
�

Big Data for Automatic Relation Extraction
in Natural Language Processing

Using Word Embedding and Word2vec

Master Thesis

Jérémy Serre

Supervisors

Dr. Prof. Philippe Cudré-Mauroux
Alisa Smirnova

eXascale Infolab
Université de Fribourg

November 2017

! ! !

Abstract

 Extracting relations from an unlabelled raw corpus is a complex task. Moreover, since
the emergence of big data and its growing importance, the scientific world has to adapt and
create tools to process larger and larger volume of data.

 This master thesis work aims to improve the relation extraction task using the latest
tools and technologies in the field of natural language processing and big data (like
Word2vec and Spark). At this end, we will first define a framework that starts with a plain
text and produces word embedding using the Word2Vec models. Word embedding project
words from the corpus into a multi-vector space and thus, allow to perform vector operations
in order to extract semantic relations. The objective of this project is to be able to rely on a
relation between two words in order to extract new relations of the same type (e.g.: «Paris -
France» in input, to extract new city - country relations like «Bern - Switzerland»). Moreover,
we propose new methods for selecting the best relation pairs to use as input in order to
improve the precision of the results and decrease the execution time. Furthermore, we
propose a method using knowledge bases, to automatically evaluate the extracted relation
pairs.

! 2
Master Thesis

Acknowledgments

 I would like to take this opportunity to thank all the people who have contributed in
to this thesis, particularly Dr. Prof. Philippe Cudré-Mauroux and the University of Fribourg
with eXascale Infolab which initiated the project.

 I would also like to thank Alisa Smirnova who supervised and mentored my work, for
her attention, and for all the time she granted me, her advice was really useful and
appreciated.

 Then, I would like to thank all the members of eXascale Infolab for their patience and
the time they spent to help me in many ways. 

! 3
Master Thesis

 Contents
Abstract 2
Acknowledgments 3
List of Figures 6
List of Tables 7
Abbreviations 8

INTRODUCTION 9
OBJECTIVES 9

1. PREREQUISITE 10

1.1. APACHE SPARK 10
1.2. WORD2VEC 11
1.2.1. Word Embedding 11
1.2.2. Skip Gram and CBOW 11
1.2.3. Hierarchical Softmax & Negative sampling 13
1.2.4. Gensim and MLLIB 14
1.3. WIKIDATA 14

2. APPROACH 15

2.1. PRE-PROCESSING 16
2.1.1. N-Gram 16
2.1.2. Stopword Lists 17
2.2. FITTING THE MODEL 17
2.2.1. Parameters 18
2.2.2. Training and Fitting 19
2.2.3. Model 19
2.3. RELATION EXTRACTION 20
2.4. EVALUATION 20
2.5. ADDITIONAL FEATURES 21

3. INPUT PAIR SELECTION 21

3.1. INTRODUCTION 21
3.2. WORDCOUNT 23
3.3. PAIR COSINE SELECTION & EUCLIDEAN SELECTION 24
3.4. K-MEANS SELECTION 25

4. RELATION EXTRACTION 26

4.1. INTRODUCTION 26
4.2. EXPLANATION 27
4.3. INITIALIZATION 28

! 4
Master Thesis

4.4. GENERATION OF NEW PAIRS 30
4.5. DUPLICATE PAIRS 31
4.6. PAIRS SELECTION 31
4.7. VISUALIZATION 32
4.8. MORE EXPLANATIONS 33

5. RESULTS 34

5.1. CONFIGURATION 35
5.2. RESULTS OF THE RELATIONS EXTRACTION 35
5.2.1. Relation City - Country 35
5.2.2. Relation Capital - Country 38
5.2.3. Relation Last Name of US Politicians - Place of birth 39
5.2.4. Relation Masculine Words - Feminine words 40
5.2.5. Relation Nationality 41
5.3. IMPACT OF NEIGHBORS 43
5.4. IMPACT OF INCREASING THE NUMBER OF RETURNED PAIRS 44
5.5. RESULTS COMPARISON 45
5.5.1. Precision 46
5.5.2. Normalized discounted cumulative gain 47
5.5.3. Comparison of models 48
5.6. SPARK & GENSIM 49
5.7. EXECUTION TIME 50

6. CONCLUSION 52

7. FUTURE WORK 52

8. REFERENCES 53

! 5
Master Thesis

List of Figures

Figure 1: Hadoop and Spark system [4] 10
Figure 2: Schema of the two Word2Vec algorithms 12
Figure 3: Skip Gram Neural Network Architecture 13
Figure 4: An example of a binary tree for the hierarchical softmax. The white units are
words in the vocabulary, and the dark units are inner units. 14
Figure 5: Query in SPARQL 15
Figure 6: JSON file extract from Wikidata with our structure 15
Figure 7: Script to train and fit Word2Vec model with settings[15]. 19
Figure 8: Schema of Pair structure 22
Figure 9: Input Pair Selection schema for the four methods divide in steps. The first line
with blue box is for K-Means method, in the second line in orange both the method Pair
Cosine and Euclidean Selection and the last line in purple Word Count method. The red
square represent a pair of this schema. 23
Figure 10: Short explanation of K-Means [18] 25
Figure 11: Schema of k-means pair selection with uniform groups, green means selected
pairs returned and red no selected pairs. 26
Figure 12: UML Class diagram 27
Figure 13: Schema of the main steps in our method for relation extraction 29
Figure 14: Script of Cartesian Product to generate new candidates 30
Figure 15: Visualization of embedding word for capital - country relation. The red circle
contains the most of the time country/capital/city from South America, in blue circle North
of Europe and in the Green circle from Asia. 32
Figure 16: Zoom on some parts of the figure 15. 33
Figure 17: Precision by the number of pairs in input for City - country 36
Figure 18: Precision by the number of pairs in input for Capital - Country 39
Figure 19: Precision by the number of pairs in input for US Politicians 40
Figure 20: Precision by the number of pairs in input for Nationality 42
Figure 21: Impact of neighbors with K-Means selection for Nationality relation. 43
Figure 22: Precision and nDCG to measure impact of the output size 45
Figure 23: Precision between our methods with all the relations 46
Figure 24: nDCG between our methods with all the relations 47
Figure 25: Comparison of models with precision 48
Figure 26: Execution time 51

! 6
Master Thesis

List of Tables

Table 1: Configuration of Word2Vec Model 34
Table 2: Configuration of the machines 35
Table 3: Measures of the relation City - Country, S is the amount of the value return for the
evaluation part and N corresponds to the number of neighbors set during the relation
extraction part. 35
Table 4: Excerpts of the Input Text File that contains the input pair 37
Table 5: Excerpt from the output file of candidates after evaluation 37
Table 6: Measures of the relation Capital - Country 38
Table 7: Measures of the relation Last Name of US Politicians - Place of birth 39
Table 8: Measures of the relation Masculine Words - Feminine words 41
Table 9: Measure of the relation Nationality 42
Table 10: Impact of the number of pairs returned for the nationality relation 44
Table 11: Comparison Between Spark & Gensim 49

! 7
Master Thesis

Abbreviations

YARN Yet Another Resource Negotiator

HDFS Hadoop Distributed File System

KB Knowledge Base

nDCG normalized Discounted Cumulative Gain

SPARQL SPARQL Protocol and RDF Query Language

UML Unified Modeling Language

JVM Java Virtual Machine

RDD Resilient Distributed Dataset

NLP Natural language processing Introduction

! 8
Master Thesis

Introduction

 This project aims to create a framework that clearly explains each stage from the raw
corpus extraction and processing to the extraction of relation and their evaluation.
Extracting relation from an unlabelled raw corpus is a complex task involving Natural
Language Processing. We propose to use the word embeddings technology to solve this task,
more specifically by using Word2Vec models. Word2Vec is a word embedding technic that is
very efficient to find semantic/syntactic relations between words coming from a raw text
corpus. In effect, transforming words into vectors allows to perform mathematical operations
that can be very interesting in order to extract relations between words.

 Most of the existing algorithms that use Word2vec models are only able to run on a
single machine. However, machine learning models necessitates a lot of data and may take
days to train. Thank to the growing of the big data, a lot of new tools have been created to
help process these large volume of data. The latest technologies in the Big Data field like
Spark allow to quickly and efficiently process large volume of data using distributed systems.
We implemented all our solutions using a technology that allow to distribute the data and the
calculations.

 We also propose a method to automatically evaluate the extracted relations using a
Free Knowledge Database (KB). Moreover, this thesis is also focused on maximising the
number of « good » relations output, with as few pairs as possible in input. To this end, we
propose four different methods for the input pairs selection.

 The purpose of this master work is to solve all these problems, explain each step of
the proposed solutions in the simplest manner, and implement each solution.

Objectives

 This thesis aims to complete various objectives in the extraction relation field. The
relation extraction part of this project started by analyzing an already existing program
created by Matúš Pikuliak. This program uses the Gensim framework and was designed to
run on a single machine (local mode). Therefore the first objective was to deploy this
program on Spark in order to make it operable in a distributed environment and by replacing
Gensim with Spark and its MLLIB library we could compare the results from the two
methods. We also wanted to create methods to obtain better results with fewer pairs in
input. We expect that using fewer pairs as input will improve the computation time and the
results. Finally, we want to measure the precision of the relations extracted from the corpus,
with the help of a Knowledge Base.

 This master thesis will therefore detail the various useful steps to clean a raw text,
train and fit a Word2Vec model with Spark. Finally, we present methods that help select the
best input pairs, extract similar relations and evaluate them.

! 9
Master Thesis

1. Prerequisite
 This chapter is briefly presenting the main technologies used for this project.

1.1. Apache Spark

 Working with big data sets requires a large amount of computational resources and
execution time. Hence the advantage of using distributed storage systems like HDFS is to be
able to save big data sets and reuse them for different calculations.

 Apache Spark is an open source cluster computing framework [1]. It was
implemented in Scala but it runs with JVM. Moreover Spark has an application programming
interface for different languages Java, Python, Scala and R. It can work in standalone
applications on cluster mode coupled with YARN if the data are stored in Hadoop 2.0.
However, we can also run it in a local mode.

 Spark provides a new data structure called the resilient distributed dataset (RDD),
which is the basic abstraction. It represents an immutable, portioned collection of elements
that can be operated on in parallel [2][3] with a fault tolerance. The idea behind this is to
extend the limitation of the MapReduce (e.g. Hadoop), which works in steps instead of Spark
which can work on all data at once. But Spark does not have a File System instead of
Hadoop, but it can run on Hadoop Distributed File System.

 Figure 1: Hadoop and Spark system [4]

 Spark Core provides distributed task dispatching, scheduling, and basic I/O
functionalities using interface centered on the RDD abstraction. This interface is a functional
model programming. There is a driver program invokes parallel operations such as map,
filter or reduce on an RDD by passing a function to Spark, which then schedules the

! 10
Master Thesis

function’s execution in parallel on the cluster. All operations like joins, use RDDs in input and
use it to produce a new one. Moreover resilient distributed datasets operations are lazy.

1.2. Word2vec

 Word2Vec was created by a team of researchers led by Tomas Mikolov at Google. The
algorithm was implemented by many other programmers in many languages. This algorithm
produce word embedding [5][6] which is intended to represent each word as vector from
data sets. Moreover Word2Vec provides two different structure (see in 1.2.2) to create
models. Each of theses models have two-layer neural networks that are trained to
reconstruct linguistic contexts of words.

1.2.1. Word Embedding

 Word Embedding is Machine Learning feature from deep learning for Natural
Language processing, where words from corpus are mapped to vectors of real numbers. So
the idea is to project words to multi-dimensional space (vector space) in order to create
mathematical operations. So this feature learning technique uses two-layer neural network
and each of this neuron corresponds to one coordinate in the multidimensional space.
Moreover we can obtain some connection without providing any information about its
semantic. The most famous example of this vector word computation is « King - Man +
Woman = ? » we obtain Queen.

1.2.2. Skip Gram and CBOW

 There are two existing algorithms to train Word2Vec models. As we can see in the
figure 2, we have three parts in each model training architecture. W corresponds to the
selected Word and W(t-x) corresponds to a word from the context. If we define a window
size of 5, the algorithm will, for each word, select the 2 preceding and following words in the
sentence.

 The main differences between these two algorithms are:

 • Continuous bag-of-words (CBOW) model learns each word using its context. It
can be summarized as follows, given a context, what is the probability of finding a word. As
we can see in the Figure2, the context is used as input. If we have a sentence like « Word
Embedding is Machine Learning feature from deep learning » and we want to predict the
word, « Machine ». CBow will use the window size to define the words context. Example the
context of « Machine » is « Embedding (t-2) is (t-1), learning(t+1), feature(t+2) », if the

! 11
Master Thesis

window size is 5. So during the training part if these 4 words appear together as input the
CBOW model has to predict, « Machine ».

 • Skip Gram does the opposite, for each word the algorithm has to guess the
context [7]. A word is given as input and we obtain the words that are likely to appear in the
word context with respect to the window size. If we use the same example as described in
the CBOW presentation, given the word « machine » we end with the 4 words surrounding
it.

 Figure 2: Schema of the two Word2Vec algorithms

 As we know, each of these models has two neural layers. So in figure 3, we can see
these two layers for the skip gram model. In this example we have a vocabulary of 10 000
words and 300 neurons. Each word is represented by 0 or 1, 1 is the hot vector (vector
used). In this case the word is « ants », so it represents by 1 and all the other vectors by 0.
The hidden layer is used like a weight matrix. The output layer use softmax [8] classifier
because this function is useful to handle multiple classes and obtain a binary result. So, the
output layer use an « activation function ».

 Furthermore, during the training part, we have to adjust all of the neuron weights
(hidden layers) slightly, so that it predicts that training sample more accurately(output
layer).

! 12
Master Thesis

 Figure 3: Skip Gram Neural Network Architecture

1.2.3. Hierarchical Softmax & Negative sampling

 These algorithms will both be used in order to optimise the computation time during
the gradient descent phase, which consists to adjust weights of a neural network.

 The hierarchical softmax uses a binary tree representation of the output layer with
the W words as its leaves and, for each node, explicitly represents the relative probabilities
of its child nodes. This defines a random path that assigns probabilities to words. The idea
behind is to limit the amount of output vectors that must be updated per training
instance. In the Figure 4, we can see an example of a path from the root to w2 which is
highlighted. More precisely, each word w can be reached by an appropriate path from the
root of the tree. This structure has a direct effect on the performance. In this case we use
the binary Huffman tree, as it assigns short codes to the frequent words, which results in
fast training. [9]

! 13
Master Thesis

 Figure 4: An example of a binary tree for the hierarchical softmax. The white
units are words in the vocabulary, and the dark units are inner units.

 Negative Sampling is simply the idea that we only update a sample of output words
per iteration. The target output word should be kept in the sample and gets updated.
Moreover we have to add to the sample some selected words as negative samples using an
unigram distribution (words occurrence). These negative output words need to be trained to
output 0. Indeed, if the weight of a word is reduced or increased and the output doesn’t
change, it can still influence the output of many other words. So the final idea is for each
word in input, to just modify a subset of words instead of all the words. Because again one
modification of one word weight can influence the whole network. Notice, the probability for
selecting a word as a negative sample is related to its frequency, with more frequent words
being more likely to be selected as negative samples.

1.2.4. Gensim and MLLIB

 Gensim [10] is a python framework used for many tasks in NLP and it also including
an implementation of Word2Vec. However, it is limited to run on a single machine whereas
MLLIB can run on distributed data-parallel system. MLLIB comes from the framework Spark
[11] which contains many machine-learning algorithms, including Word2Vec. Notice that
these two frameworks use subsampling for frequent words to decrease the amount of
training examples.

 In this paper we will use MLLIB to create Word2Vec model. But MLLIB can only use
the skip gram algorithm, and the Hierarchical Softmax instead of the Negative sampling
algorithm [12], which is used to reduce the computation time for updating the weights.

1.3. WikiData

 Wikidata is a Free Knowledge Database, more precisely a document-oriented
database for Semantic Web. It is a collection of articles made up of data and key-value pairs,
especially links to other articles, thus forming a semantically structured set of graphs. The
ambition is to form a unique knowledge graph [13].

! 14
Master Thesis

 In this project, we use Wikidata to extract relations with SPARQL and send queries to
the database through Wikidata query [14]. The goal is to get a JSON file and to compare it
to our results in the evaluation process. In the figure 5, we can see an example of a query
issued to obtain the Capital-Country relation. The "ID" contains the link of the subject,
"sub" corresponds to the subject (which is the country), and "obj" is the object (in this
case, the capital) as we can see in the figure 6

 Figure 5: Query in SPARQL

 Items are only identified by a "Q" followed by a number, such as country (Q6256).
Properties in Wikidata have a "P" followed by a number, such as with capital (P36). Both
can return values. wdt is used for truthy assertions about the data, links entity to value
directly (predicates). And wd is used to return Wikibase entity.

 Figure 6: JSON file extract from Wikidata with our structure

2. Approach
 In this part we explain the main steps of the project and the code [15]. The major
improvements brought by this Master’s thesis are:

•Adapting an existing project to make it work using an MLLIB model on Spark.

•Replacing specific parts of the code with RDD operations, especially for the
pairs generation part.

•Simplifying the program.

•Understanding and explaining how the existing code works.

•Operating in a distributed environment with Spark and HDFS.

•Creating a script that converts a Spark model to a Gensim one. This conversion
aims to solve the compatibility problem and be able to compare the models.

! 15
Master Thesis

SELECT ?id ?sub ?obj WHERE {
 ?id wdt:P31 wd:Q6256.
 ?id wdt:P36 ?capital.
 ?id rdfs:label ?sub filter (lang(?sub) = "en")
 ?capital rdfs:label ?obj filter (lang(?obj) = "en")
}
ORDER BY ?sub

[{"id":"http://www.wikidata.org/entity/Q889","sub":"Afghanistan","obj":"Kabul"},
{"id":"http://www.wikidata.org/entity/Q222","sub":"Albania","obj":"Tirana"},
{"id":"http://www.wikidata.org/entity/Q262","sub":"Algeria","obj":"Algiers"},
{"id":"http://www.wikidata.org/entity/Q228","sub":"Andorra","obj":"Andorra la Vella"},

•Creating methods for selecting the best pairs to use in input, in order to obtain
better results with fewer input pairs.

•Creating a script to automatically evaluate the extracted relations, with a
knowledge base.

2.1. Pre-processing

 The first step is the selection of the text corpus that will be used to create the
Word2vec model. The text inside the corpus will influence the model, if the text contains only
financial articles, the model will not predict connections external to this field. In this thesis,
we have selected a corpus that is meant to be general, i.e « enwiki dump » from Wikimedia
dump [16]. Training a model with texts from various fields produces a versatile model.

 The idea is to extract this corpus as a xml file and a convenient way to do that is to
use the corpora.wikicorpus function from the Gensim Framework. Each article in the wiki
corpus is formatted in a xml format. There is a need to parse these xml structures to only
process and extract the individual words. The upper case words are replaced by a lower-case
version in order to avoid word duplicates with different formats. A similar transformation is
also performed on the words with accent(s), similarly to the upper case problem, we have
decided to replace all the accent letters by the same letter without an accent. Furthermore,
there are a lot of non-ASCII characters and the script should remove all of them as well.
There are several ways to clean a text corpus and it depends on the final goal we want to
achieve. However, for a higher precision of the model, all unnecessary words should be
removed (see 2.1.2) or replaced as well.

 The script 1_process_wiki.py was created for this purpose. To launch this script, one
must call the script like this: « python3 1_process_wiki.py enwiki.xxx.xml.bz2 wiki.en.text ».
The first argument is the wikimedia dump file name (ex: enwiki.xxx.xml.bz2) and the last
argument is the name to give to the cleaned corpus file.

2.1.1. N-Gram
 N-Gram is the name given to a word sequence that is composed of 1 or more words.
Simply speaking it is used to describe if a word is composed of several parts or not. For
example, the words « new » and « york » are uni-gram because they are composed of one
word. But each of them can be used in different contexts, indeed when they are associated
we obtain a new word. In our corpus we handle the bi-gram (composed of two words), tri-
gram and quadri-gram. All the N-Gram are transformed into a single word, to do this we add
one or more underscore(s) between the words, for example « new york times » is converted
to « new_york_times ». The following formula was introduced in the paper [12] and it allows
to compute a score used for validating or not a bigram. A high score means that the
occurrence of the two words together is high compared to their occurrence alone. Therefore
a high score increase the probability to validate a bi-gram.

! 16
Master Thesis

 We have to define a threshold value and when a bi-gram score is higher than the
threshold, it is validated. Moreover, we have to set a « min count » which refers to the
number of occurrences of these two, three or four words together. As we can see in the
formula, wi and wj refer to the first and second words and N is the total vocabulary size in
the paper. Although this formula only works for two inputs, it is possible to provide an n-
gram for the arguments wi and/or wj.

2.1.2. Stopword Lists

 A stop word list is a list containing the most common words of a language. These
words are often associated with many other words and so are not useful in the project
context. For example, the word « The » is in the stop word list.

The advantages of removing the words from a stopword list are:

 • Reducing the size of the corpus.

 • Avoiding a problem for the n-gram, because there is a high probability of
having a lot of n-gram composed with these words.

 • In Word2Vec we have to define a window size (described in 1.2.2) which refers
to the context of an embedding word. So, if we remove these un-useful words,
we only obtain a context composed of useful words and therefore a better
representation in the vector space.

2.2. Fitting the model

 This step is about fitting and training the models, in this case we want to fit Word2Vec
models with Mllib in Spark. This is an important step because each modification has an
impact on the final results. Moreover we have to define the number of artificial neurons also
named "vector size", which represents the number of coordinates of the words in the vector
space. Increasing the number of vectors does not necessarily result in a better model.
Another important thing to set is the window size, which is usually 5 or 10 and the learning
rate which is defined between 0.025 or 0.05. The script to use is
2_Mllib_Save_Load_Spark.py.

! 17
Master Thesis

2.2.1. Parameters

 To begin, we have to select the parameters to train the Word2Vec model. This is an
important step to adjust the model as desired.

•Vector Size: By default it is set to 100, but most of the time it is between 100 and
300. This number represents the number of neurons in the neural network, so it
impacts the computation time. Moreover, increasing this number does not
necessarily increase the accuracy. A good way to test it is to start with 100, then
150, etc. and evaluate model results. If the results are almost similar, it is better
to keep the lowest value because it is the fastest one. In this project we chose to
set a vector size of 100.

•Learning Rate (default: 0.025): The learning rate is how quickly a network abandons
old beliefs for new ones. The idea is to find a learning rate that is low enough so
that the network converges to something useful, but high enough so that you
don’t have to spend lots of time to training it. Most of the time with words
embedding it is set between 0.025 and 0.05. In our case we chose 0.05 because
we obtained better result. Unfortunately, as it is often the case there is no global
optimal value. It is depending on the context in which the model will be used, we
have to make several tests with the value that improve the model results. It is
also depending on the corpus, the reprocessing phase, etc.

•Number of Partitions (default: 1): This parameter is useful to considerably reduce the
computation time to create a model, using a cluster. We chose to set this value to
4 because we obtained good results without affecting the accuracy of the model.
This is often a trade-off between time computation and accuracy. It can be noted
that a larger and more varied corpus allows us to set a higher partition number
than with a small corpus, that will be much more impacted by partitioning.

•Number of Iterations (default: 1): First of all, this number has to be smaller than the
number of Partition. Moreover increasing the number of iterations usually improve
the quality of the word representations. In this case, the number of Partitions is
low, so we don’t change the default value. Furthermore, increasing this value
affects the computation time.

•Min Count (default: 5): This parameter is useful to remove the « hapax legomena »
which are the words that only occur once and the infrequent words. So, if it is set
to 5, all the words that appear less than 5 times will be removed. Most of the time
it is set between 5 and 10. Increasing this value reduces the computation time,
because we have fewer words to handle. As we know, if we follow the Zipf’s law
and we create a Rank-Frequency plot, we can see that the number of words that
occurs fewer than 10 times is higher than words with higher occurrence. We don’t
modify this value.

! 18
Master Thesis

•WindowSize (default: 5): This parameter is the distance between the predicted and
current word in a sentence. This value is usually set between 5 and 10. It is useful
for the context of the predicted word, it’s that why we don’t have to choose a too
high or low a value in order to obtain a good accuracy. Moreover, a higher value
increases the computation time. In our case we set it to 10.

2.2.2. Training and Fitting

 It is a complex task to choose the optimal parameters, a good solution is to create a
lot of models each time modifying a single parameter. With this solution, we see the impact
of a single parameter on the model, and adapt it in consequence. Moreover, more accuracy
means more iterations, more iterations means more partitions and finally more partitions
means less accuracy. It is why there is no single perfect solution. In this project, our
objective is to create a Word2Vec model in a quick way with a good accuracy and this setting
correspond to our needing. Moreover with spark, the model created use skip grams structure
with hierarchical softmax to update the weights.

2.2.3. Model

 We start by creating a Word2Vec instance which contains all the parameters needed.
This instance is then used to fit the model. The fitted model has to be tested and a good way
to do that is to try to extract different relations and see if the results are more or less what
we expect.

 Figure 7: Script to train and fit Word2Vec model with settings[15].

! 19
Master Thesis

############################
Create the spark context #
############################

sc = SparkContext (appName="Build_MLLIB_MODEL_App")

####################
Create the model #
####################

inp = sc.textFile(copusPath).map(lambda row: row.split(« »))

topNum = 20
seed = 42
itera = 1
alpha = 0.05
minCount = 5
window = 10
numPart = 4

SET The word2vec model

word2vec = Word2Vec().setVectorSize(k).setSeed(seed).setNumIterations(itera).setLearningRate(alpha)
 .setNumPartitions (numPart).setMinCount(minCount).setWindowSize(window)

model = word2vec.fit(inp)

 In the figure 7, we can see how to set all the parameters, the variable word2vec is
an instance of word2vec and the value returned after word2vec.fit(inp) is the fitted model.
Notice that inp contains all the corpus split by space.

2.3. Relation Extraction

 The relation extraction is the most important part of our thesis. The objective is to
extract new pairs with a similar semantic relation. The idea is to give in input, pairs with a
similar relation like "A is part of B", or "A is the capital of B", etc.; and use these pairs to
extract new pairs with the same relation. The quality of the results is depending on different
factors such as the model, the semantic relation between the words, the original corpus.
Some relations are easier to extract and produce better links. To see more explanation about
how it works, please refer to the Chapter 3. The script for the relation extraction is run.py.

2.4. Evaluation

 The last part is the evaluation of our results. We first have to query wikidata in order
to obtain a JSON file of the evaluated relation. When we have this file, we can verify which
relations are true or false and add annotations to text files. The idea is to validate the
relations, for example using 0 or 1. However, in complex connections like masculine to
feminine words, the validation may not be simply binary and the annotation should be
adjusted by hand. The aim is to evaluate the extracted relations like in an information
retrieval system. At this end we use the normalized discounted cumulative gain(nDCG).
Moreover, it is very interesting to use the nDCG score, because the extracted relations are
ranked from most likely to least likely to be a good candidate. Indeed, the nDCG score takes
into account if it is a good candidate and its rank in the output list. So, if all the good
candidates are in the top of the list, we obtain a high nDCG score even if there are a lot of
bad relations after them. Before computing the nDCG score, we have to compute to other
formula: the Discounted Cumulative Gain (DCG) and the ideal Discounted Cumulative
Gain (iDCG).

 The DCG and the iDCG formulas are almost similar except for the rank order, in effect
the iDCG formula sorts in descending order. p is the number of relations extracted and rel
corresponds to the score of the relation i.

! 20
Master Thesis

 To summarize, we used various methods to evaluate the model. The nDCG formula
was used to measure the ranking quality, we also count the number of good relations and
compute the precision. We can select the number of relations to be output: if 10 is selected,
the precision of the semantic relations will be high, whereas if 100 is selected, the precision
will be lower. That is why we use two methods, one that take into account the rank of the
good candidates and another that is not considering the rank but only the proportion of good
candidates. A script was made for the evaluation part with an implementation of the nDCG
score in 4_evaluate.py.

2.5. Additional features

 One of the additional features is to solve the problem of compatibility between a
model created by Mllib and a model created by Gensim. So the script
« Optional_Millib_Model_To_Gensim_Model.py » was created to transform a model from Mllib
to Gensim and keeping the same structure. The idea behind this transformation process is to
test if there is a difference between the original program developed to work locally and the
second in Spark, with a same model. In Mllib the model was saved in « snappy parquet »
and we have to translate it to. txt or. bin with the correct structure.

 Another additional feature is a script « visualization.py », that was created to obtain a
2D visualization of our models [17]. This feature is interesting to analyze our model after the
training part by seeing if similar elements are close in the vector space.

3. Input Pair Selection

3.1. Introduction

 In this part, we present 4 methods for selecting the pairs to use as input. Our
algorithm is, given pairs of the same relation type in input outputting new pairs of the same
relation type. One of the objectives is to obtain a high precision with fewer input pairs as
possible. We later compared the 4 methods with different relation types, using a list of 25
input pairs and also by selecting a subset of 5, 10, 15, 20 elements from this list. The figure
8 is a schema of the Pair structure. The pair structure is composed of 3 embedding objects.
Each embedding object is composed of one word and its vector representation in multi-
vectorial space.

! 21
Master Thesis

 Figure 8: Schema of Pair structure

 The input pair selection part is very important for the relation extraction. The idea of
tuning the input pairs selection came after having analyzed how the relation extraction
algorithm works (see 4.4). During the generation of new pairs, the relation extraction
algorithm uses a Word2Vec model function to retrieve a list of the most similar words to a
given word. For example: given the word "Paris", the Word2vec model function will return a
list that can be composed of other capitals (like western European capitals, Madrid, London,
etc.). In a similar way, for an input composed of pairs all representing the same relation as
« Capital-Country » (Example: Paris - France", "Madrid - Spain", "London - England » for
western countries) the model will also output new pairs of the same relation type. Since the
word vectors from the pairs of the same relation type are close, we explored the possibility
to select one pair that is best representing the entire pairs list. This concept is used only for
Pair Cosine & Euclidean selection plus K-Means Selection.

 The figure 9 explains the main steps of the 4 methods explained before. As we can
see at the begin the user give in input a set of pairs, the global idea (except for word count
method) is to cluster (or group) the pairs with something in common together. The final idea
is to obtain groups which contains pair, and we have to rank these pairs inside the group in
order to sort from the best to the least good representative of the group. The last part is the
selection of the pair in each group, to more details see figure 11.

! 22
Master Thesis

Word : Paris
Vector : Word Vector

Word : Concatenation of word from embedding
1 and 2 = Paris - France

Vector : Word Vector from embedding 2 - Word
Vector from embedding 1

Word : France
Vector : Word Vector

Embedding 1 Embedding 2

Embedding 3

 Figure 9: Input Pair Selection schema for the four methods divide in steps. The first line with blue
box is for K-Means method, in the second line in orange both the method Pair Cosine and Euclidean Selection and
the last line in purple Word Count method. The red square represent a pair of this schema.

3.2. WordCount

 WordCount is a simple method, that only count the occurrence of each word in the
pairs, and sum them to obtain the occurrence score of a pair. The same operation is done for
25 elements and they are at the end, ranked by their scores, in descending order. The pairs
are selected amongst the top ones. This method is only used as a basis to later compared
with more complex selection methods.

! 23
Master Thesis

3.3. Pair Cosine Selection & Euclidean Selection

 The idea of the "Input Pairs Selection" is to group the most similar elements together,
and select the groups with the elements closest to each other. In addition, one
representative is selected for each group. This representative is the element that share the
most "commonalities" with the other elements of its group. This grouping of similar elements
is a kind of clustering method. The similarity function used is the only difference between the
Pair Cosine Selection method and the Euclidean Selection method. Indeed, the first method
uses the Cosine similarity and the second method uses the Euclidean similarity.

Here are the details of the pairs selection methods:

• First, we have to set the number of groups we want. Then, all the possible
combinations are generated in a « brute force » fashion. Inside our program all
these operations are performed using the Spark RDD structure. For example, if
we provide 25 input pairs we can produce 5 groups of 5 elements each.

•The presented formula is calculating, « how many groups are generated ». K is
the number of elements by combinations and N is the number of different
values. Continuing with our example, K = 5 because we want to obtain groups
of 5 elements and N is equal to 25. The result is 53130 unique groups of 5
pairs. All the combinations do not contain duplicates (ex: [A, B, A] is not valid),
and the order is not taken into account ([A, B, C] = [A, C, B] only one of these
will be retained).

• The idea is to compare in each group, each element to the other elements
within the group, with either Cosine Similarity or Euclidean Similarity
(Euclidean distance).

• The next step is to average all these scores to get the similarity score of each
group.

•Then, we choose the groups which contain the most similar elements, and
which have a better score. Once a group is selected, the elements it contains
will not be part of another group.

•We will end up with 5 groups of 5 (example: the countries, there will be a
European country group, another for the Middle East, etc.). All elements in a
group are close to each other, so we have succeeded in uniting the identical or
close elements within the same group as clustering.

! 24
Master Thesis

•The final idea is to select the element(s) that represent the most of the group,
so all the elements of the group are compared by their similarity with the
group.

•Once all these tasks are done, if we want to select 5 elements (pairs) in input
for the extraction of the new pairs, we will use the first represent of each
group. Indeed, in our example the 25 pairs in input is transformed to 5 groups
of 5 and ranked by their similarity to select them. Moreover, if we want 10, we
take the first two elements that represent the most of each group.

 Using a group representative improves the results in many ways. First it will produce
a wider range of new pairs and since the input size is reduced the computation time is
reduced too.

3.4. K-Means Selection

 The last method presented is the K-Means Selection. For that we use the « k-means||
 » implementation which is a parallelized variant included in MLLIB with Spark. The K-means
algorithm is one of the most used clustering algorithms. It can be used for both regression
or classification. One of the advantages is that it is unsupervised learning, so we can work
with unlabelled data. The only argument is the value of k that represents the number of
clusters we want.

 This Figure 10 presents an overview of how the algorithm works. The example
presented in the figure is in dimension 2 instead of 100 in our case. The first step of the K-
means is the random generation, because it is random, the clusters obtained with the K-
means can be different for different executions. However, a seed can be used to obtain the
same result each time. In our case, to obtain 5 clusters we set k to 5, but all the clusters
(groups) will not necessarily be of the same size contrary to the Pair Selection Methods
(Euclidean and cosinus 3.3).

 Figure 10: Short explanation of K-Means [18]

! 25
Master Thesis

 Our method uses the k-means algorithm to group pairs into clusters (what we call our
groups). The next step is to compute for each group the k-means cost of each element,
which is the sum of the squared distances of the points to their nearest center. The
elements of each group are then sorted in an ascending order based on their k-means cost.
An element with a low-cost value means that this element is close to the centroid of the
group and therefore represent it well. Although with the K-means method the groups can be
of different sizes, the method loop over all the groups each time picking (removing) the best
representative until we obtain the desired number see Figure 11.

 Figure 11: Schema of k-means pair selection with uniform groups, green means
selected pairs returned and red no selected pairs.

 The schema is an example of the k-means pair selection. There are 3 groups of
different sizes for a total of 10 pairs. To select 5 pairs, the method loop over the groups each
time selecting the first pair in the ranked order. After the first loop, only three pairs are
selected therefore the loop is continuing selecting the remaining pairs until the required
number has been selected.

4. Relation Extraction
4.1. Introduction

 In this chapter, each step of the relation extraction process is explained. The code
analyzed was originally developed by Matúš Pikuliak [19] and is working with Gensim in local
mode (one machine). One the project contribution was to understand this code and to
deploy it on Spark using RDD to improve the performance and the ability to handle more
data. All these modifications needed to be performed without altering the results. Moreover
the new code had to work with a model created by Mllib.

! 26
Master Thesis

Loop 1Pair 1

Pair 8

Pair 7Pair 6

Pair 2

Pair 4 Pair 10

Pair 9Pair 3

Pair 5

Group 1 Group 2 Group 3

Loop 2

4.2. Explanation

 The Figure 12 shows the UML class diagram of the refactored code. It gives a useful
overview of the new code structure and each class will be briefly presented in the following
chapter. There are 5 classes, one of them is "PairSet" which contains the list of the input
Pair (semantic relation) from the input text file. The "Pair "class is used to create a pair of
two embedding words. The "Embedding" class is used to create an embedding word, it
contains the word and the vector representation of it (stored as a list of float). The classes
"Result" and "ResultList" are only used to store the results (new generated pairs), also
named "candidate", and sort the results by score, ranked by similarity.

 Figure 12: UML Class diagram

•Embedding: This class is used to create the structure of embedding words, so
each embedding is a distinct word which contains one word and his vector
representation named v. Its method "neighbors" return a list of the N closest
words in the vector space. In the project context, we are interested in the 100
closest words.

•Pair: A Pair represents two words like « Paris » and « France ». It contains
three embedding instances, one for each word of the pair and one for a new
word like « Paris - France ». The third word is created using the first two
embedding words by merging them and subtracting the vector of word1 with
word2. Positive and candidates are boolean variables indicating status of the
pair. At least one of them should be false. So, if a candidate is true, it means
that there is a correct new candidate during the relations extractions. Positive
says if it is input pair load by the text file or a generated pair. The neighbors
functions call the similar function to embedding class (see to 4.4), and for
euclidean_similarity please refer to 4.6 chapter.

! 27
Master Thesis

•PairSet: This class is a set of Pairs, that contains a least 1 pair. The property
"set_pairs" contains all the pairs given by the user in the text file in input.
Filename contains only the name of the input file. This class is like the main
one, because by this class we can launch some task like generates new pairs,
pair selection.

•Result: This class is used to store the similarity results of one pair. Name
contains the word of pair like « Paris - France », is_positive is to know if it’s a
pair from the input file. Score contain the similarity result between all the
input pairs, in order to found the best candidates. Position is used at the end
of the process in order to rank the best candidates.

•ResultList: This class is a list of results, which contains at least 1 instance of
Result. The method "Append" is used to add new Result instance. The "sort"
method is used to rank all the result elements by similarity score. The
"print_top_n_to_file" method is used to choose the number of ranked
candidates we want to print and save in the output text file.

4.3. Initialization

 The role of this part is to retrieve new pairs of the same semantic relation type. The
idea is to give as input a list of pairs of the same relation type (example: A is the capital of
B, A is part of B). These input relations are used to retrieve new relations of the same type.
The relations obtained depend on different factors such as the model, the semantic relation
between the words, the corpus. Some relations have a stronger link than others which can
be more complex and therefore harder to get. The chapter 4.4 contains more explanation
about how it works. The script is run.py.

 The first step (1 in the figure 13) is the initialization task, in which the user has to
create a text file with one or more similar semantic relations. This task is represented in gray
in the figure 13 and it is also processing all pairs to obtain embedding objects. An
embedding object is containing a word and its word vector. For example, the pair « Paris -
France » is split in two embedding objects for « Paris » and « France » and also an additional
embedding object for the relation word « Paris - France » with a word vector equal to the
difference between the vector coordinates of the two words. Finally, the program output a
PairSet which contains a list of the most similar Pairs to those given in the input file.

! 28
Master Thesis

 Figure 13: Schema of the main steps in our method for relation extraction

Here are described the input and output of each step. The figure 13 is a simplified view of
the chapters 2.3 and 4. The idea of it is to give a quick overview on how the algorithm
works.

 •Step 1: The gray square represents the input text file which contains pairs given by
 the user. Each pair is transformed into embedding objects as described in the
 section 3.1.

 • Step 2: In this step the input is the two embedding objects and the purpose of this
step is to generate new candidates. The green and orange squares represent the
neighbors of the embedding objects. Then a Cartesian operation is performed
in order to obtain new pairs. The output of this step is a list of pairs generated by
the Cartesian operation. In the figure 13, it is showing how the process is
processing the first pair « Paris - France », and by retrieving the 4 closest
neighbors pairs the Cartesian operation generates 16 new pairs.

! 29
Master Thesis

 • Step 3: This step receives as input the previously generated list of pairs and remove
the duplicate and the pairs already present in the input file (for example: « Madrid
- Spain » in the figure 13). This step returns a cleaned list of pairs.

 • Step 4: The last step decides which pairs from the cleaned list of pairs are the best
ones. Each pair from the output list is compared to all the input pairs using a
Euclidean similarity. Since each pair is represented as an embedding object
(containing the word vector of the pair), the word vector of each pair is used to
compute the Euclidean similarity (the section 4.6 presents the detailed formula).
At the end we obtain the list of the retrieved pairs ranked by the Euclidean
similarity to the input. In the figure 13, on the left square it is the pair tested for
the Euclidean similarity compared to the pairs from the input file on the right.

4.4. Generation of new pairs

 The second step of the figure 13 is finding the most similar words (closest neighbors)
to each of the pair component. The closest neighbors are the words whose word vectors are
the closest to the input word vector. The green color square contains the words close to the
pair component « Paris » and the orange the words close to the pair component « France ».
Each group of neighbors is stored in a RDD and the Cartesian product between the two
RDD produces new pairs.

 Figure 14: Script of Cartesian Product to generate new candidates

 The Figure 14 shows the Spark code that generate the new pairs. The argument Size
corresponds to the number of closest neighbors to retrieve for each pair component. e_1
and e_2 are the two embedding objects of the pair. Each group of neighbors is parallelized
into a RDD in order to take advantage of the RDD operations. The function also output a
RDD that is the result of the Cartesian operations between the two groups of neighbors. The
last line is here to check that no pair is composed of the same word for the two components.

! 30
Master Thesis

def neighbours (self, sc, size=100):
 """
 Generates candidates for this given pair as product of neighborhood of its two embedding.
 : param sc: SparkContext
 :param size: Integer
 :return: list of Pairs in RDD type
 """
 ng_1 = sc. parallelize (self.e_1.neighbours (size))
 ng_2 = sc. parallelize (self.e_2.neighbours (size))
 rdd = ng_1.cartesian (ng_2). cache ()
 return rdd. flatMap (lambda x: [(x [0]. word+’-’+x [1]. word, Pair (x [0], x [1],
 candidate=True))] if x [0]. word != x [1]. word else [])

 The formula is the function that calculate the distance between two word vectors A
and B. There is a function in MLLIB named findSynonyms(w, n) that return for the word w is
the n closest neighbors. This function is called on a Word2Vec model to get the most similar
words to one input word. This function use the cosine similarity [20] to find the nearest
words and return them as a list of tuples that contain the word and its cosine distance.

4.5. Duplicate pairs

 The third step of the figure 13, checks if there is no duplicate between the generated
pairs and the pairs given as input and also between the pairs generated for each input pair.
This step is basically removing all the pairs from the generated pair list that are also present
in the input pair list. In our case, we set the number of closest neighbors to retrieve for each
pair component to 100. So the Cartesian product produces 10,000 pairs (100 words * 100
words) for each input pair. Therefore there is high likelihood to find duplicates between the
pairs generated for each input pair.

4.6. Pairs selection

 The pair selection is the step that selects from the entire list of pairs generated in the
previous step the best to use for our goal. To select these pairs the program computes the
similarity score between each new pair and all the input pairs, as described in the step 4
from the Figure 13.

 The score formula is used to measure the similarity between one pair and all the
input pairs. This formula returns a similarity score between 0 and 1, the higher meaning that
the pair is very similar. P represents all of the input pairs, C is the new pair to score, s is the
number of elements in P. The idea behind this formula is to compute the Euclidean distance
between a tested pair and an input pair, and multiply by one divided by the size of the input
pairs set in order to have the same weight between them.

 The final step is sorting the pairs by their similarity scores and returns the list of pairs
with the highest similarity score. By default the program is returning 100 pairs but this can
be modified if needed.

! 31
Master Thesis

4.7. Visualization

 In this part, we show an example of a 2D projection of the word vectors in a multi-
vectorial space. In this projection only the words related to the relation "Capital - Country"
are shown in order to render this visualization as readable as possible. This 2D
representation gives just an idea of the word vectors location, but does not correspond to
the real distribution. Indeed, in our case, each word vector is composed of 100 coordinates.
Therefore we used the distributed stochastic neighbor embedding method [21] also named t-
SNE in order to perform a dimensionality reduction and produce this scatter plot.

 Figure 15: Visualization of embedding word for capital - country relation. The
red circle contains the most of the time country/capital/city from South America, in blue circle North of Europe and
in the Green circle from Asia.

 In the Figure 15, the countries (from the relation « City - Country ») from the same
continent are located close together (their context are likely to be similar). We chose this
example because it is easy to interpret but this can also be seen with other relations. In the

! 32
Master Thesis

top right of the figure 15 are located all the countries from the northern countries(blue
circle). Similarly, there is a big cluster of Latin American countries in the top left part (red
circle) of the figure. Our N-gram words are also correctly located. To see more detail of some
part see the figure 16.

 Figure 16: Zoom on some parts of the figure 15.

4.8. More explanations

 This section gives more information on how to run the scripts. During our
experiments, we wanted to only return 100 pairs in order to evaluate their semantic relation.
But this number of returned pairs and the number of neighbors considered for each input
pair can be changed. The arguments to set are:

 • -o: This parameter is the output file where the results will be written.

 • -t: This is the number of results to return.

 • -d: This parameter is the number of neighbors considered when generating
candidates.

 • -s: This parameter is an optional boolean parameter used to activate the input pairs
selection.

Example on how to run the script "run.py": run.py -o output.txt -t 100 -d 100

! 33
Master Thesis

5. Results

 This section is presenting the results obtained during the project. We used a model
created with Spark with this set of parameters:

•Number of vector size 100,

•Windows for the context 10

•Learning rate 0.05.

•A corpus "enwiki" from wikipedia dump, which is corpus containing articles from
various domains.

 After the cleaning and training part, our corpus contains 7 673 265 words with one
hundred coordinates for each word. The model used N-Gram and StopWord list in the pre-
processing part. It is also possible to create a second model with a different configuration for
preprocessing part. The table 1 shows that the model (Model 2) using the stop word list is
considerably improving the execution times. Indeed, the corpus after pre-processing part is
smaller while the number of distinct words was multiplied by almost 4 times. In our
experiments we are essentially focused on the model 2.

 Table 1: Configuration of Word2Vec Model

! 34
Master Thesis

Configuration Model 1 Model 2

N-Gram Not used Used

Stop Word List Not used Used

Vectors Size 100 100

Learning rate 0,05 0,05

Num of Partions 4 4

Windows Size 10 10

Seed 42 42

Min Count 5 5

Execution Time 406m29.355s 288m40.239

Num of Distinct
Word

2036173 7673265

5.1. Configuration

 The tests were conducted using a local machine (iMac) and a cluster of computers
from the University of Fribourg. The local machine was used to locally compute the original
code and the new code with spark. The cluster was only used to run the new code with
Spark distributed mode. The table 2 is the detailed information about the machines used.

 Table 2: Configuration of the machines

5.2. Results of the relations extraction

 Each presented method is, given a pair list, outputting a new list of pairs. In order to
measure the quality of the pair lists generated by the presented methods, we measured the
nDCG score and the precision of these lists. Indeed, to measure the precision of a pair list,
we count the number of correct pair over the total number of pairs. A pair is considered
correct if it is representing a semantically true relation between the two components. The
nDCG score is used in order to take into account not only the precision of the pair list but
also the position of the correct pair into the list. We calculated these scores on the results
obtained by providing five different types of semantic relations in entry. For each type of
relation we provided a list of 25 pairs and, each method selected from this list the number of
pairs to effectively use.

5.2.1. Relation City - Country
 The relation between cities and countries is often easily identifiable because the two
words are likely to share the same context. This is a relation easy to validate, therefore we
expected to obtain good pairs in output. In the table 3, we present the results obtained for
S = 100 pairs in output. A precision of 0.01 means that the output contains 1 true candidate
for 100 returned.

 Table 3: Measures of the relation City - Country, S is the amount of the value
return for the evaluation part and N corresponds to the number of neighbors set during the relation extraction part.

! 35
Master Thesis

Configurations iMac Cluster

RAM 24Go 128Gb

Node(s) 0 50

CPU 4 32

CPU Name 3,3 GHz Intel Core
i5

Intel(R) Xeon(R) CPU
E5-2620 v4 @
2.10GHz

 The best score is obtained when one the input pair list is composed of 15 Peers. In
general for this relation, the precision and the nDCG score is very high. The nDCG is
particularly high, which proves that this relation has a very good score for information
retrieval; which corresponds to our accuracy of the extracted relations. Moreover, we
observed that we obtain a good precision and nDCG scores using our methods except for the
« Word Count Selection ». All the other methods give good scores with 10 pairs in entry and
there is a small score variation with a greater number of pairs. The fact that our methods
provide good scores with fewer pairs in input shows the improvement realized.

 Figure 17: Precision by the number of pairs in input for City - country

! 36
Master Thesis

N = 100
S = 100

Word Count
Selection

Cosine Selection Euclidean Selection K-means

City -
Country

Precision nDCG Precision nDCG Precision nDCG Precision nDCG

5 Pairs 0,02 0,70881107076 0,1 0,911678560057 0,13 0,88684916391 0,14 0,826612201606

10 Pairs 0,05 0,605325407301 0,2 0,731011526279 0,17 0,823165252548 0,19 0,76836830647

15 Pairs 0,13 0,838733525105 0,22 0,75844742992 0,18 0,778563409232 0,19 0,831770222148

20 Pairs 0,16 0,804637789981 0,2 0,821038563515 0,19 0,869011691781 0,18 0,807142441466

City - Country

Pr
ec

is
io

n

0
0,02
0,04
0,06
0,08
0,1

0,12
0,14
0,16
0,18
0,2

0,22
0,24
0,26
0,28
0,3

Pairs in input
5 10 15 20

Word Count Selection Cosine Selection Euclidean K-means

 In the figure 17, we present, using a bar chart, a visualization of the precision
obtained using each method. We obtain a lower precision score when using the « word
count selection » algorithm compared to the other algorithms.

 Table 4: Excerpts of the Input Text File that contains the input pair

 The table 4 gives an example of an input file for the relation « City-Country ».

 Table 5: Excerpt from the output file of candidates after evaluation

! 37
Master Thesis

Input Text File

athens greece

baghdad irap

bangkok thailand

beijing china

berlin germany

Excerpt from the output file

1 damascus - syria Damascus - Syria : Damascus - Syria

1 istanbul - turkey Istanbul - Turkey : Istanbul - Turkey

1 kabul - afghanistan Kabul - Afghanistan : Kabul - Afghanistan

1 algiers - algeria Algiers - Algeria : Algiers - Algeria

1 budapest - hungary Budapest - Hungary : Budapest - Hungary

1 bogota - colombia Bogota - Colombia : Bogota - Colombia

1 tehran - iran Tehran - Iran : Tehran - Iran

1 auckland - zealand Auckland - Zealand : Auckland - New Zealand

1 beirut - lebanon Beirut - Lebanon : Beirut - Lebanon

0 baghdad - syria

0 melbourne - adelaide

1 montevideo - uruguay Montevideo - Uruguay : Montevideo - Uruguay

0 colombia - ecuador

 The table 5 shows a sample of the pairs output after the evaluation part, for 5 pairs in
input. The first value (0,1) defines if a pair is considered true or false. When a relation is
true there is a second part which is the result from our Knowledge Base.

 Example:

 « damascus - syria » is the first part which is extracted by our algorithm and
« Damascus - Syria: Damascus - Syria » is the second part of Wikidata(KB). The Wikidata
part is used to check if the first part is true.

5.2.2. Relation Capital - Country

 Capital and countries words are often close together inside a text and they also share
the same context. Like for the city - country relation, the same trend is observed for ten
pairs in input. Moreover we can notice the good performance of the K-means selection
method with only five input pairs.

 Table 6: Measures of the relation Capital - Country

 As we can see in the diagram (figure 18), the precision score of the « K-Means »
method for 5 pairs in input is 6 times higher than with the « word count » method. However,
this difference shows the importance of correctly selecting the pairs of the same relation.

! 38
Master Thesis

N = 100
S = 100

Word Count
Selection

Cosine Selection Euclidean Selection K-means

Capital -
Country

Precision nDCG Precision nDCG Precision nDCG Precision nDCG

5 Pairs 0,02 0,708811070796 0,06 0,950794129282 0,04 0,674152235686 0,14 0,826612201606

10 Pairs 0,04 0,624345820183 0,15 0,717010855691 0,12 0,773781464025 0,14 0,723770203728

15 Pairs 0,1 0,857014458131 0,15 0,71602478068 0,12 0,71252166209 0,16 0,80219797428

20 Pairs 0,12 0,810909976685 0,13 0,809352194408 0,13 0,860703027708 0,13 0,777615243145

 Figure 18: Precision by the number of pairs in input for Capital - Country

5.2.3. Relation Last Name of US Politicians - Place of birth

 This relation is a more complex relation compared to the "city - country" one, the link
between the two words of the relation is not really straightforward. Usually when there is an
article or a paper about a politician, the context is not containing its place of birth. We can
then expect that a more complex relation will give us less accurate results.

 Table 7: Measures of the relation Last Name of US Politicians - Place of birth

! 39
Master Thesis

Capital - Country

Pr
ec

is
io

n

0
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09
0,1

0,11
0,12
0,13
0,14
0,15
0,16

Pairs in input
5 10 15 20

Word Count Selection Cosine Selection Euclidean K-means

N = 100
S = 100

Word Count
Selection

Cosine Selection Euclidean Selection K-means Selection

Politician
s - Place
of Birth

Precision nDCG Precision nDCG Precision nDCG Precision nDCG

5 Pairs 0,24 0,555220648772 0,2 0,47868332611 0,15 0,437268908526 0,13 0,445401616903

10 Pairs 0,14 0,418135435682 0,08 0,346249619829 0,12 0,41719444084 0,04 0,261330599098

15 Pairs 0,14 0,44064697367 0,07 0,326837793038 0,08 0,340174006528 0,05 0,275057708017

20 Pairs 0,15 0,545258184315 0,14 0,493647158346 0,12 0,515210017843 0,13 0,463746816443

 This can be explained by the fact that a complex relation contains more randomness.
Indeed, during the candidates generation part, if the relation is not straightforward, the
elements are more distant in the multi-vectorial space and the results are more various. In
addition, the nDCG score is low, which means that the extracted relations are less precise
and thus produces more mistakes.

 Figure 19: Precision by the number of pairs in input for US Politicians

5.2.4. Relation Masculine Words - Feminine words

 The relation between masculine and feminine words is an interesting example for the
relation extraction. Therefore word gender relations have been evaluated (e.g.: « brother -
sister » or « policeman - policewoman »).

! 40
Master Thesis

US Politicians

Pr
ec

is
io

n

0
0,02
0,04
0,06
0,08
0,1

0,12
0,14
0,16
0,18
0,2

0,22
0,24
0,26
0,28
0,3

Pairs in input
5 10 15 20

Word Count Selection Cosine Selection Euclidean K-means

 Table 8: Measures of the relation Masculine Words - Feminine words

 This type of relation is more subjective so there is not really any knowledge base that
can gauge whether it’s true, false or just half true/false. The notation will therefore not be
binary, but between 0 and 2 with 1 for a half-true. This notation influence the nDCG score
for a more accurate measurement. With this relation, we obtain almost the same result for
all the methods.

Examples :

• waitress - waiter: This relation is good so it’s equal to 2.

• waitress - bartender: This relation is hard to evaluate because "bartender" is a
gender-neutral term. So we can evaluate this relation to half-true and the score
is equal to 1.

5.2.5. Relation Nationality

 The relation between nationality and country words is the last tested example for the
relation extraction. We obtain the best results with this relation. We can notice the good
performance for the « Euclidean Selection » with 5 pairs, 31 true candidates for 100 of
candidates retrieved. The high nDCG score means that the most of true relations are in the
ranked high in the list of the candidates retrieved.

! 41
Master Thesis

N = 100
S = 100

Word Count
Selection

Cosine Selection Euclidean Selection K-means Selection

Genre Precision nDCG Precision nDCG Precision nDCG Precision nDCG

5 Pairs 0,09 0,666526559721 0,08 0,804270656978 0,09 0,600703168892 0,08 0,683377348538

10 Pairs 0,09 0,63603037661 0,08 0,676988048315 0,09 0,620027337145 0,11 0,719231965599

15 Pairs 0,09 0,65300969414 0,08 0,642883514899 0,09 0,649381329513 0,08 0,663696960927

20 Pairs 0,08 0,642832341373 0,06 0,648385060413 0,09 0,648258789885 0,08 0,645472436762

 Table 9: Measure of the relation Nationality

 In this Figure 20, we can see the global good performance for our method expect for
« word count selection ». The Cosine and Euclidean methods start with high precision scores.

 Figure 20: Precision by the number of pairs in input for Nationality

! 42
Master Thesis

N = 100
S = 100

Word Count Selection Cosine Selection Euclidean Selection K-means Selection

Nationality Precision nDCG Precision nDCG Precision nDCG Precision nDCG

5 Pairs 0,05 0,814074435311 0,25 0,904350666817 0,31 0,947629124358 0,15 0,828296390662

10 Pairs 0,16 0,862699525393 0,28 0,917766138105 0,31 0,947629124358 0,19 0,902308562268

15 Pairs 0,22 0,918058511587 0,34 0,932147928657 0,3 0,932608225856 0,27 0,924740192723

20 Pairs 0,38 0,951054962103 0,36 0,931583474055 0,39 0,945480111331 0,36 0,94501216161

Nationality

Pr
ec

is
io

n

0
0,03
0,06
0,09
0,12
0,15
0,18
0,21
0,24
0,27
0,3

0,33
0,36
0,39

Pairs in input
5 10 15 20

Word Count Selection Cosine Selection Euclidean K-means

5.3. Impact of neighbors

 In this part, we chose to apply the K-means selection method on the Nationality
relation. We chose this relation because this is the one with which we obtained the best
results, so we can analyze the variations in them. The idea is to measure the impact of
increasing the number of neighbors. We only used one relation with one method, because
we obtain almost the same result with the other example. For the measure we set the
number of pairs returned (S) to 100, and we modify the value of N.

 Figure 21: Impact of neighbors with K-Means selection for Nationality relation.

 In the figure 21, we see a good precision with the value of N between 100 and 150.
After this, the results tend to stabilize. It should be remembered that, for each pair in input,
the method is generating N * N candidates. Moreover, increasing the number of neighbors
can dramatically increase the execution time. There is no single solution, it depends on many
factors such as the size of the corpus, the number of neural network used, the number of
words, so we must select a number N that produces good results without increasing too
much the execution time. In our experiments, an N value of 100 is a good solution.

! 43
Master Thesis

Nationality (K-means)

Pr
ec

is
io

n
(S

=1
00

)

0
0,02
0,04
0,06
0,08

0,1
0,12
0,14
0,16
0,18

0,2
0,22
0,24
0,26
0,28

0,3
0,32
0,34
0,36
0,38

0,4

Number of Neighbours (N)
50 75 100 125 150 175 200 225 250

5 Pairs 10 Pairs 15 Pairs 20 Pairs

5.4. Impact of increasing the number of returned pairs

 The objective of this part is to measure the impact of increasing the number of pairs
returned. In effect, after the generation of the new pairs, all the methods use the Euclidean
similarity to score each pair. They are then ranked in order to select the best generated
pairs. If the algorithm works well, by reducing the number of pairs returned, the precision
score will increase.

 For this experiment, we chose the nationality relation and we define the number of
neighbors to 200. We observe that we obtain a better result with N=100 and S=100 in 5.2.5
but there is not a huge difference between them. In the table 10, we decided to change the
value of S to 50, 100, 150, 200. As we expected we obtain a higher precision for 50 pairs
returned instead of 200.

 Table 10: Impact of the number of pairs returned for the nationality relation

! 44
Master Thesis

N = 200
S = 200

Word Count Selection Cosine Selection Euclidean Selection

Nationality Precision nDCG Precision nDCG Precision nDCG

S = 50 5 Pairs 0,06 0,870593493136 0,44 0,945673107177 0,54 0,965785866864

S = 100 0,04 0,790584089706 0,27 0,924672279148 0,33 0,946993314379

S = 150 0,02 0,790584089706 0,21 0,901904203849 0,22 0,946993314379

S = 200 0,02 0,790584089706 0,16 0,897566950528 0,17 0,936654394612

S = 50 10 Pairs 0,26 0,857442172115 0,48 0,945716462312 0,54 0,965785866864

S = 100 0,16 0,830444692069 0,29 0,927137189212 0,33 0,946993314379

S = 150 0,12 0,814863387329 0,21 0,91520163538 0,22 0,946993314379

S = 200 0,09 0,806521200567 0,17 0,906576715487 0,17 0,936654394612

S = 50 15 Pairs 0,36 0,950840386968 0,58 0,958610012156 0,5 0,959559039192

S = 100 0,23 0,915902949109 0,35 0,943590873684 0,3 0,940492577124

S = 150 0,17 0,898549643791 0,26 0,927771900529 0,22 0,927277277823

S = 200 0,13 0,898549643791 0,21 0,921159262165 0,18 0,910668826377

S = 50 20 Pairs 0,62 0,975699571799 0,54 0,967745579352 0,62 0,967758605889

S = 100 0,39 0,957191960571 0,38 0,939364159696 0,38 0,9526499027

S = 150 0,29 0,94262273754 0,27 0,931112790032 0,28 0,941363537585

S = 200 0,24 0,931737817728 0,22 0,919061693165 0,23 0,927242282659

 Figure 22: Precision and nDCG to measure impact of the output size

 In the figure 22, the bar charts show the cosine selection, as we can see in the
precision chart, the four methods produce almost the same « shape » with lower scores
when the number of returned pairs increases. For S equal to 100 and 20 input pairs we
obtain 38 true candidates, but for S equal to 200 and 20 input pairs equal we obtain 44 true
candidates (a precision of 0.22). A smaller precision doesn’t mean less true candidates. We
observe that by increasing the returned pairs from 100 (27 for 5 pairs) to 200 (300 for 5
pairs) we obtain only 3 true new candidates. So, we can still get good candidates by
returning more pairs but the likelihood of getting good pairs if reduced. The second chart is
proving that increasing the size of the output list does not affect the nDCG score because the
true candidates are still ranked in the top.

5.5. Results comparison

 In this section we tested the 4 selection methods with all the relation types in order
to compare them. The configuration is S and N equal to 100.

! 45
Master Thesis

Cosine Selection - Precision

Pr
ec

is
io

n

0
0,06
0,12
0,18
0,24
0,3

0,36
0,42
0,48
0,54
0,6

Output size
50 100 150 200

5 Pairs 10 Pairs 15 Pairs 20 Pairs
Cosine Selection - NDCG

N
DC

G
0

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Output size
50 100 150 200

5 Pairs 10 Pairs 15 Pairs 20 Pairs

5.5.1. Precision

 Figure 23: Precision between our methods with all the relations

 In this part, we compared the precision between our methods with all relations. One
interesting thing with Euclidean and K-Means Selection is that, we obtain almost the same
results of 5 to 20 pairs, the curves are almost stable except for the nationality relation. For
Cosine selection is almost the same but between 10 and 20 pairs. This finding is very
important because it means that we get almost the same result with fewer input pairs, so we

! 46
Master Thesis

Word Count

Pr
ec

is
io

n

0
0,04
0,08
0,12
0,16

0,2
0,24
0,28
0,32
0,36

0,4

Number of Pairs in Input

5 10 15 20

City Genre Nationality US Politician
Capital Cosine Selection

Pr
ec

is
io

n
0

0,04
0,08
0,12
0,16
0,2

0,24
0,28
0,32
0,36
0,4

Number of Pairs in Input

5 10 15 20

City Genre Nationality US Politician
Capital

Euclidean Selection

Pr
ec

is
io

n

0
0,04
0,08
0,12
0,16

0,2
0,24
0,28
0,32
0,36

0,4

Number of Pairs in Input
5 10 15 20

City Genre Nationality US Politician
Capital K-Means Selection

Pr
ec

is
io

n

0
0,04
0,08
0,12
0,16
0,2

0,24
0,28
0,32
0,36
0,4

Number of Pairs in Input
5 10 15 20

City Genre Nationality US Politician
Capital

got the expected results. Moreover, it can be interpreted that the simplest and most direct
relations have better results.

 Another interesting thing is the precision for 5 pairs, as we can see for K-means we
obtain 4 relations with score equal or higher to 0.10, and 3 relations for Euclidean & Cosine
and only one for word count selection. To conclude, the selection of pairs in input has huge
impact in the precision, and with our algorithms we can propose a new method to improve it
and reduce the number of candidates.

5.5.2. Normalized discounted cumulative gain

 Figure 24: nDCG between our methods with all the relations

! 47
Master Thesis

Word Count

N
DC

G

0
10
20
30
40
50
60
70
80
90

100

Number of Pairs in Input

5 10 15 20

City Genre Nationality US Politician
Capital Cosine Selection

N
DC

G

0
10
20
30
40
50
60
70
80
90

100

Number of Pairs in Input

5 10 15 20

City Genre Nationality US Politician
Capital

Euclidean Selection

N
DC

G

0
10
20
30
40
50
60
70
80
90

100

Number of Pairs in Input

5 10 15 20

City Genre Nationality US Politician
Capital K-Means Selection

N
DC

G

0
10
20
30
40
50
60
70
80
90

100

Number of Pairs in Input

5 10 15 20

City Genre Nationality US Politician
Capital

 Across all the charts in the figure, we notice that the best nDGC score is comprised
between 5 and 10. We see that it stabilizes at 5 pairs except for cosine we obtain the best
result at 5 pairs. Moreover, for direct relations like « city » the value is stable, regardless of
the number of peers in input. However, for a little more complex relation like « US
Politician » the nDCG score has more variations.

5.5.3. Comparison of models

 Figure 25: Comparison of models with precision

! 48
Master Thesis

Genre (Model2)

Pr
ec

is
io

n

0

0,04

0,08

0,12

0,16

0,2

0,24

0,28

Pairs in input
5 10 15 20

Word Count Selection Cosine Selection Euclidean
K-meansGenre (Model1)

Pr
ec

is
io

n

0

0,04

0,08

0,12

0,16

0,2

0,24

0,28

Pairs in input
5 10 15 20

Word Count Selection Cosine Selection Euclidean
K-means

Capital - Country (Model2)

Pr
ec

is
io

n

0

0,04

0,08

0,12

0,16

0,2

0,24

0,28

Pairs in input
5 10 15 20

Word Count Selection Cosine Selection Euclidean
K-meansCapital - Country (Model1)

Pr
ec

is
io

n

0

0,04

0,08

0,12

0,16

0,2

0,24

0,28

Pairs in input
5 10 15 20

Word Count Selection Cosine Selection Euclidean
K-means

 In this part we compared the models described in the section 5. But in our
experiment we only used the model 2. The main difference between both models is that the
model 1 doesn’t handle n-gram whereas the model 2 do. Because of that, the model 2
contains almost 4 times more unique words than the model 1. These charts show the
precision scores between these two with S and N set to 100. We obtain better results using
the model 1, we guessed it is because this model contains less word. Moreover, in our
experiments we never obtained a n-gram candidate. However, if the user wants to give « n-
gram pairs » in input, it’s possible.

5.6. Spark & Gensim

 This part presents the comparison of the two frameworks Spark and Gensim. To fulfill
this task, we created a model with the Mllib library of Spark (more precisely the model 1).
Then we used our script to transform the model created under Spark into a Gensim
compatible model. With all this process, it is now possible to compare whether there are any
differences on the results.

 Table 11: Comparison Between Spark & Gensim

 We can say that the results are almost identical even if there is a very small
difference for the nDCG value. This difference is explained by the fact that even if the values
are identical in the best ranked values, there are sensitive variations for the lowest ranked
values. Then a good relation in the end of rankings can have an offset of 1 rank between
them which causes this very small gap.

! 49
Master Thesis

Mllib Spark Gensim

City - Country Precision nDCG Precision nDCG

5 Pairs 0,15 0,923527524 0,15 0,923135602

10 Pairs 0,23 0,916203658 0,23 0,916203658

15 Pairs 0,28 0,938486647 0,28 0,938528403

20 Pairs 0,29 0,932181575 0,29 0,932181575

25 Pairs 0,27 0,906023854 0,27 0,906023854

5.7. Execution time

 To measure the execution time, we have run the original code on a single (local)
machine (see configurations in 5.1). Then we also run our code on Spark using the cluster
mode. We have also created a Spark version that run on a single machine but this one has
not been used for the tests. The configuration used to obtain the best execution times with
the cluster is:

• --py-files class_container.py: Allows us to load our python file

• --conf spark.driver.maxResultSize=4G: Mandatory for our program to avoid the

error: « Total size of serialized results of X tasks (X KB) is bigger than

spark.driver.maxResultSize »

• --master yarn --deploy-mode cluster --driver-memory 42G --executor-memory

35G: Use to configure YARN. In addition, the values of driver memory and executor

memory can be decreased.

• --num-executors 84 --executor-cores 4: These items are optional, but with this

configuration you can save a few minutes. Executor-cores is the number of
concurrent tasks an executor can run, and num-executors is used to control how

many executors will be allocated on the cluster.

• run.py: It is our main file to launch our script

• relations2/relations2/Genre25.txt -o hdfs:///user/jeremy/relations2/Genre25:

These are the arguments of our script, the first argument is the path of the input file
that contains the pairs (stored in HDFS). The second argument is the path where the

output file will be saved, in our case in a directory of HDFS.

! 50
Master Thesis

> time spark-submit --py-files class_container.py --conf spark.driver.maxResultSize=4G --
master yarn --deploy-mode cluster --driver-memory 42G --executor-memory 35G --num-
executors 84 --executor-cores 4 run.py relations2/relations2/Genre25.txt -o hdfs:///user/
jeremy/relations2/Genre25

 Figure 26: Execution time

 More details are provided in the code and the readme of the program. They also
contain information about optional arguments for the program.

 The tests presented in the bar chart (figure 26) were conducted using with the same
model that was used for the previous charts. This model was transformed to be compatible
to work in local with Gensim. The cluster version bars are the execution time obtained by our
program running on a cluster.

 The figure 24 shows the best execution time, but it can exist a variation of 10%.
However, there is no doubt about the execution time improvement offered by our Spark
implementation. In effect Spark is especially powerful to load a model that is stored in HDFS.

 Using fewer pairs in input (for example 5 pairs instead of 20) can considerably reduce
the execution time. Therefore, if the results are (almost) identical it is better to favor the
input with the lowest number of pairs. In our case, we could divide the execution time by
almost 3 with the pair selection method improvement (for 25 pairs in input, there is 500
seconds instead of 150 for 5 pairs).

! 51
Master Thesis

N
um

be
r o

f p
ai

r i
n

in
pu

t

25

20

15

10

5

Time in secondes

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Local Cluster

6. Conclusion

 During this thesis we have modified a relation extraction algorithm in order to deploy
it on Spark. With this operation the computation power was increased and thus the
execution time was reduced. It is now possible to quickly create a word embedding model
with Spark and using even bigger text corpus.

 We introduced methods for selecting the best relation pairs to use as input in order to
improve the precision of the results and decrease the execution time. Using these methods,
has effectively improved the relation extraction process. Moreover, we have created a
method to automatically evaluate the extracted pairs by using the knowledge base Wikidata.

 This thesis enabled us to explain the essential tasks of the extraction relation from
the processing of a raw corpus to the evaluation of the results. Regarding the measures, it is
important to note that each step of the process can greatly influence the results. In the
same way, it is important to correctly choose the corpus to use and also to properly process
it.

7. Future Work

 The expansion of the semantic Web could allow a better evaluation process, but also
allow to measure if a relation is simple or complicate to identify. In addition, for increasing
the performance even more, it might be necessary to use the Data-Frame structure instead
of the RDD one in Spark. It might also be interesting to test with even larger corpuses. One
improvement can be to link the extracted information to the knowledge base of the type of
relation, before the generation of similar words in the relation extraction part. In order to
detect if the generated words are true before doing the Cartesian product and the evaluation
part.

 Another thing is to try the « pairs extraction » algorithms and the « input pair
selection method » with other words embedding algorithms like GloVe from the Stanford NLP
Group.

! 52
Master Thesis

8. References

[1] Wikipedia. Apache Spark. URL : https://en.wikipedia.org/wiki/Apache_Spark

[2] Apache Spark. Resilient Distributed Dataset RDD Documentation. URL: https://spark.apache.org/docs/1.6.2/api/
java/org/apache/spark/rdd/RDD.html

[3] Wikipedia. Fault tolerance. URL : https://en.wikipedia.org/wiki/Fault_tolerance

[4] Le monde informatique. Figure. URL: http://www.lemondeinformatique.fr/actualites/lire-3-conseils-pour-eviter-
de-transformer-un-data-lake-en-marecage-de-donnees-68482.html

[5] Wikipedia. Word2Vec. URL: https://en.wikipedia.org/wiki/Word2vec

[6] Mikolov et al. Efficient Estimation of Word Representations in Vector Space. URL: https://arxiv.org/pdf/
1301.3781v3.pdf)

[7] Chris McCormick. Explanation about Skip Gram algorithm. URL: http://mccormickml.com/2016/04/19/
word2vec-tutorial-the-skip-gram-model/

[8] Standford Edu. Softmax Regression. URL http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/

[9] Adrian Colyer. The amazing power of word vectors. URL: https://blog.acolyer.org/2016/04/21/the-amazing-
power-of-word-vectors/

[10] Radim Řehůřek. Gensim Framework. URL : https://radimrehurek.com/gensim/

[11] Apache Spark. Library MLLIB. URL: https://spark.apache.org/docs/latest/mllib-guide.html

[12] Tomas Mikolov et al. Distributed Representations of Words and Phrases and their Compositionality. URL:
https://arxiv.org/pdf/1310.4546.pdf

[13] Wikidata. About Wikidata. URL: https://www.wikidata.org/wiki/Wikidata:Main_Page

[14] Wikidata. Wikidata Query Service. URL: https://query.wikidata.org/

[15] Jeremy Serre. My bitbucket code reposit. URL: https://bitbucket.org/serrej/master_thesis/overview

[16] Wikimedia. Corpus Extracted. URL: https://dumps.wikimedia.org/backup-index.html

[17] Quora. Answers to visualization of a Word2Vec model. URL: https://www.quora.com/How-do-I-visualise-
word2vec-word-vectors

[18] Wikipedia. K-Means. URL https://en.wikipedia.org/wiki/K-means_clustering

[19] Matúš Pikuliak. Original Code. URL https://github.com/matus-pikuliak/word-embeddings

[20] Wikipedia. Cosine similarity. URL https://en.wikipedia.org/wiki/Cosine_similarity

[21] Quora. Embedding visualisation t-SNE. URL : https://www.quora.com/How-do-I-visualise-word2vec-word-
vectors

! 53
Master Thesis

https://en.wikipedia.org/wiki/Apache_Spark
https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/rdd/RDD.html
https://en.wikipedia.org/wiki/Fault_tolerance
http://www.lemondeinformatique.fr/actualites/lire-3-conseils-pour-eviter-de-transformer-un-data-lake-en-marecage-de-donnees-68482.html
http://www.lemondeinformatique.fr/actualites/lire-3-conseils-pour-eviter-de-transformer-un-data-lake-en-marecage-de-donnees-68482.html
http://www.lemondeinformatique.fr/actualites/lire-3-conseils-pour-eviter-de-transformer-un-data-lake-en-marecage-de-donnees-68482.html
https://en.wikipedia.org/wiki/Word2vec
https://arxiv.org/pdf/1301.3781v3.pdf
https://arxiv.org/pdf/1301.3781v3.pdf
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/
https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/
https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/
https://radimrehurek.com/gensim/
https://spark.apache.org/docs/latest/mllib-guide.html
https://arxiv.org/pdf/1310.4546.pdf
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://query.wikidata.org/
https://bitbucket.org/serrej/master_thesis/overview
https://dumps.wikimedia.org/backup-index.html
https://www.quora.com/How-do-I-visualise-word2vec-word-vectors
https://www.quora.com/How-do-I-visualise-word2vec-word-vectors
https://en.wikipedia.org/wiki/K-means_clustering
https://github.com/matus-pikuliak/word-embeddings
https://en.wikipedia.org/wiki/Cosine_similarity
https://www.quora.com/How-do-I-visualise-word2vec-word-vectors
https://www.quora.com/How-do-I-visualise-word2vec-word-vectors

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Objectives
	Prerequisite
	Apache Spark
	Figure 1: Hadoop and Spark system [4]
	Word2vec
	Word Embedding
	Skip Gram and CBOW
	Figure 2: Schema of the two Word2Vec algorithms
	Figure 3: Skip Gram Neural Network Architecture
	Hierarchical Softmax & Negative sampling
	Figure 4: An example of a binary tree for the hierarchical softmax. The white units are words in the vocabulary, and the dark units are inner units.
	Gensim and MLLIB
	WikiData
	Figure 5: Query in SPARQL
	Figure 6: JSON file extract from Wikidata with our structure
	Approach
	Pre-processing
	N-Gram
	Stopword Lists
	Fitting the model
	Parameters
	Training and Fitting
	Model
	Figure 7: Script to train and fit Word2Vec model with settings[15].
	Relation Extraction
	Evaluation
	Additional features
	Input Pair Selection
	Introduction
	Figure 8: Schema of Pair structure
	Figure 9: Input Pair Selection schema for the four methods divide in steps. The first line with blue box is for K-Means method, in the second line in
	WordCount
	Pair Cosine Selection & Euclidean Selection
	K-Means Selection
	Figure 10: Short explanation of K-Means [18]
	Figure 11: Schema of k-means pair selection with uniform groups, green means selected pairs returned and red no selected pairs.
	Relation Extraction
	Introduction
	Explanation
	Figure 12: UML Class diagram
	Initialization
	Figure 13: Schema of the main steps in our method for relation extraction
	Generation of new pairs
	Figure 14: Script of Cartesian Product to generate new candidates
	Duplicate pairs
	Pairs selection
	Visualization
	Figure 15: Visualization of embedding word for capital - country relation. The red circle contains the most of the time country/capital/city from Sout
	Figure 16: Zoom on some parts of the figure 15.
	More explanations
	Results
	Table 1: Configuration of Word2Vec Model
	Configuration
	Table 2: Configuration of the machines
	Results of the relations extraction
	Relation City - Country
	Table 3: Measures of the relation City - Country, S is the amount of the value return for the evaluation part and N corresponds to the number of neigh
	Figure 17: Precision by the number of pairs in input for City - country
	Table 4: Excerpts of the Input Text File that contains the input pair
	Table 5: Excerpt from the output file of candidates after evaluation
	Relation Capital - Country
	Table 6: Measures of the relation Capital - Country
	Figure 18: Precision by the number of pairs in input for Capital - Country
	Relation Last Name of US Politicians - Place of birth
	Table 7: Measures of the relation Last Name of US Politicians - Place of birth
	Figure 19: Precision by the number of pairs in input for US Politicians
	Relation Masculine Words - Feminine words
	Table 8: Measures of the relation Masculine Words - Feminine words
	Relation Nationality
	Table 9: Measure of the relation Nationality
	Figure 20: Precision by the number of pairs in input for Nationality
	Impact of neighbors
	Figure 21: Impact of neighbors with K-Means selection for Nationality relation.
	Impact of increasing the number of returned pairs
	Table 10: Impact of the number of pairs returned for the nationality relation
	Figure 22: Precision and nDCG to measure impact of the output size
	Results comparison
	Precision
	Figure 23: Precision between our methods with all the relations
	Normalized discounted cumulative gain
	Figure 24: nDCG between our methods with all the relations
	Comparison of models
	Figure 25: Comparison of models with precision
	Spark & Gensim
	Table 11: Comparison Between Spark & Gensim
	Execution time
	Figure 26: Execution time
	Conclusion
	Future Work
	References

