
This instance is then used to fit the model. The fitted model has to be tested and a good way 
to do that is to try to extract different relations and see if the results are more or less what 
we expect.  

  Figure 7: Script to train and fit Word2Vec model with settings[15]. 
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############################ 
# Create the spark context # 
############################ 

sc = SparkContext (appName="Build_MLLIB_MODEL_App") 

#################### 
# Create the model # 
#################### 

inp = sc.textFile(copusPath).map(lambda row: row.split(« »)) 

topNum = 20 
seed = 42 
itera = 1 
alpha = 0.05 
minCount = 5 
window = 10 
numPart = 4 

# SET The word2vec model  

word2vec = Word2Vec().setVectorSize(k).setSeed(seed).setNumIterations(itera).setLearningRate(alpha) 
    .setNumPartitions (numPart).setMinCount(minCount).setWindowSize(window) 

model = word2vec.fit(inp)



 In the figure 7, we can see how to set all the parameters, the variable word2vec is 
an instance of word2vec and the value returned after word2vec.fit(inp) is the fitted model. 
Notice that inp contains all the corpus split by space.  

2.3. Relation Extraction 

 The relation extraction is the most important part of our thesis. The objective is to 
extract new pairs with a similar semantic relation. The idea is to give in input, pairs with a 
similar relation like "A is part of B", or "A is the capital of B", etc.; and use these pairs to 
extract new pairs with the same relation. The quality of the results is depending on different 
factors such as the model, the semantic relation between the words, the original corpus. 
Some relations are easier to extract and produce better links. To see more explanation about 
how it works, please refer to the Chapter 3. The script for the relation extraction is run.py. 

2.4. Evaluation 

 The last part is the evaluation of our results. We first have to query wikidata in order 
to obtain a JSON file of the evaluated relation. When we have this file, we can verify which 
relations are true or false and add annotations to text files. The idea is to validate the 
relations, for example using 0 or 1. However, in complex connections like masculine to 
feminine words, the validation may not be simply binary and the annotation should be 
adjusted by hand. The aim is to evaluate the extracted relations like in an information 
retrieval system. At this end we use the normalized discounted cumulative gain(nDCG). 
Moreover, it is very interesting to use the nDCG score, because the extracted relations are 
ranked from most likely to least likely to be a good candidate. Indeed, the nDCG score takes 
into account if it is a good candidate and its rank in the output list. So, if all the good 
candidates are in the top of the list, we obtain a high nDCG score even if there are a lot of 
bad relations after them. Before computing the nDCG score, we have to compute to other 
formula: the Discounted Cumulative Gain (DCG) and the ideal Discounted Cumulative 
Gain (iDCG). 

 The DCG and the iDCG formulas are almost similar except for the rank order, in effect 
the iDCG formula sorts in descending order. p is the number of relations extracted and rel 
corresponds to the score of the relation i. 
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 To summarize, we used various methods to evaluate the model. The nDCG formula 
was used to measure the ranking quality, we also count the number of good relations and 
compute the precision. We can select the number of relations to be output: if 10 is selected, 
the precision of the semantic relations will be high, whereas if 100 is selected, the precision 
will be lower. That is why we use two methods, one that take into account the rank of the 
good candidates and another that is not considering the rank but only the proportion of good 
candidates. A script was made for the evaluation part with an implementation of the nDCG 
score in 4_evaluate.py. 

2.5. Additional features 

 One of the additional features is to solve the problem of compatibility between a 
model created by Mllib and a model created by Gensim. So the script 
« Optional_Millib_Model_To_Gensim_Model.py » was created to transform a model from Mllib 
to Gensim and keeping the same structure. The idea behind this transformation process is to 
test if there is a difference between the original program developed to work locally and the 
second in Spark, with a same model. In Mllib the model was saved in « snappy parquet » 
and we have to translate it to. txt or. bin with the correct structure.  

 Another additional feature is a script « visualization.py », that was created to obtain a 
2D visualization of our models [17]. This feature is interesting to analyze our model after the 
training part by seeing if similar elements are close in the vector space. 

3. Input Pair Selection 

3.1. Introduction 
   

 In this part, we present 4 methods for selecting the pairs to use as input. Our 
algorithm is, given pairs of the same relation type in input outputting new pairs of the same 
relation type. One of the objectives is to obtain a high precision with fewer input pairs as 
possible. We later compared the 4 methods with different relation types, using a list of 25 
input pairs and also by selecting a subset of 5, 10, 15, 20 elements from this list. The figure 
8 is a schema of the Pair structure. The pair structure is composed of 3 embedding objects. 
Each embedding object is composed of one word and its vector representation in multi-
vectorial space. 
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  Figure 8: Schema of Pair structure 

  

   

 The input pair selection part is very important for the relation extraction. The idea of 
tuning the input pairs selection came after having analyzed how the relation extraction 
algorithm works (see 4.4). During the generation of new pairs, the relation extraction 
algorithm uses a Word2Vec model function to retrieve a list of the most similar words to a 
given word. For example: given the word "Paris", the Word2vec model function will return a 
list that can be composed of other capitals (like western European capitals, Madrid, London, 
etc.). In a similar way, for an input composed of pairs all representing the same relation as 
« Capital-Country » (Example: Paris - France", "Madrid - Spain", "London - England » for 
western countries) the model will also output new pairs of the same relation type. Since the  
word vectors from the pairs of the same relation type are close, we explored the possibility 
to select one pair that is best representing the entire pairs list. This concept is used only for 
Pair Cosine & Euclidean selection plus K-Means Selection. 

  The figure 9 explains the main steps of the 4 methods explained before. As we can 
see at the begin the user give in input a set of pairs, the global idea (except for word count 
method) is to cluster (or group) the pairs with something in common together. The final idea 
is to obtain groups which contains pair, and we have to rank these pairs inside the group in 
order to sort from the best to the least good representative of the group. The last part is the 
selection of the pair in each group, to more details see figure 11. 
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Word : Paris 
Vector : Word Vector

Word : Concatenation of word from embedding 
1 and 2 = Paris - France 

Vector : Word Vector from embedding 2 - Word 
Vector from embedding 1

Word : France 
Vector : Word Vector

Embedding 1 Embedding 2

Embedding 3



 
 Figure 9: Input Pair Selection schema for the four methods divide in steps. The first line with blue 
box is for K-Means method, in the second line in orange both the method Pair Cosine and Euclidean Selection and 
the last line in purple Word Count method. The red square represent a pair of this schema. 

3.2. WordCount 
  

 WordCount is a simple method, that only count the occurrence of each word in the 
pairs, and sum them to obtain the occurrence score of a pair. The same operation is done for 
25 elements and they are at the end, ranked by their scores, in descending order. The pairs 
are selected amongst the top ones. This method is only used as a basis to later compared 
with more complex selection methods. 
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3.3. Pair Cosine Selection & Euclidean Selection 

 The idea of the "Input Pairs Selection" is to group the most similar elements together, 
and select the groups with the elements closest to each other. In addition, one 
representative is selected for each group. This representative is the element that share the 
most "commonalities" with the other elements of its group. This grouping of similar elements 
is a kind of clustering method. The similarity function used is the only difference between the 
Pair Cosine Selection method and the Euclidean Selection method. Indeed, the first method 
uses the Cosine similarity and the second method uses the Euclidean similarity. 

  

Here are the details of the pairs selection methods: 

•  First, we have to set the number of groups we want. Then, all the possible 
combinations are generated in a « brute force » fashion. Inside our program all 
these operations are performed using the Spark RDD structure. For example, if 
we provide 25 input pairs we can produce 5 groups of 5 elements each. 

•The presented formula is calculating, « how many groups are generated ». K is 
the number of elements by combinations and N is the number of different 
values. Continuing with our example, K = 5 because we want to obtain groups 
of 5 elements and N is equal to 25. The result is 53130 unique groups of 5 
pairs. All the combinations do not contain duplicates (ex: [A, B, A] is not valid), 
and the order is not taken into account ([A, B, C] = [A, C, B] only one of these 
will be retained). 

•  The idea is to compare in each group, each element to the other elements 
within the group, with either Cosine Similarity or Euclidean Similarity 
(Euclidean distance). 

•  The next step is to average all these scores to get the similarity score of each 
group. 

•Then, we choose the groups which contain the most similar elements, and 
which have a better score. Once a group is selected, the elements it contains 
will not be part of another group. 

•We will end up with 5 groups of 5 (example: the countries, there will be a 
European country group, another for the Middle East, etc.). All elements in a 
group are close to each other, so we have succeeded in uniting the identical or 
close elements within the same group as clustering. 
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•The final idea is to select the element(s) that represent the most of the group, 
so all the elements of the group are compared by their similarity with the 
group. 

•Once all these tasks are done, if we want to select 5 elements (pairs) in input 
for the extraction of the new pairs, we will use the first represent of each 
group. Indeed, in our example the 25 pairs in input is transformed to 5 groups 
of 5 and ranked by their similarity to select them. Moreover, if we want 10, we 
take the first two elements that represent the most of each group. 

 Using a group representative improves the results in many ways. First it will produce 
a wider range of new pairs and since the input size is reduced the computation time is 
reduced too. 

3.4. K-Means Selection 

 The last method presented is the K-Means Selection. For that we use the « k-means||
 » implementation which is a parallelized variant included in MLLIB with Spark. The K-means 
algorithm is one of the most used clustering algorithms. It can be used for both regression 
or classification. One of the advantages is that it is unsupervised learning, so we can work 
with unlabelled data. The only argument is the value of k that represents the number of 
clusters we want. 

  

 This Figure 10 presents an overview of how the algorithm works. The example 
presented in the figure is in dimension 2 instead of 100 in our case. The first step of the K-
means is the random generation, because it is random, the clusters obtained with the K-
means can be different for different executions. However, a seed can be used to obtain the 
same result each time. In our case, to obtain 5 clusters we set k to 5, but all the clusters 
(groups) will not necessarily be of the same size contrary to the Pair Selection Methods 
(Euclidean and cosinus 3.3). 

  Figure 10: Short explanation of K-Means [18] 
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 Our method uses the k-means algorithm to group pairs into clusters (what we call our 
groups). The next step is to compute for each group the k-means cost of each element, 
which is the sum of the squared distances of the points to their nearest center. The 
elements of each group are then sorted in an ascending order based on their k-means cost. 
An element with a low-cost value means that this element is close to the centroid of the 
group and therefore represent it well. Although with the K-means method the groups can be 
of different sizes, the method loop over all the groups each time picking (removing) the best 
representative until we obtain the desired number see Figure 11. 

  Figure 11: Schema of k-means pair selection with uniform groups, green means 
selected pairs returned and red no selected pairs. 

 The schema is an example of the k-means pair selection. There are 3 groups of 
different sizes for a total of 10 pairs. To select 5 pairs, the method loop over the groups each 
time selecting the first pair in the ranked order. After the first loop, only three pairs are 
selected therefore the loop is continuing selecting the remaining pairs until the required 
number has been selected. 

4. Relation Extraction 
4.1. Introduction 

 In this chapter, each step of the relation extraction process is explained. The code 
analyzed was originally developed by Matúš Pikuliak [19] and is working with Gensim in local 
mode (one machine). One the project contribution was to understand this code and to 
deploy it on Spark using RDD to improve the performance and the ability to handle more 
data. All these modifications needed to be performed without altering the results. Moreover 
the new code had to work with a model created by Mllib. 
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4.2. Explanation 

 The Figure 12 shows the UML class diagram of the refactored code. It gives a useful 
overview of the new code structure and each class will be briefly presented in the following 
chapter. There are 5 classes, one of them is "PairSet" which contains the list of the input 
Pair (semantic relation) from the input text file. The "Pair "class is used to create a pair of 
two embedding words. The "Embedding" class is used to create an embedding word, it 
contains the word and the vector representation of it (stored as a list of float). The classes 
"Result" and "ResultList" are only used to store the results (new generated pairs), also 
named "candidate", and sort the results by score, ranked by similarity. 

  Figure 12: UML Class diagram 

•Embedding: This class is used to create the structure of embedding words, so 
each embedding is a distinct word which contains one word and his vector 
representation named v. Its method "neighbors" return a list of the N closest 
words in the vector space. In the project context, we are interested in the 100 
closest words. 

•Pair: A Pair represents two words like « Paris » and « France ». It contains 
three embedding instances, one for each word of the pair and one for a new 
word like « Paris - France ». The third word is created using the first two 
embedding words by merging them and subtracting the vector of word1 with 
word2. Positive and candidates are boolean variables indicating status of the 
pair. At least one of them should be false. So, if a candidate is true, it means 
that there is a correct new candidate during the relations extractions. Positive 
says if it is input pair load by the text file or a generated pair. The neighbors 
functions call the similar function to embedding class (see to 4.4), and for 
euclidean_similarity please refer to 4.6 chapter. 
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•PairSet: This class is a set of Pairs, that contains a least 1 pair. The property 
"set_pairs" contains all the pairs given by the user in the text file in input. 
Filename contains only the name of the input file. This class is like the main 
one, because by this class we can launch some task like generates new pairs, 
pair selection.  

•Result: This class is used to store the similarity results of one pair. Name 
contains the word of pair like « Paris - France », is_positive is to know if it’s a 
pair from the input file. Score contain the similarity result between all the 
input pairs, in order to found the best candidates. Position is used at the end 
of the process in order to rank the best candidates.  

•ResultList: This class is a list of results, which contains at least 1 instance of 
Result. The method "Append" is used to add new Result instance. The "sort" 
method is used to rank all the result elements by similarity score. The 
"print_top_n_to_file" method is used to choose the number of ranked 
candidates we want to print and save in the output text file.  

4.3. Initialization 

 The role of this part is to retrieve new pairs of the same semantic relation type. The 
idea is to give as input a list of pairs of the same relation type (example: A is the capital of 
B, A is part of B). These input relations are used to retrieve new relations of the same type. 
The relations obtained depend on different factors such as the model, the semantic relation 
between the words, the corpus. Some relations have a stronger link than others which can 
be more complex and therefore harder to get. The chapter 4.4 contains more explanation 
about how it works. The script is run.py. 

 The first step (1 in the figure 13) is the initialization task, in which the user has to 
create a text file with one or more similar semantic relations. This task is represented in gray 
in the figure 13 and it is also processing all pairs to obtain embedding objects. An 
embedding object is containing a word and its word vector. For example, the pair « Paris - 
France » is split in two embedding objects for « Paris » and « France » and also an additional 
embedding object for the relation word « Paris - France » with a word vector equal to the 
difference between the vector coordinates of the two words. Finally, the program output a 
PairSet which contains a list of the most similar Pairs to those given in the input file. 
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  Figure 13: Schema of the main steps in our method for relation extraction 

Here are described the input and output of each step. The figure 13 is a simplified view of 
the chapters 2.3 and 4. The idea of it is to give a quick overview on how the algorithm 
works. 

 •Step 1: The gray square represents the input text file which contains pairs given by 
  the user. Each pair is transformed into embedding objects as described in the 
  section 3.1.  

 • Step 2: In this step the input is the two embedding objects and the purpose of this 
step is to generate new candidates. The green and orange squares represent the 
neighbors of the embedding objects. Then a Cartesian operation is performed 
in order to obtain new pairs. The output of this step is a list of pairs generated by 
the Cartesian operation. In the figure 13, it is showing how the process is 
processing the first pair « Paris - France », and by retrieving the 4 closest 
neighbors pairs the Cartesian operation generates 16 new pairs. 
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 • Step 3: This step receives as input the previously generated list of pairs and remove 
the duplicate and the pairs already present in the input file (for example: « Madrid 
- Spain » in the figure 13). This step returns a cleaned list of pairs. 

 • Step 4: The last step decides which pairs from the cleaned list of pairs are the best 
ones. Each pair from the output list is compared to all the input pairs using a 
Euclidean similarity. Since each pair is represented as an embedding object 
(containing the word vector of the pair), the word vector of each pair is used to 
compute the Euclidean similarity (the section 4.6 presents the detailed formula). 
At the end we obtain the list of the retrieved pairs ranked by the Euclidean 
similarity to the input. In the figure 13, on the left square it is the pair tested for 
the Euclidean similarity compared to the pairs from the input file on the right. 

4.4. Generation of new pairs 

 The second step of the figure 13 is finding the most similar words (closest neighbors) 
to each of the pair component. The closest neighbors are the words whose word vectors are 
the closest to the input word vector. The green color square contains the words close to the 
pair component « Paris » and the orange the words close to the pair component « France ». 
Each group of neighbors is stored in a RDD and the Cartesian product between the two 
RDD produces new pairs. 

 

  Figure 14: Script of Cartesian Product to generate new candidates 

 The Figure 14 shows the Spark code that generate the new pairs. The argument Size 
corresponds to the number of closest neighbors to retrieve for each pair component. e_1 
and e_2 are the two embedding objects of the pair. Each group of neighbors is parallelized 
into a RDD in order to take advantage of the RDD operations. The function also output a 
RDD that is the result of the Cartesian operations between the two groups of neighbors. The 
last line is here to check that no pair is composed of the same word for the two components. 

!  30
Master Thesis

def neighbours (self, sc, size=100): 
    """ 
    Generates candidates for this given pair as product of neighborhood of its two embedding. 
    : param sc: SparkContext 
    :param size: Integer 
    :return: list of Pairs in RDD type 
    """ 
    ng_1 = sc. parallelize (self.e_1.neighbours (size)) 
    ng_2 = sc. parallelize (self.e_2.neighbours (size)) 
    rdd = ng_1.cartesian (ng_2). cache () 
    return rdd. flatMap (lambda x: [(x [0]. word+’-’+x [1]. word, Pair (x [0], x [1], 
                                                    candidate=True))] if x [0]. word != x [1]. word else [])



 

 The formula is the function that calculate the distance between two word vectors A 
and B. There is a function in MLLIB named findSynonyms(w, n) that return for the word w is 
the n closest neighbors. This function is called on a Word2Vec model to get the most similar 
words to one input word. This function use the cosine similarity [20] to find the nearest 
words and return them as a list of tuples that contain the word and its cosine distance. 

4.5. Duplicate pairs 

 The third step of the figure 13, checks if there is no duplicate between the generated 
pairs and the pairs given as input and also between the pairs generated for each input pair. 
This step is basically removing all the pairs from the generated pair list that are also present 
in the input pair list. In our case, we set the number of closest neighbors to retrieve for each 
pair component to 100. So the Cartesian product produces 10,000 pairs (100 words * 100 
words) for each input pair. Therefore there is high likelihood to find duplicates between the 
pairs generated for each input pair. 

4.6. Pairs selection 

 The pair selection is the step that selects from the entire list of pairs generated in the 
previous step the best to use for our goal. To select these pairs the program computes the 
similarity score between each new pair and all the input pairs, as described in the step 4 
from the Figure 13. 

  

 The score formula is used to measure the similarity between one pair and all the 
input pairs. This formula returns a similarity score between 0 and 1, the higher meaning that 
the pair is very similar. P represents all of the input pairs, C is the new pair to score, s is the 
number of elements in P. The idea behind this formula is to compute the Euclidean distance 
between a tested pair and an input pair, and multiply by one divided by the size of the input 
pairs set in order to have the same weight between them. 

 The final step is sorting the pairs by their similarity scores and returns the list of pairs 
with the highest similarity score. By default the program is returning 100 pairs but this can 
be modified if needed. 
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4.7. Visualization  

 In this part, we show an example of a 2D projection of the word vectors in a multi-
vectorial space. In this projection only the words related to the relation "Capital - Country" 
are shown in order to render this visualization as readable as possible. This 2D 
representation gives just an idea of the word vectors location, but does not correspond to 
the real distribution. Indeed, in our case, each word vector is composed of 100 coordinates. 
Therefore we used the distributed stochastic neighbor embedding method [21] also named t-
SNE in order to perform a dimensionality reduction and produce this scatter plot. 

  Figure 15: Visualization of embedding word for capital - country relation. The 
red circle contains the most of the time country/capital/city from South America, in blue circle North of Europe and 
in the Green circle from Asia. 

 In the Figure 15, the countries (from the relation « City - Country ») from the same 
continent are located close together (their context are likely to be similar). We chose this 
example because it is easy to interpret but this can also be seen with other relations. In the 
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top right of the figure 15 are located all the countries from the northern countries(blue 
circle). Similarly, there is a big cluster of Latin American countries in the top left part (red 
circle) of the figure. Our N-gram words are also correctly located. To see more detail of some 
part see the figure 16. 

   

  Figure 16: Zoom on some parts of the figure 15. 

4.8. More explanations 

 This section gives more information on how to run the scripts. During our 
experiments, we wanted to only return 100 pairs in order to evaluate their semantic relation. 
But this number of returned pairs and the number of neighbors considered for each input 
pair can be changed. The arguments to set are:  

 • -o: This parameter is the output file where the results will be written. 

 • -t: This is the number of results to return. 

 • -d: This parameter is the number of neighbors considered when generating 
candidates. 

 • -s: This parameter is an optional boolean parameter used to activate the input pairs 
selection. 

Example on how to run the script "run.py": run.py -o output.txt -t 100 -d 100 
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5. Results 

 This section is presenting the results obtained during the project. We used a model 
created with Spark with this set of parameters: 

•Number of vector size 100,  

•Windows for the context 10 

•Learning rate 0.05.  

•A corpus "enwiki" from wikipedia dump, which is corpus containing articles from 
various domains. 

 After the cleaning and training part, our corpus contains 7 673 265 words with one 
hundred coordinates for each word. The model used N-Gram and StopWord list in the pre-
processing part. It is also possible to create a second model with a different configuration for 
preprocessing part. The table 1 shows that the model (Model 2) using the stop word list is 
considerably improving the execution times. Indeed, the corpus after pre-processing part is 
smaller while the number of distinct words was multiplied by almost 4 times. In our 
experiments we are essentially focused on the model 2. 

  Table 1: Configuration of Word2Vec Model 
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Configuration Model 1 Model 2

N-Gram Not used Used

Stop Word List Not used Used

Vectors Size 100 100

Learning rate 0,05 0,05

Num of Partions 4 4

Windows Size 10 10

Seed 42 42

Min Count 5 5

Execution Time 406m29.355s 288m40.239

Num of Distinct 
Word

2036173 7673265



5.1. Configuration 

 The tests were conducted using a local machine (iMac) and a cluster of computers 
from the University of Fribourg. The local machine was used to locally compute the original 
code and the new code with spark. The cluster was only used to run the new code with 
Spark distributed mode. The table 2 is the detailed information about the machines used. 

  Table 2: Configuration of the machines 

5.2. Results of the relations extraction 

 Each presented method is, given a pair list, outputting a new list of pairs. In order to 
measure the quality of the pair lists generated by the presented methods, we measured the 
nDCG score and the precision of these lists. Indeed, to measure the precision of a pair list, 
we count the number of correct pair over the total number of pairs. A pair is considered 
correct if it is representing a semantically true relation between the two components. The 
nDCG score is used in order to take into account not only the precision of the pair list but 
also the position of the correct pair into the list. We calculated these scores on the results 
obtained by providing five different types of semantic relations in entry. For each type of 
relation we provided a list of 25 pairs and, each method selected from this list the number of 
pairs to effectively use. 

5.2.1. Relation City - Country 
 The relation between cities and countries is often easily identifiable because the two 
words are likely to share the same context. This is a relation easy to validate, therefore we 
expected to obtain good pairs in output. In the table 3, we present the results obtained  for 
S = 100 pairs in output. A precision of 0.01 means that the output contains 1 true candidate 
for 100 returned.  

  Table 3: Measures of the relation City - Country, S is the amount of the value 
return for the evaluation part and N corresponds to the number of neighbors set during the relation extraction part. 
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Configurations iMac Cluster

RAM 24Go 128Gb

Node(s) 0 50

CPU 4 32

CPU Name 3,3 GHz Intel Core 
i5

Intel(R) Xeon(R) CPU 
E5-2620 v4 @ 
2.10GHz



  

 The best score is obtained when one the input pair list is composed of 15 Peers. In 
general for this relation, the precision and the nDCG score is very high. The nDCG is 
particularly high, which proves that this relation has a very good score for information 
retrieval; which corresponds to our accuracy of the extracted relations. Moreover, we 
observed that we obtain a good precision and nDCG scores using our methods except for the 
« Word Count Selection ». All the other methods give good scores with 10 pairs in entry and 
there is a small score variation with a greater number of pairs. The fact that our methods 
provide good scores with fewer pairs in input shows the improvement realized.  

  Figure 17: Precision by the number of pairs in input for City - country 
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N = 100 
S = 100

Word Count 
Selection

Cosine Selection Euclidean Selection K-means

City - 
Country

Precision nDCG Precision nDCG Precision nDCG Precision nDCG

5 Pairs 0,02 0,70881107076 0,1 0,911678560057 0,13 0,88684916391 0,14 0,826612201606

10 Pairs 0,05 0,605325407301 0,2 0,731011526279 0,17 0,823165252548 0,19 0,76836830647

15 Pairs 0,13 0,838733525105 0,22 0,75844742992 0,18 0,778563409232 0,19 0,831770222148

20 Pairs 0,16 0,804637789981 0,2 0,821038563515 0,19 0,869011691781 0,18 0,807142441466

City - Country

Pr
ec

is
io

n

0
0,02
0,04
0,06
0,08
0,1

0,12
0,14
0,16
0,18
0,2

0,22
0,24
0,26
0,28
0,3

Pairs in input
5 10 15 20

Word Count Selection Cosine Selection Euclidean K-means



 In the figure 17, we present, using a bar chart, a visualization of the precision 
obtained using each method. We obtain a lower precision score when using the «  word 
count selection » algorithm compared to the other algorithms. 

  Table 4: Excerpts of the Input Text File that contains the input pair 

 The table 4 gives an example of an input file for the relation « City-Country ». 

  Table 5: Excerpt from the output file of candidates after evaluation 
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Input Text File

athens greece

baghdad irap

bangkok thailand

beijing china

berlin germany

Excerpt from the output file

1 damascus - syria Damascus - Syria : Damascus - Syria

1 istanbul - turkey Istanbul - Turkey : Istanbul - Turkey

1 kabul - afghanistan Kabul - Afghanistan : Kabul - Afghanistan

1 algiers - algeria Algiers - Algeria : Algiers - Algeria

1 budapest - hungary Budapest - Hungary : Budapest - Hungary

1 bogota - colombia Bogota - Colombia : Bogota - Colombia

1 tehran - iran Tehran - Iran : Tehran - Iran

1 auckland - zealand Auckland - Zealand : Auckland - New Zealand

1 beirut - lebanon Beirut - Lebanon : Beirut - Lebanon

0 baghdad - syria

0 melbourne - adelaide

1 montevideo - uruguay Montevideo - Uruguay : Montevideo - Uruguay

0 colombia - ecuador



   

 The table 5 shows a sample of the pairs output after the evaluation part, for 5 pairs in 
input. The first value (0,1) defines if a pair is considered true or false. When a relation is 
true there is a second part which is the result from our Knowledge Base. 

 Example:  

 « damascus - syria » is the first part which is extracted by our algorithm and 
« Damascus - Syria: Damascus - Syria » is the second part of Wikidata(KB). The Wikidata 
part is used to check if the first part is true. 

5.2.2. Relation Capital - Country 

 Capital and countries words are often close together inside a text and they also share 
the same context. Like for the city - country relation, the same trend is observed for ten 
pairs in input. Moreover we can notice the good performance of the K-means selection 
method with only five input pairs.  

  Table 6: Measures of the relation Capital - Country 

 As we can see in the diagram (figure 18), the precision score of the « K-Means » 
method for 5 pairs in input is 6 times higher than with the « word count » method. However, 
this difference shows the importance of correctly selecting the pairs of the same relation. 
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N = 100 
S = 100

Word Count 
Selection

Cosine Selection Euclidean Selection K-means

Capital - 
Country

Precision nDCG Precision nDCG Precision nDCG Precision nDCG

5 Pairs 0,02 0,708811070796 0,06 0,950794129282 0,04 0,674152235686 0,14 0,826612201606

10 Pairs 0,04 0,624345820183 0,15 0,717010855691 0,12 0,773781464025 0,14 0,723770203728

15 Pairs 0,1 0,857014458131 0,15 0,71602478068 0,12 0,71252166209 0,16 0,80219797428

20 Pairs 0,12 0,810909976685 0,13 0,809352194408 0,13 0,860703027708 0,13 0,777615243145



  Figure 18: Precision by the number of pairs in input for Capital - Country 

5.2.3. Relation Last Name of US Politicians - Place of birth 

 This relation is a more complex relation compared to the "city - country" one, the link 
between the two words of the relation is not really straightforward. Usually when there is an 
article or a paper about a politician, the context is not containing its place of birth. We can 
then expect that a more complex relation will give us less accurate results. 

  Table 7: Measures of the relation Last Name of US Politicians - Place of birth 
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N = 100 
S = 100

Word Count 
Selection

Cosine Selection Euclidean Selection K-means Selection

Politician
s - Place 
of Birth

Precision nDCG Precision nDCG Precision nDCG Precision nDCG

5 Pairs 0,24 0,555220648772 0,2 0,47868332611 0,15 0,437268908526 0,13 0,445401616903

10 Pairs 0,14 0,418135435682 0,08 0,346249619829 0,12 0,41719444084 0,04 0,261330599098

15 Pairs 0,14 0,44064697367 0,07 0,326837793038 0,08 0,340174006528 0,05 0,275057708017

20 Pairs 0,15 0,545258184315 0,14 0,493647158346 0,12 0,515210017843 0,13 0,463746816443



 This can be explained by the fact that a complex relation contains more randomness. 
Indeed, during the candidates generation part, if the relation is not straightforward, the 
elements are more distant in the multi-vectorial space and the results are more various. In 
addition, the nDCG score is low, which means that the extracted relations are less precise 
and thus produces more mistakes. 

  Figure 19: Precision by the number of pairs in input for US Politicians 

5.2.4. Relation Masculine Words - Feminine words 
  

 The relation between masculine and feminine words is an interesting example for the 
relation extraction. Therefore word gender relations have been evaluated (e.g.: « brother - 
sister » or « policeman - policewoman »).  
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  Table 8: Measures of the relation Masculine Words - Feminine words 

 This type of relation is more subjective so there is not really any knowledge base that 
can gauge whether it’s true, false or just half true/false. The notation will therefore not be 
binary, but between 0 and 2 with 1 for a half-true. This notation influence the nDCG score 
for a more accurate measurement. With this relation, we obtain almost the same result for 
all the methods. 

Examples :  

•  waitress - waiter: This relation is good so it’s equal to 2.  

•  waitress - bartender: This relation is hard to evaluate because "bartender" is a 
gender-neutral term. So we can evaluate this relation to half-true and the score 
is equal to 1. 

5.2.5. Relation Nationality 

  

 The relation between nationality and country words is the last tested example for the 
relation extraction. We obtain the best results with this relation. We can notice the good 
performance for the « Euclidean Selection » with 5 pairs, 31 true candidates for 100 of 
candidates retrieved. The high nDCG score means that the most of true relations are in the 
ranked high in the list of the candidates retrieved.  
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N = 100 
S = 100

Word Count 
Selection

Cosine Selection Euclidean Selection K-means Selection

Genre Precision nDCG Precision nDCG Precision nDCG Precision nDCG

5 Pairs 0,09 0,666526559721 0,08 0,804270656978 0,09 0,600703168892 0,08 0,683377348538

10 Pairs 0,09 0,63603037661 0,08 0,676988048315 0,09 0,620027337145 0,11 0,719231965599

15 Pairs 0,09 0,65300969414 0,08 0,642883514899 0,09 0,649381329513 0,08 0,663696960927

20 Pairs 0,08 0,642832341373 0,06 0,648385060413 0,09 0,648258789885 0,08 0,645472436762



  Table 9: Measure of the relation Nationality 

 In this Figure 20, we can see the global good performance for our method expect for 
« word count selection ». The Cosine and Euclidean methods start with high precision scores. 

 

  Figure 20: Precision by the number of pairs in input for Nationality 
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N = 100 
S = 100

Word Count Selection Cosine Selection Euclidean Selection K-means Selection

Nationality Precision nDCG Precision nDCG Precision nDCG Precision nDCG

5 Pairs 0,05 0,814074435311 0,25 0,904350666817 0,31 0,947629124358 0,15 0,828296390662

10 Pairs 0,16 0,862699525393 0,28 0,917766138105 0,31 0,947629124358 0,19 0,902308562268

15 Pairs 0,22 0,918058511587 0,34 0,932147928657 0,3 0,932608225856 0,27 0,924740192723

20 Pairs 0,38 0,951054962103 0,36 0,931583474055 0,39 0,945480111331 0,36 0,94501216161
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5.3. Impact of neighbors 

 In this part, we chose to apply the K-means selection method on the Nationality 
relation. We chose this relation because this is the one with which we obtained the best 
results, so we can analyze the variations in them. The idea is to measure the impact of 
increasing the number of neighbors. We only used one relation with one method, because 
we obtain almost the same result with the other example. For the measure we set the 
number of pairs returned (S) to 100, and we modify the value of N.  

  Figure 21: Impact of neighbors with K-Means selection for Nationality relation. 

 In the figure 21, we see a good precision with the value of N between 100 and 150. 
After this, the results tend to stabilize. It should be remembered that, for each pair in input, 
the method is generating N * N candidates. Moreover, increasing the number of neighbors 
can dramatically increase the execution time. There is no single solution, it depends on many 
factors such as the size of the corpus, the number of neural network used, the number of 
words, so we must select a number N that produces good results without increasing too 
much the execution time. In our experiments, an N value of 100 is a good solution. 
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5.4. Impact of increasing the number of returned pairs 

 The objective of this part is to measure the impact of increasing the number of pairs 
returned. In effect, after the generation of the new pairs, all the methods use the Euclidean 
similarity to score each pair. They are then ranked in order to select the best generated 
pairs. If the algorithm works well, by reducing the number of pairs returned, the precision 
score will increase.  

 For this experiment, we chose the nationality relation and we define the number of 
neighbors to 200. We observe that we obtain a better result with N=100 and S=100 in 5.2.5 
but there is not a huge difference between them. In the table 10, we decided to change the 
value of S to 50, 100, 150, 200. As we expected we obtain a higher precision for 50 pairs 
returned instead of 200. 

  Table 10: Impact of the number of pairs returned for the nationality relation 
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N = 200 
S = 200

Word Count Selection Cosine Selection Euclidean Selection

Nationality Precision nDCG Precision nDCG Precision nDCG

S = 50 5 Pairs 0,06 0,870593493136 0,44 0,945673107177 0,54 0,965785866864

S = 100 0,04 0,790584089706 0,27 0,924672279148 0,33 0,946993314379

S = 150 0,02 0,790584089706 0,21 0,901904203849 0,22 0,946993314379

S = 200 0,02 0,790584089706 0,16 0,897566950528 0,17 0,936654394612

S = 50 10 Pairs 0,26 0,857442172115 0,48 0,945716462312 0,54 0,965785866864

S = 100 0,16 0,830444692069 0,29 0,927137189212 0,33 0,946993314379

S = 150 0,12 0,814863387329 0,21 0,91520163538 0,22 0,946993314379

S = 200 0,09 0,806521200567 0,17 0,906576715487 0,17 0,936654394612

S = 50 15 Pairs 0,36 0,950840386968 0,58 0,958610012156 0,5 0,959559039192

S = 100 0,23 0,915902949109 0,35 0,943590873684 0,3 0,940492577124

S = 150 0,17 0,898549643791 0,26 0,927771900529 0,22 0,927277277823

S = 200 0,13 0,898549643791 0,21 0,921159262165 0,18 0,910668826377

S = 50 20 Pairs 0,62 0,975699571799 0,54 0,967745579352 0,62 0,967758605889

S = 100 0,39 0,957191960571 0,38 0,939364159696 0,38 0,9526499027

S = 150 0,29 0,94262273754 0,27 0,931112790032 0,28 0,941363537585

S = 200 0,24 0,931737817728 0,22 0,919061693165 0,23 0,927242282659



 

  Figure 22: Precision and nDCG to measure impact of the output size 

  

 In the figure 22, the bar charts show the cosine selection, as we can see in the 
precision chart, the four methods produce almost the same « shape » with lower scores 
when the number of returned pairs increases. For S equal to 100 and 20 input pairs we 
obtain 38 true candidates, but for S equal to 200 and 20 input pairs equal we obtain 44 true 
candidates (a precision of 0.22). A smaller precision doesn’t mean less true candidates. We 
observe that by increasing the returned pairs from 100 (27 for 5 pairs) to 200 (300 for 5 
pairs) we obtain only 3 true new candidates. So, we can still get good candidates by 
returning more pairs but the likelihood of getting good pairs if reduced. The second chart is 
proving that increasing the size of the output list does not affect the nDCG score because the 
true candidates are still ranked in the top.  

5.5. Results comparison 

 In this section we tested the 4 selection methods with all the relation types in order 
to compare them. The configuration is S and N equal to 100. 
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5.5.1. Precision 
 

    

  Figure 23: Precision between our methods with all the relations 

 In this part, we compared the precision between our methods with all relations. One 
interesting thing with Euclidean and K-Means Selection is that, we obtain almost the same 
results of 5 to 20 pairs, the curves are almost stable except for the nationality relation. For 
Cosine selection is almost the same but between 10 and 20 pairs. This finding is very 
important because it means that we get almost the same result with fewer input pairs, so we 
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got the expected results. Moreover, it can be interpreted that the simplest and most direct 
relations have better results.  

 Another interesting thing is the precision for 5 pairs, as we can see for K-means we 
obtain 4 relations with score equal or higher to 0.10, and 3 relations for Euclidean & Cosine 
and only one for word count selection. To conclude, the selection of pairs in input has huge 
impact in the precision, and with our algorithms we can propose a new method to improve it 
and reduce the number of candidates.  

5.5.2. Normalized discounted cumulative gain 

  Figure 24: nDCG between our methods with all the relations 
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 Across all the charts in the figure, we notice that the best nDGC score is comprised 
between 5 and 10. We see that it stabilizes at 5 pairs except for cosine we obtain the best 
result at 5 pairs. Moreover, for direct relations like « city » the value is stable, regardless of 
the number of peers in input. However, for a little more complex relation like « US 
Politician » the nDCG score has more variations. 

5.5.3. Comparison of models 

  Figure 25: Comparison of models with precision 
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 In this part we compared the models described in the section 5. But in our 
experiment we only used the model 2. The main difference between both models is that the 
model 1 doesn’t handle n-gram whereas the model 2 do. Because of that, the model 2 
contains almost 4 times more unique words than the model 1. These charts show the 
precision scores between these two with S and N set to 100. We obtain better results using 
the model 1, we guessed it is because this model contains less word. Moreover, in our 
experiments we never obtained a n-gram candidate. However, if the user wants to give « n-
gram pairs » in input, it’s possible.  

5.6. Spark & Gensim  

 This part presents the comparison of the two frameworks Spark and Gensim. To fulfill 
this task, we created a model with the Mllib library of Spark (more precisely the model 1). 
Then we used our script to transform the model created under Spark into a Gensim 
compatible model. With all this process, it is now possible to compare whether there are any 
differences on the results. 

  Table 11: Comparison Between Spark & Gensim 

 We can say that the results are almost identical even if there is a very small 
difference for the nDCG value. This difference is explained by the fact that even if the values 
are identical in the best ranked values, there are sensitive variations for the lowest ranked 
values. Then a good relation in the end of rankings can have an offset of 1 rank between 
them which causes this very small gap. 

!  49
Master Thesis

Mllib Spark Gensim

City - Country Precision nDCG Precision nDCG

5 Pairs 0,15 0,923527524 0,15 0,923135602

10 Pairs 0,23 0,916203658 0,23 0,916203658

15 Pairs 0,28 0,938486647 0,28 0,938528403

20 Pairs 0,29 0,932181575 0,29 0,932181575

25 Pairs 0,27 0,906023854 0,27 0,906023854



5.7. Execution time 

 To measure the execution time, we have run the original code on a single (local) 
machine (see configurations in 5.1). Then we also run our code on Spark using the cluster 
mode. We have also created a Spark version that run on a single machine but this one has 
not been used for the tests. The configuration used to obtain the best execution times with 
the cluster is: 

  

•     --py-files class_container.py: Allows us to load our python file 

•     --conf spark.driver.maxResultSize=4G: Mandatory for our program to avoid the 

error: « Total size of serialized results of X tasks (X KB) is bigger than 

spark.driver.maxResultSize » 

•   --master yarn --deploy-mode cluster --driver-memory 42G --executor-memory 

35G: Use to configure YARN. In addition, the values of driver memory and executor 

memory can be decreased. 

•    --num-executors 84 --executor-cores 4: These items are optional, but with this 

configuration you can save a few minutes. Executor-cores is the number of 
concurrent tasks an executor can run, and num-executors is used to control how 

many executors will be allocated on the cluster. 

•      run.py: It is our main file to launch our script 

•   relations2/relations2/Genre25.txt -o hdfs:///user/jeremy/relations2/Genre25: 

These are the arguments of our script, the first argument is the path of the input file 
that contains the pairs (stored in HDFS). The second argument is the path where the 

output file will be saved, in our case in a directory of HDFS. 
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> time spark-submit --py-files class_container.py --conf spark.driver.maxResultSize=4G --
master yarn --deploy-mode cluster --driver-memory 42G --executor-memory 35G --num-
executors 84 --executor-cores 4 run.py relations2/relations2/Genre25.txt -o hdfs:///user/
jeremy/relations2/Genre25



 

  Figure 26: Execution time 

   

 More details are provided in the code and the readme of the program. They also 
contain information about optional arguments for the program. 

 The tests presented in the bar chart (figure 26) were conducted using with the same 
model that was used for the previous charts. This model was transformed to be compatible 
to work in local with Gensim. The cluster version bars are the execution time obtained by our 
program running on a cluster.  

 The figure 24 shows the best execution time, but it can exist a variation of 10%. 
However, there is no doubt about the execution time improvement offered by our Spark 
implementation. In effect Spark is especially powerful to load a model that is stored in HDFS.  

 Using fewer pairs in input (for example 5 pairs instead of 20) can considerably reduce 
the execution time. Therefore, if the results are (almost) identical it is better to favor the 
input with the lowest number of pairs. In our case, we could divide the execution time by 
almost 3 with the pair selection method improvement (for 25 pairs in input, there is 500 
seconds instead of 150 for 5 pairs). 
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6. Conclusion 

 During this thesis we have modified a relation extraction algorithm in order to deploy 
it on Spark. With this operation the computation power was increased and thus the 
execution time was reduced. It is now possible to quickly create a word embedding model 
with Spark and using even bigger text corpus. 

 We introduced methods for selecting the best relation pairs to use as input in order to 
improve the precision of the results and decrease the execution time. Using these methods, 
has effectively improved the relation extraction process. Moreover, we have created a 
method to automatically evaluate the extracted pairs by using the knowledge base Wikidata. 

 This thesis enabled us to explain the essential tasks of the extraction relation from 
the processing of a raw corpus to the evaluation of the results. Regarding the measures, it is 
important to note that each step of the process can greatly influence the results. In the 
same way, it is important to correctly choose the corpus to use and also to properly process 
it. 

7. Future Work 
  

 The expansion of the semantic Web could allow a better evaluation process, but also 
allow to measure if a relation is simple or complicate to identify. In addition, for increasing 
the performance even more, it might be necessary to use the Data-Frame structure instead 
of the RDD one in Spark. It might also be interesting to test with even larger corpuses. One 
improvement can be to link the extracted information to the knowledge base of the type of 
relation, before the generation of similar words in the relation extraction part. In order to 
detect if the generated words are true before doing the Cartesian product and the evaluation 
part. 

 Another thing is to try the « pairs extraction » algorithms and the « input pair 
selection method » with other words embedding algorithms like GloVe from the Stanford NLP 
Group. 

!  52
Master Thesis



8. References 

[1] Wikipedia. Apache Spark. URL : https://en.wikipedia.org/wiki/Apache_Spark 

[2] Apache Spark. Resilient Distributed Dataset RDD Documentation. URL: https://spark.apache.org/docs/1.6.2/api/
java/org/apache/spark/rdd/RDD.html 

[3] Wikipedia. Fault tolerance. URL : https://en.wikipedia.org/wiki/Fault_tolerance 

[4] Le monde informatique. Figure. URL: http://www.lemondeinformatique.fr/actualites/lire-3-conseils-pour-eviter-
de-transformer-un-data-lake-en-marecage-de-donnees-68482.html 

[5] Wikipedia. Word2Vec. URL: https://en.wikipedia.org/wiki/Word2vec 

[6] Mikolov et al. Efficient Estimation of Word Representations in Vector Space. URL: https://arxiv.org/pdf/
1301.3781v3.pdf) 

[7] Chris McCormick. Explanation about Skip Gram algorithm. URL: http://mccormickml.com/2016/04/19/
word2vec-tutorial-the-skip-gram-model/ 

[8] Standford Edu. Softmax Regression. URL http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ 

[9] Adrian Colyer. The amazing power of word vectors. URL: https://blog.acolyer.org/2016/04/21/the-amazing-
power-of-word-vectors/ 

[10] Radim Řehůřek. Gensim Framework. URL : https://radimrehurek.com/gensim/ 

[11] Apache Spark. Library MLLIB. URL: https://spark.apache.org/docs/latest/mllib-guide.html 

[12] Tomas Mikolov et al. Distributed Representations of Words and Phrases and their Compositionality. URL: 
https://arxiv.org/pdf/1310.4546.pdf 

[13] Wikidata. About Wikidata. URL: https://www.wikidata.org/wiki/Wikidata:Main_Page 

[14] Wikidata. Wikidata Query Service. URL: https://query.wikidata.org/ 

[15] Jeremy Serre. My bitbucket code reposit. URL: https://bitbucket.org/serrej/master_thesis/overview 

[16] Wikimedia. Corpus Extracted. URL: https://dumps.wikimedia.org/backup-index.html 

[17] Quora. Answers to visualization of a Word2Vec model. URL: https://www.quora.com/How-do-I-visualise-
word2vec-word-vectors 

[18] Wikipedia. K-Means. URL https://en.wikipedia.org/wiki/K-means_clustering 

[19] Matúš Pikuliak. Original Code. URL https://github.com/matus-pikuliak/word-embeddings 

[20] Wikipedia. Cosine similarity. URL https://en.wikipedia.org/wiki/Cosine_similarity 

[21] Quora. Embedding visualisation t-SNE. URL : https://www.quora.com/How-do-I-visualise-word2vec-word-
vectors 

!  53
Master Thesis

https://en.wikipedia.org/wiki/Apache_Spark
https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/rdd/RDD.html
https://en.wikipedia.org/wiki/Fault_tolerance
http://www.lemondeinformatique.fr/actualites/lire-3-conseils-pour-eviter-de-transformer-un-data-lake-en-marecage-de-donnees-68482.html
http://www.lemondeinformatique.fr/actualites/lire-3-conseils-pour-eviter-de-transformer-un-data-lake-en-marecage-de-donnees-68482.html
http://www.lemondeinformatique.fr/actualites/lire-3-conseils-pour-eviter-de-transformer-un-data-lake-en-marecage-de-donnees-68482.html
https://en.wikipedia.org/wiki/Word2vec
https://arxiv.org/pdf/1301.3781v3.pdf
https://arxiv.org/pdf/1301.3781v3.pdf
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/
https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/
https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/
https://radimrehurek.com/gensim/
https://spark.apache.org/docs/latest/mllib-guide.html
https://arxiv.org/pdf/1310.4546.pdf
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://query.wikidata.org/
https://bitbucket.org/serrej/master_thesis/overview
https://dumps.wikimedia.org/backup-index.html
https://www.quora.com/How-do-I-visualise-word2vec-word-vectors
https://www.quora.com/How-do-I-visualise-word2vec-word-vectors
https://en.wikipedia.org/wiki/K-means_clustering
https://github.com/matus-pikuliak/word-embeddings
https://en.wikipedia.org/wiki/Cosine_similarity
https://www.quora.com/How-do-I-visualise-word2vec-word-vectors
https://www.quora.com/How-do-I-visualise-word2vec-word-vectors

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Objectives
	Prerequisite
	Apache Spark
	Figure 1: Hadoop and Spark system [4]
	Word2vec
	Word Embedding
	Skip Gram and CBOW
	Figure 2: Schema of the two Word2Vec algorithms
	Figure 3: Skip Gram Neural Network Architecture
	Hierarchical Softmax & Negative sampling
	Figure 4: An example of a binary tree for the hierarchical softmax. The white units are words in the vocabulary, and the dark units are inner units.
	Gensim and MLLIB
	WikiData
	Figure 5: Query in SPARQL
	Figure 6: JSON file extract from Wikidata with our structure
	Approach
	Pre-processing
	N-Gram
	Stopword Lists
	Fitting the model
	Parameters
	Training and Fitting
	Model
	Figure 7: Script to train and fit Word2Vec model with settings[15].
	Relation Extraction
	Evaluation
	Additional features
	Input Pair Selection
	Introduction
	Figure 8: Schema of Pair structure
	Figure 9: Input Pair Selection schema for the four methods divide in steps. The first line with blue box is for K-Means method, in the second line in 
	WordCount
	Pair Cosine Selection & Euclidean Selection
	K-Means Selection
	Figure 10: Short explanation of K-Means [18]
	Figure 11: Schema of k-means pair selection with uniform groups, green means selected pairs returned and red no selected pairs.
	Relation Extraction
	Introduction
	Explanation
	Figure 12: UML Class diagram
	Initialization
	Figure 13: Schema of the main steps in our method for relation extraction
	Generation of new pairs
	Figure 14: Script of Cartesian Product to generate new candidates
	Duplicate pairs
	Pairs selection
	Visualization
	Figure 15: Visualization of embedding word for capital - country relation. The red circle contains the most of the time country/capital/city from Sout
	Figure 16: Zoom on some parts of the figure 15.
	More explanations
	Results
	Table 1: Configuration of Word2Vec Model
	Configuration
	Table 2: Configuration of the machines
	Results of the relations extraction
	Relation City - Country
	Table 3: Measures of the relation City - Country, S is the amount of the value return for the evaluation part and N corresponds to the number of neigh
	Figure 17: Precision by the number of pairs in input for City - country
	Table 4: Excerpts of the Input Text File that contains the input pair
	Table 5: Excerpt from the output file of candidates after evaluation
	Relation Capital - Country
	Table 6: Measures of the relation Capital - Country
	Figure 18: Precision by the number of pairs in input for Capital - Country
	Relation Last Name of US Politicians - Place of birth
	Table 7: Measures of the relation Last Name of US Politicians - Place of birth
	Figure 19: Precision by the number of pairs in input for US Politicians
	Relation Masculine Words - Feminine words
	Table 8: Measures of the relation Masculine Words - Feminine words
	Relation Nationality
	Table 9: Measure of the relation Nationality
	Figure 20: Precision by the number of pairs in input for Nationality
	Impact of neighbors
	Figure 21: Impact of neighbors with K-Means selection for Nationality relation.
	Impact of increasing the number of returned pairs
	Table 10: Impact of the number of pairs returned for the nationality relation
	Figure 22: Precision and nDCG to measure impact of the output size
	Results comparison
	Precision
	Figure 23: Precision between our methods with all the relations
	Normalized discounted cumulative gain
	Figure 24: nDCG between our methods with all the relations
	Comparison of models
	Figure 25: Comparison of models with precision
	Spark & Gensim
	Table 11: Comparison Between Spark & Gensim
	Execution time
	Figure 26: Execution time
	Conclusion
	Future Work
	References

