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Abstract

Nowadays, the job of a recommender system gets more and more complicated as the result of new
data coming in constantly. This has impact also on the preferences of the users to whom the items are
recommended - who tend to change their preferences as new items appear. Such that, different time-
dependent models are proposed for capturing this dynamicity, by always considering the application
context of the recommender system. According to the application context of the recommender system,
different dynamics are at play. In this thesis, the focus is on the application of three different models in
the context of fashion data. Respectively, firstly the timeSVD++ model (applied earlier on movie data,
and showed good performance) and TVBPR model (a model which, additionally, makes use of other
source of information for learning the parameter values) are deeply analyzed, and then the performance
with regard to their application in the context of fashion data is provided. Afterwards, a new model is
introduced, timeSVDV C , by extending the timeSVD++ model with one more additional component, the
visual component. The extended version of timeSVD++ provided promising results, such that showing
better performance when compared to two other models mentioned above.

Dr. Mourad Khayati, eXascale Infolab, Department of Informatics, University of Fribourg,
Supervisor

Prof. Dr. Philippe Cudré-Mauroux, eXascale Infolab, Department of Informatics, Univer-
sity of Fribourg, Supervisor
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1
Introduction

Developing customer-oriented applications that would match users’ specific tastes, is of high importance
in the today’s big data era. These kind of applications would require to capture users’ preferences toward
items of their interest, and thus providing to the user the data that most likely would fit his or her interests.
Some example of such applications are: Netflix, Amazon, Youtube, etc. Basically, such services are
provided by the recommender systems. Nowadays, there are different techniques that help on designing
recommender systems by modeling users’ preferences based on their past activities, and thus suggesting to
the users the products that most likely match their preferences. In fact, there are two general approaches
when it comes to apply recommender systems. One approach is based on the so called content filtering,
and the other approach termed as collaborative filtering (see Chapter 2).

As a consequence of new data coming in constantly, users tend to change their preferences. This
has influenced researchers to design new models that would capture those changes, and thus modeling
recommender systems that would suggest the most likely preferred item to user at given point in time.
Thus, as data are evolving, modeling accurate model would require to capture the present nature of the
data that has low impact on the future behavior, and at the same time keeping the underlying evolution of
the data. As stated in [7], this problem is termed as concept drift. Such examples of concept drifts involve
the change of the focus of the user as a consequence of something happening, e.g. the emergence of new
products which might have impact on changing the users’ shopping patterns. As these changes might
be influenced from different reasons, they cannot be captured by methods that would capture the global
concept drifts. Thus, there is a need for methods that would be able to capture different concept drifts
which might occur at different points in time. Capturing such changes at the level of individual reduces
the amount of concept drifts that are at play. According to [11], there exist three different approaches for
handling concept drift: the instance selection approach, the instance weighting approach and ensemble
learning. Regarding the instance selection approach, it takes into consideration only the relevant instances
to the current concept. Windows-based techniques provide the functionality of this approach where only
the recent instances are taken into account. Whereas, regarding the instance weighting approach, it uses
the abilities of some learning algorithms for doing the weighting of the instances. According to some
experiments, this approach proved that its performance on handling concept drift has been worse compared
to the instance selection approach. When it comes to ensemble learning (learning with multiple concept
description), this approach makes use of set of concepts description upon which some predictions are
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CHAPTER 1. INTRODUCTION 6

performed. Then a weighting procedure to those prediction results is performed, which calculates the
relevance of the instances.

An example of such application of capturing the concept drifts involved on the data being considered
are provided by Koren [7], where specific techniques for modeling time drifting user preferences in the
context of movie data are presented. Their models are evaluated on Netflix data, and proved to outperform
earlier approaches. The provided methods are built based on two leading collaborative filtering approaches:
matrix factorization based models and neighborhood-based models.

In this thesis, our main focus is the application of time-aware models in the context of fashion data
where the visual appearances of the products are considered to play a key role on user’s decision-making
behavior. Such applications could be related also to other similar contexts where visual appearance of a
product influences user’s opinion. Thus, developing recommender systems that would make use of visual
characteristics of products in such contexts, might increase the performance of the recommender systems,
i.e. the characteristics of the product recommended to the user are better matched with the preferences of
the user.

As shown in [4], along the positive aspects of taking into account the visual information while modeling
users’ preferences, there exist also some challenges. As different and complex visual factors might be at
play, it makes it difficult to capture the factors with the highest influence. It would require a large corpora
in order to capture any meaningful signal about visual information which would let us know which visual
factors play a key role on a user’s purchase. Also, since visual preferences are considered to be highly
personal, it makes it more difficult to distinguish each user’s unique preferences. Considering that visual
factors evolve over time as well, such that different visual factors might have different importance at
different points in time, it adds additionally complexity on capturing those visual factors. Especially, this
can be noticed more in the context of fashion data where different products can be fashionable during
different periods of time.

At the end, having dealt with all those challenges and having built such recommender systems, we
would be able also to answer questions about how visual features have evolved over time, and how those
features have affected users’ decisions. Also, questions about which visual features are more preferred at
some period of time, and which are not.

As the focus of this thesis is on the visual aspects of such applications in fashion context, we want
to emphasize that incorporating directly the visual features describing the fashion-related products into
certain model which does not make use of such information before, it has direct impact on the performance
of the model. The importance of the visual aspects in fashion context has been also emphasized in [5],
where is stated that ”one wouldn’t buy a t-shirt from Amazon without seeing the item in question”. Such
that, we want to incorporating the visual aspects into a model where do not exist currently.

1.1 Motivation
This work is motivated based on a previously work presented in [4], where the modeling of visual evolution
of fashion trends is presented. One-Class Collaborative Filtering approach has been used for modeling
fashion-aware personalized ranking for each user. Basically, this approach provides a fashion-aware
recommender system that is time-dependent and such that, it is able to capture different visual features of
products that are predominating (i.e. visual features that influence users’ opinions) during different periods
of time. Capturing such features, we are able to see the evolution of given product, i.e. knowing when a
product has been fashionable, and when it has gone out of fashion. Modeling in way of finding the factors
that influence users’ opinions or choices at different time in points is a complex task, since considering
that these kind of changes are sometimes unexpected, and thus hard to capture. Moreover, regarding the
work presented in [7], timeSVD++ is introduced. timeSVD++ is a latent factor model, and such that its
parameter values are only inferred from the input data (i.e. ratings). Thus, as timeSVD++ does not make
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use of other source of information for learning the parameter values, applying it in a context of fashion
data (where the visual appearance of products plays a key role on users’ choice) might not capture the right
signals that influence users’ preferences. Considering that, extending the timeSVD++ with a component
which makes use of visual information of the product (as presented in the earlier approach related to the
visual evolution of fashion trends) might improve the performance.

1.2 Goal
The goal of this thesis is to, firstly experiment with the already existing models, and thus see the power of
those models in fashion context. Then, to introduce a new model, which is a combination of timeSVD++
model and the model presented in [4], TVBPR. Afterwards, having all the models in place, the goal is to
provide some experiments, which would help us see how the models perform in the context of fashion
data, and thus providing a comparison between the performances of the models.

1.3 Organization
Chapter 2 provides a description about the similar works done in the field. Next, Chapter 3 introduces some
preliminaries needed for the subsequent chapters. Then, Chapter 4, provides detailed description about
the already existing models that are used for the experiments. Chapter 5 presents the newly introduced
model. Then, in Chapter 6, some experiments and their results showing the performance of each model are
provided. Chapter 7 discusses the problems faced throughout the work of this thesis. Finally, Chapter 8
concludes the work.



2
Related Work

There exist different efforts that have been done earlier with regard to modeling users’ preferences. Some
of them provide approaches where only visual aspects are taken into consideration, and some of them
provide different approaches for modeling the temporal dynamics. Also, there are few approaches where
both of aspects above are taken into consideration.

Visual Dimensions As described on [4], there has been extensive research going on with regard to the
importance of the usage of images in e-comerce scenarios. For example, Wei et. al [2] try to understand
the impact of images by using data mining and knowledge discovery approach. Their results show that
the ’presence’ of the images increases ”the buyer‘s attention, trust and conversion rate”. Another related
study presented on [3], it shows also the importance of the image features of the online products by firstly
looking for important feautres of the images considering online products, and then see if there can be
achieved any imporvment on CTR(click-through rate) ranking models. Their results show statistically
significant correlations between image features and CTR, and that the image features of products have
impact on users’ search behavior. Another study presented on [8], they provide a solution for a system
which would tell which products go toghether. This is achieved by finding whether two images of the
products are compatible or not, which is performed by learning procedure of the distances between those
images. Also, another work presented on [12] is telling the user how fashionable he or she is by showing
only a picture of the user. To tackle this, they make use of Conditional Random Field model.

There are also approaches where visual-aware collaborative filtering is used. As stated on [4], both
users and items are mapped into visual space, and thus measuring the users’ preferences. This work is
presented on [5], but temporal dynamics are not taken into account.

Comparing to our work, the focus in our work is on showing the evolution of items, and thus being
able to see which items are fashionable and for each of them being able to measure their visual popularity
− basically finding the most important visual features of images at given period of time.

Modeling Temporal Dynamics Regarding temporal dynamics, it relates to the notion of the concept
drift desribed in Chapter 1, where one of the three different approaches is used for handling concept drift.

Cebrián et al. [1] present the approach for designing a music recommender system where the prefer-
ences of the users are captured by creating micro-profiles for each user by using contextual information.

8
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So, a segmentation of the contextual space is performed, and thus creating the micro profiles for each user
with relevant contextual information.

Zhang et al. [14] present daily-aware personalized recommendation by making use of textual infor-
mation (i.e. reviews) to extract explicit product features. Afterwards, having the features extracted, they
analyze the seasonal effects and other involved movements on features to see how the preferences of the
users change over time.

Also, Koren [7] designed models where temporal dynamics of the data were taken into consideration.
Since his approach is used for our experiments, it is in details discussed (see Chapter 4).

The work presented in [4] provides an approach of combining the visual and temporal dynamics. Their
approach is presented in details as well (see Chapter 4).



3
Preliminaries

3.1 Notation
The Table 3.1 below provides a description about the notation used throughout the report of the thesis:

Notation Explanation
U, I userset, itemset
xu,i the rating value of user u towards item i
x̂u,i the predicted rating value of user u towards item i
βu, βi user bias, item bias
βu(t), βi(t) user bias at time t, item bias at time t
K the dimensions of latent factors
K ′ the dimensions of visual factors
γu the latent factors of user u, (K × 1)
γi the latent factors of item i, (K × 1)
θu the visual factors of user u, (K ′ × 1)
θi the visual factors of item i, (K ′ × 1)
θu(t) the visual factors of user u at time t
θi(t) the visual factors of item i at time t
R(u) the set of items rated by user u
E K ′ × F embedding matrix
E(t) K ′ × F embedding matrix at time t
fi the visual features of item i
F the dimensions of visual features

Table 3.1: Notation

10
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3.2 Background
Recommender Systems According to [10] and other literatures, there are two general approaches when
it comes to apply recommender systems. One approach is based on the so called content filtering, and the
other approach termed as collaborative filtering.

Content filtering This type of recommender systems use information that characterize both users and
items, and thus a matching of characteristics procedure is performed. But, often that kind of information is
hard to be gathered, such that it makes this method not very applicable on some circumstances.

Collaborative Filtering This method relies on past user’s activities − transactions. These activities
might include: browsing, mouse movements, clicks, etc. Having information about users’ past activities,
this method is able to recommend to a user the items that similar users to him or her have liked before, but
he or she still has not interacted with.

3.3 Evaluation Methodologies
For measuring the performance of a recommender system, according to [13], two general classes are
distinguished:

• The first class is related to the rating prediction task where the performance is calculated using the
RMSE (Root Mean Squared Error) which is formulated as follows:

RMSE =

√√√√ 1

|testSet|
∑

(u,i)∈testSet

(x̂u,i − xu,i)2 (3.1)

• The second class is related to the item recommendation task, where the performance is measured us-
ing precision and recall based metrics. For example, regarding the [4], for measuring the performance
of the model, the widely used AUC has been used:

AUC =
1

|U |
∑
u

1

|E(u)|
∑

(i,j)∈E(u)

δ(x̂u,i(tui) > x̂u,j(tui)) (3.2)

As our focus is on item recommendation task, we will focus on AUC-based evaluation methodology
by giving detailed description of its application on an example.

3.3.1 AUC (Area under the ROC curve)
In the following, a detail description about the evaluation methodology used for measuring the performance
of different models is given. Firstly, some basic concepts with the regard to AUC are given. After having
an understanding of the basic concepts, we show an example when AUC is applied. The model that is
being tested is timeSVD++, but as our focus is on the evaluation methodology, there are no information
provided with regard to the training procedure of the model.
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Basic Concepts AUC (Area under the ROC curve) is widely used for evaluating the performance of a
binary classifier. Thus, we are able to see visually the performance of a classifier. ROC curve is used to
plot the performance of the model by considering the TPR (True Positive Rate) against (False Positive
Rate) with different threshold values being considered.

For illustration purposes, let’s label a class p as a positive class, and class n as a negative one. An item
which is part of the p class, and is classified as being part of the p class, the classification is considered
as true positive (TP) classification. Whereas, if the item is classified as being of p class, but not being of
the p class, it is considered as false positive (FP) classification. When an item is part of n class, and it is
classified as being of n class, the classification is considered as true negative (TN). On the other hand, if
the item is part of p class, but it is classified as being part of the n class, the classification is called false
negative (FN). For calculating the TPR, the following formula is used:

TPR =
TP

(TP + FN)
(3.3)

For calculating the FPR, the following formula is used:

TPR =
FP

(FP + TN)
(3.4)

Having the ROC curve plotted by using different threshold values, we are able to calculate the AUC
(area under the ROC Curve). As describe on [9] AUC is equal to the probability that a classifier will
rank higher a positive instance compared to a randomly chosen negative instance. Whereas, regarding
the context of a ranking task, according to [9], the AUC for the single user is calculated as defined in the
following:

AUC(u) =
1

|I+
u ||I \ I+

u |
∑
i∈I+u

∑
j∈|I\I+u |

δ(x̂u,i(tui) > x̂u,j(tui)) (3.5)

where |I+
u | represents the set of items rated by user u (i.e. positive items), the |I \ I+

u | represents the
set of items that have not been rated by user u (i.e. negative items), the x̂u,i(tui) represents the prediction
value for the item i at time t, whereas the x̂u,j(tui) represents the prediction value for item j at time t.
Whereas the δ function is defined as follows:

δ(x) =

{
1, if(x̂u,i(tui) > x̂u,j(tui)).

0, otherwise.
(3.6)

When AUC is applied for evaluating a model, regarding the first part of the formula |I+
u ||I \ I+

u |, I+
u

shows the positive items of the user u, by considering only the positive items from the testing set. Whereas
regarding the subsequent part of the first part mentioned above(I \ I + u), it is associated to all negative
items of user u, such that considering all items user u did not have any interaction with (including the
items from the training, testing and validation set). Considering this, we can formulate the formula above
as follows:

AUC(u) =
1

|Tu||I \ I+
u |
∑
i∈Tu

∑
j∈|I\I+u |

δ(x̂u,i(tui) > x̂u,j(tui)), (3.7)

where Tu represents the testing set with respect to the user u.
And the average AUC is defined as follows :

AUC =
1

|U |
∑
u∈U

AUC(u) (3.8)
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Example timeSVD++ is the model that is being tested on fashion data, which is formulated as follows:

x̂u,i = α+ βu(t) + βi(t) + γTi

(
γu(t) + |R(u)|−1/2

∑
jεR(u)

yj

)
(3.9)

where α is the global offset, and βu(t) and βi(t) represent user bias at time t and item bias at time
t respectively. Whereas, the 〈γi〉 represents the latent factors related to item i, and 〈γu(t)〉 represents
the latent factors related to user u at time t. Considering |R(u)|−1/2

∑
jεR(u) yj , it captures the implicit

information with regard to user u, where |R(u)| is the set of items rated by user u, and yj representing the
vector of capturing those values.

In this context, we deal with two classes of items. The first class of items involves the items that the
user has shown an implicit feedback to (positive items), and such that these items are considered as the
ones being preferred by the user. Whereas, the other class involves the items that user has not interacted
with (i.e. there is no implicit feedback between the user and the item, called as negative items), such that
considered less preferred for the user [9]. Thus, after the model is being trained on the training dataset, for
certain user, it should predict a higher preference value to a positive item compared to the preference value
of a negative item.

Let’s take the matrix presented in in Table 3.2 below as an input matrix. The binary values are used to
represent which items were rated by which user. Such that, with 1 indicating that user u rated item i, and 0
otherwise:

Table 3.2: Input - binary-based information
user 1 user 2 user 3 user 4

i1 1 0 0 0
i2 1 0 0 0
i3 1 0 0 0
i4 0 1 0 0
i5 0 1 0 0
i6 0 1 0 0
i7 0 1 0 0
i8 0 1 0 0
i9 0 1 0 0
i10 0 1 0 0
i11 0 0 1 0
i12 0 0 1 0
i13 0 0 1 0
i14 0 0 1 0
i15 0 0 0 1
i16 0 0 0 1
i17 0 0 0 1
i18 1 0 0 0
i19 0 1 0 0
i20 0 0 1 0
i21 0 0 0 1
i22 1 0 0 0
i23 0 1 0 0
i24 0 0 1 0
i25 0 0 0 1

As it can be seen from the Table 3.2 above, it is divided into three parts: the blank part represents the
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training set, the part in a lighter gray color represents the testing set, and the part with a darker gray color
represents the validation set. As we are interested to show just an example of how AUC is applied in our
context, only the test set will be considered (leave-two-out cross validation technique has been used for
splitting the data as shown above). The positive items corresponding to each user are the following:

• |I+
1 | : i1, i2, i3.

• |I+
2 | : i4, i5, i6, i7, i8, i9, i10.

• |I+
3 | : i11, i12, i13, i14.

• |I+
4 | : i15, i16, i17.

The negative items corresponding to each user are the following:

• |I \ I+
1 | : i4, . . . , i20, 21, i23, i24, i25

• |I \ I+
2 | : i1, . . . , i3, i11, . . . , i22, i24, i25

• |I \ I+
3 | : i1, . . . , i10, i15, . . . , i23, i25

• |I \ I+
4 | : i1, . . . , i14, i18, . . . , i24

Regarding the test set being considered, after training the values of the parameters, the formula
presented in Eq. 3.7 is applied for each user as shown below:

• AUC(1) = 1
|I+u ||I\I+u |

∑
i∈I+u

∑
j∈|I\I+u | δ(x̂u,i(tui) > x̂u,j(tui)) = 1

20

(
(δ(5.1443 > 4.8620) +

(δ(5.1443 < 5.4961) + (δ(5.1443 < 5.9138) + (δ(5.1443 > 4.8904) + (δ(5.1443 > 4.4228) +
(δ(5.1443 > 5.1157) + (δ(5.1443 < 5.2502) + (δ(5.1443 < 6.5588) + (δ(5.1443 < 5.9096) +
(δ(5.1443 < 5.3342) + (δ(5.4961 < 6.4100) + (δ(5.1443 < 6.1531) + (δ(5.4961 > 4.4866) +
(δ(5.1443 > 4.9167) + (δ(5.4961 < 5.6979) + (δ(5.1443 < 6.0161) + (δ(5.1443 < 5.1638) +

(δ(5.4961 > 4.9764) + (δ(5.1443 < 5.8984) + (δ(5.4961 < 6.1268)
)

= 1
20

(
1 + 0 + 0 + 1 + 1 +

1 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1 + 0 + 0 + 0 + 0 + 1 + 0
)

= 7
20 = 0.35

• AUC(2) = . . . = 0.9375

• AUC(3) = . . . = 0.1052

• AUC(5) = . . . = 0.45

Then, to calculate the average performance of the model, the formulation in Eq. 3.8 is applied:

AUC =
1

4

(
AUC(1) + (AUC(2) +AUC(3) +AUC(4)

)
=

1

4
(0.35 + 0.9375 + 0.1052 + 0.45) =

1

4
· 1.8427

= 0.460675

Basically, the AUC(u) above shows the probability that the model will predict correct prediction (i.e.
the positive item must be ranked higher than the negative item, meaning positive item must have higher
predicted preference value than the negative item) for that user. This calculation is associated to recall -
which is related to the information retrieval and calculated by considering the number of relevant retrieved
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documents out of total number of relevant documents. Whereas in binary classification, it is denoted as
sensitivity which is calculated with the formula related to TPR. So, coming back to our context, after doing
the procedure above for each user, the overall AUC is calculated by taking into account all the calculated
AUC(u) values, summing them up and dividing by the number of users. This way we will have the overall
performance of the model being considered.



4
Time-aware Models

In this chapter, a detailed description about the already existing time-aware models that are taken into con-
sideration is given. Firstly, we start by describing the timeSVD++ model. Then, having an understanding
of timeSVD++, a description about TVBPR+ is given, where additionally other source of information is
used for modeling the evolution of fashion trends.

4.1 timeSVD++
Desription timeSVD++ is a time-aware model capturing the dynamics that are at play on the data where
the model is applied on. timeSVD++ has been applied on movie data and has shown to perform well in
such context. It is an extension of SVD++ model presented in [6], where implicit information additionally
are taken into consideration compared to the ’standard’ matrix factorization method whose formulation
looks as follows:

x̂u,i = α+ βu + βi + 〈γu, γi〉, (4.1)

where α is the global offset, and βu and βi represent user bias and item bias respectively. Whereas, the
〈γu, γi〉 represents the dot product between the vector of the factors of user u and factor vector of item i of
K dimensions, thus capturing the interaction between user u and item i.

The basic model 4.1 above is a static one, and such that is not able to capture the evolving data. In
order to extend the static model into a time-aware model, Koren [7] distinguishes between which parameter
values change as data are evolving, and such that being able to model those parameters in such a way
that would be able to capture the exact changes that occur on the data over time. Such that, there are
parameters that describe the evolution of users and others that describe items’ evolution. According to [7],
where timeSVD++ is applied on Netflix data, time affects the parameters that are involved within baseline
predictors, and also the parameters about the factors describing users’ characteristics.

Regarding the baseline predictors, there are two parameters that should be built as a function of time:
user biases and item biases. For capturing item biases, splitting the dataset into time-based bins is proposed,
where each bin corresponds to a defined period of time. Such that, the function for capturing the evolution
of the item bias is formulated as follows:

16
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βi(t) = βi + βi,Bin(t) (4.2)

The βi parameter in the equation 4.2 captures the static part, whereas the βi,Bin(t) captures the evolving
part, where Bin(t) is the index of the bin timestamp t corresponds to.

Regarding the changes on the user side, the binning approach is not preferable. When designing
functions that capture users’ biases, there is a need for a function with a finer resolution, which would be
able capture those sudden and unexpected changes that eventually might occur. Considering this, another
way of modeling users’ biases is used. The formula below captures the possible gradual drifts on user’s
side:

βu(t) = βu + α · dev(u, t), (4.3)

where α is a parameter of the model which is learned from the data, whereas the dev(u, t) function
captures the deviation which is formulated as follows:

dev(u, t) = sign(t− tu) · |t− tu|η, (4.4)

where t is the timestamp of the rating given by user u, and tu is the mean rating time considering all
the timestamps user u has rated. Whereas η is value which is set according to the cross validation, i.e.
when testing the model.

The function 4.3 above capturing the dynamics of users’ biases is only able to capture the gradual
drifts of the users. Considering the fact that users’ changes occur on daily basis, the function above is not
able alone to capture those changes. Thus, another parameter is added to the function 4.3 above, which is
associated with the daily-based changes. Such that, the user bias function gets the following form:

βu(t) = βu + α · dev(u, t) + bu,t (4.5)

As considered that users’ preferences change over time, i.e. some user might prefer or be fan of
something during one period of time, and prefer something else during another period of time. Such that,
a function for capturing these changes is also provided. The formulation of the function looks as in the
following:

γuk(t) = γuk + αuk · devu(t) + γuk,t k = {1, . . . , f} (4.6)

Combining all the formulas above, the ‘standard’ formulation of the matrix factorization formula gets
the following form:

x̂u,i = α+ βu(t) + βi(t) + γTi

(
γu(t) + |R(u)|−1/2

∑
jεR(u)

yj

)
(4.7)

Example In the following, an example is provided, which shows how the formulas above are applied.
The input data used for this example is the same one as the one used for the experiment related to the
application of AUC (see Chapter 2), but instead the real ratings given to items are provided, as shown in
Table 4.1 - each column represents the ratings (in scale 1 to 5, and 0 indicating there is not rating given) of
certain user towards the items, or vice versa each row representing the ratings given to certain item.
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user 1 user 2 user 3 user 4
B0058VLRIA 5.0 0 0 0
B009V06HGG 5.0 0 0 0
B00B1VFWDW 5.0 0 0 0
B00517ABLA 0 5.0 0 0
B00671EMO6 0 4.0 0 0
B007KFS10O 0 2.0 0 0
B0081U2VCG 0 5.0 0 0
B00AB93O5S 0 3.0 0 0
B00B5505VI 0 3.0 0 0
B00D5ZLMKE 0 3.0 0 0
B00062NHGQ 0 0 4.0 0
B004K1KR4E 0 0 4.0 0
B004SDYQI2 0 0 5.0 0
B00866CKU8 0 0 3.0 0
B00127QC0C 0 0 0 4.0
B004AE1X1C 0 0 0 5.0
B0072T3QTE 0 0 0 5.0
B003EAORCA 5.0 0 0 0
B001RNO3KC 0 3.0 0 0
B00025FROW 0 0 4.0 0
B000SKNYAU 0 0 0 5.0
B005LCQKGU 5.0 0 0 0
B0058XU98M 0 1.0 0 0
B0010FVNWS 0 0 5.0 0
B003TSTS94 0 0 0 5.0

Table 4.1: Input - explicit feedback given

Firstly, the learning process of the parameters is applied, and then the formulation in Eq. 4.7 is used to
predict the preference value of certain user u towards certain item i. In our example, we will predict the
preference values of the users from the testing set. The global average rating value is, α = 4.117.

In the following, we will show the values of the parameters after the learning process. In Table 4.2
and Table 4.3, the values of the parameters related to biases are shown. Whereas, the factor-related values
characterizing items and users are provided in Table 4.4 and 4.6 respectively. Regarding the parameter
capturing the drifts of users’ preferences on daily basis are shown in the following tables: Table 4.8, Table
4.9, Table 4.10 and Table 4.11.

βu α 881 1111 1298 1425 1502 1509 1542 1554 1643
user 1 -0.2072 0 0 0 0 0 -0.2072 0 0 0 0
user 2 -0.2050 -0.0640 0 -0.0964 0 -0.1153 0 0 0 0 0
user 3 -0.2385 -0.0104 -0.0698 0 -0.0536 0 0 0 -0.0924 0 -0.0297
user 4 -0.2312 0.03254 0 0 0 0 0 -0.1261 0 -0.1085 0

Table 4.2: User bias-related parameters presented in Eq. 4.3, where the first two columns show the values
of βu and α. Whereas the next columns represent the parameter capturing the drifts on daily basis for the
corresponding day, i.e. βu,t, where 0 indicates there was no action or rating given on that day
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βi bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 bin 7 bin 8 bin 9 bin 10
B0058VLRIA -0.0188 0 0 0 0 0 0 0 0 0 -0.0188
B009V06HGG -0.1509 0 0 0 0 0 0 0 0 0 -0.1509
B00B1VFWDW -0.04155 0 0 0 0 0 0 0 0 0 -0.04155
B00517ABLA 0.0638 0 0 0 0 0 0 0 0 0.0638 0
B00671EMO6 0.0572 0 0 0 0 0 0 0 0 0.0572 0
B007KFS10O -0.1104 0 0 0 0 0 0 0 0 -0.1104 0
B0081U2VCG -0.0964 0 0 0 0 0 0 -0.0964 0 0 0
B00AB93O5S -0.0037 0 0 0 0 0 0 0 0 -0.0037 0
B00B5505VI -0.0649 0 0 0 0 0 0 0 0 -0.0649 0
B00D5ZLMKE -0.0631 0 0 0 0 0 0 0 0 -0.0631 0
B00062NHGQ -0.0297 0 0 0 0 0 0 0 0 0 -0.0297
B004K1KR4E -0.0698 0 0 0 0 0 -0.0698 0 0 0 0
B004SDYQI2 -0.0536 0 0 0 0 0 0 0 -0.0536 0 0
B00866CKU8 -0.0924 0 0 0 0 0 0 0 0 0 -0.0924
B00127QC0C -0.1103 0 0 0 0 0 0 0 0 0 -0.1103
B004AE1X1C -0.0170 0 0 0 0 0 0 0 0 0 -0.0170
B0072T3QTE -0.1085 0 0 0 0 0 0 0 0 0 -0.1085

Table 4.3: Item bias-related parameters from Eq. 4.2

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20
B0058VLRIA 0.9493 0.2091 0.4715 0.7511 0.2070 0.4910 0.1217 0.1668 0.8779 0.5146 0.8643 0.7171 0.0738 0.5310 0.3525 0.2144 0.6095 0.1298 0.0785 0.5915
B005LCQKGU 0.8149 0.4851 0.1412 0.0859 0.0352 0.4575 0.7947 0.1597 0.7101 0.5717 0.6078 0.0643 0.8372 0.8671 0.2872 0.6695 0.0379 0.9968 0.6688 0.4298
B009V06HGG 0.7374 0.3310 0.3161 0.4467 0.0666 0.2088 0.1054 0.4189 0.3416 0.7260 0.6001 0.6467 0.1331 0.6607 0.8224 0.5988 0.7877 0.2492 0.5267 0.2973
B00B1VFWDW 0.2697 0.73298 0.1456 0.3130 -0.0008 0.8942 0.1000 0.7956 0.3867 0.2726 0.0169 0.2509 0.9578 0.8005 0.8826 0.0874 0.4817 0.1194 0.9358 0.6369
B001RNO3KC 0.9509 0.7466 0.0470 0.1123 0.7388 0.1865 0.1241 0.1500 0.9940 0.5791 0.0787 0.9731 0.9765 0.3174 0.5083 0.3269 0.1354 0.5951 0.2832 0.4829
B00517ABLA 0.1902 0.2045 0.2857 0.1938 0.3174 0.7249 0.3013 0.8881 0.4212 0.4682 0.8850 0.5252 0.8397 0.2769 0.2228 0.9391 0.0930 0.0920 0.6068 0.3452
B0058XU98M 0.6027 0.4683 0.3579 0.0711 0.8470 0.3808 0.7635 0.9005 0.7490 0.5089 0.2834 0.7370 0.7379 0.9863 0.3958 0.9991 0.3048 0.0820 0.3753 0.7634
B00671EMO6 0.0591 0.6454 0.3044 0.3712 0.3450 0.5589 0.1129 0.3843 0.6733 0.0512 0.8688 0.5854 0.2237 0.6509 0.8323 0.7111 0.1803 0.0887 0.4360 0.3214
B007KFS10O 0.7032 0.4377 0.0935 0.1133 0.4016 0.6898 0.7596 0.0862 0.9963 0.0026 0.8189 0.4060 0.1110 0.7227 0.6210 0.1571 0.2979 0.3475 0.1450 0.2905
B0081U2VCG 0.0789 0.0839 0.2402 0.2196 0.0741 0.0059 0.3050 0.8412 -0.0524 -0.0777 0.6114 0.2533 0.7333 0.4293 0.5961 0.1412 0.5378 0.2433 0.8923 0.4657
B00AB93O5S 0.8201 0.3883 0.9331 0.7580 0.4879 0.9292 0.4542 0.3974 0.8077 0.1728 0.1589 0.9348 0.7570 0.6237 0.8760 0.0973 -0.0044 0.7669 0.0669 0.1771
B00B5505VI 0.0192 0.1925 0.7014 0.8177 0.0423 0.4304 0.9685 0.9117 0.3680 0.5840 0.8560 0.9876 0.4817 0.7084 0.7011 0.7987 0.8603 0.1537 0.5389 0.4374
B00D5ZLMKE 0.7671 0.4221 0.5252 1.0023 0.8667 0.5317 0.1039 0.8703 0.7345 0.2669 0.5540 0.7326 0.3233 0.2214 0.1242 0.2959 0.6664 0.4731 0.5615 0.6286
B00025FROW 0.2410 0.7118 0.2691 0.2028 0.0582 0.7482 0.7989 0.1675 0.8631 0.5359 0.3977 0.0442 0.3048 0.2731 0.6354 0.6548 0.0621 0.4991 0.07093 0.3376
B00062NHGQ 0.4371 0.1825 0.9025 0.4875 0.6990 0.9378 0.0855 0.8836 0.0638 0.7152 0.5308 0.8100 0.5170 0.2047 0.8149 0.9209 0.4800 0.2329 0.6034 0.8273
B0010FVNWS 0.7078 0.4937 0.4799 0.9802 0.8906 0.7548 0.5597 0.7127 0.9793 0.4572 0.1241 0.8016 0.2240 0.3220 0.4001 0.2892 0.0615 0.9388 0.9139 0.2161
B004K1KR4E 0.9221 0.0910 0.1712 0.2435 0.5767 0.6949 -0.0395 0.0211 0.6000 -0.0202 0.2997 0.2096 0.8163 0.6555 0.1800 0.0681 0.7365 0.3527 0.0118 0.7953
B004SDYQI2 0.6942 0.7743 0.4889 0.0075 -0.0223 0.6461 0.6608 0.2778 0.7562 0.5011 0.3246 -0.0387 0.7974 0.9375 0.2828 0.1529 0.1066 0.4700 0.6091 0.0540
B00866CKU8 0.8887 0.7707 0.7514 0.2907 0.9107 0.4278 0.0987 0.8079 0.0491 0.5688 0.5974 0.8965 0.1532 0.2064 0.7364 0.2176 0.4780 0.5124 0.3964 0.7546
B000SKNYAU 0.7889 0.9010 0.6935 0.6650 0.8378 0.8849 0.4766 0.8056 0.5666 0.7276 0.5263 0.1060 0.8995 0.3834 0.0728 0.2490 0.0564 0.6753 0.2292 0.4690
B00127QC0C 0.7999 0.2684 0.0873 0.1815 0.6348 0.6704 0.7016 0.1068 0.3314 0.9278 0.7902 0.8239 0.8008 0.3685 -0.0544 0.6564 0.1465 0.2484 0.4528 0.0412
B003TSTS94 0.3071 0.1479 0.2432 0.5721 0.0425 0.6721 0.3094 0.5666 0.6746 0.0374 0.0255 0.9214 0.4475 0.3554 0.9314 0.3165 0.1883 0.4763 0.2256 0.5327
B004AE1X1C 0.4262 0.8178 0.5655 0.2686 0.7124 0.6156 0.9162 0.5676 0.1339 0.4095 0.5548 0.9742 0.6361 0.9734 0.3343 0.1325 0.2204 0.9693 0.4403 0.2832
B0072T3QTE 0.1984 0.4259 0.8801 0.9275 0.4056 0.6957 0.0654 0.7468 0.8924 0.4806 0.7358 0.0015 0.3133 0.0957 0.6046 0.7894 0.6716 0.2116 0.6263 0.6911

Table 4.4: Item factors denoted with γi in Eq. 4.7

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20
B0058VLRIA -0.0796 -0.0498 -0.0418 -0.0590 -0.0103 -0.0447 -0.0195 -0.0592 -0.0469 -0.0803 -0.0619 -0.0704 -0.0358 -0.0812 -0.0968 -0.0614 -0.0909 -0.0298 -0.0743 -0.0531
B005LCQKGU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B009V06HGG -0.0796 -0.0498 -0.0418 -0.0590 -0.0103 -0.0447 -0.0195 -0.0592 -0.0469 -0.0803 -0.0619 -0.0704 -0.0358 -0.0812 -0.0968 -0.0614 -0.0909 -0.0298 -0.0743 -0.0531
B00B1VFWDW -0.0796 -0.0498 -0.0418 -0.0590 -0.0103 -0.0447 -0.0195 -0.0592 -0.0469 -0.0803 -0.06191022, -0.0704 -0.0358 -0.0812 -0.0968 -0.0614 -0.0909 -0.0298 -0.0743 -0.0531
B001RNO3KC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B00517ABLA -0.0471 -0.0204 -0.03020 -0.0420 -0.0300 -0.0224 -0.0563 -0.0469 -0.0400 -0.0104 -0.0503 -0.0446 -0.0308 -0.0436 -0.0468 -0.0052 -0.0577 -0.0391 -0.0443 -0.0438
B0058XU98M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B00671EMO6 -0.0471 -0.0204 -0.0302 -0.0420 -0.0300 -0.0224 -0.0563 -0.0469 -0.0400 -0.0104 -0.0503 -0.0446 -0.0308 -0.0436 -0.0468 -0.0052 -0.0577 -0.0391 -0.0443 -0.0438
B007KFS10O -0.0471 -0.0204 -0.0302 -0.0420 -0.0300 -0.0224 -0.0563 -0.0469 -0.0400 -0.0104 -0.0503 -0.0446 -0.0308 -0.0436 -0.0468 -0.0052 -0.0577 -0.0391 -0.0443 -0.0438
B0081U2VCG -0.0471 -0.0204 -0.0302 -0.0420 -0.0300 -0.0224 -0.0563 -0.0469 -0.0400 -0.0104 -0.0503 -0.0446 -0.0308 -0.0436 -0.0468 -0.00520199 -0.0577 -0.0391 -0.0443 -0.0438
B00AB93O5S -0.0471 -0.0204 -0.0302 -0.0420 -0.0300 -0.0224 -0.0563 -0.0469 -0.0400 -0.0104 -0.0503 -0.0446 -0.0308 -0.0436 -0.0468 -0.0052 -0.0577 -0.0391 -0.0443 -0.0438
B00B5505VI -0.0471 -0.02048 -0.0302 -0.0420 -0.0300 -0.0224 -0.0563 -0.0469 -0.0400 -0.0104 -0.0503 -0.0446 -0.0308 -0.0436 -0.0468 -0.0052 -0.0577 -0.0391 -0.0443 -0.0438
B00D5ZLMKE -0.0471 -0.0204 -0.0302 -0.0420 -0.0300 -0.0224 -0.0563 -0.0469 -0.0400 -0.0104 -0.0503 -0.0446 -0.0308 -0.0436 -0.0468 -0.0052 -0.0577 -0.0391 -0.0443 -0.0438
B00025FROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B00062NHGQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B0010FVNWS -0.0992 -0.0693 -0.0731 -0.0360 -0.0801 -0.0762 -0.0264 -0.0647 -0.0453 -0.0576 -0.0588 -0.0650 -0.0720 -0.0624 -0.0616 -0.0393 -0.0659 -0.0539 -0.0488 -0.0802
B004K1KR4E -0.0992 -0.0693 -0.0731 -0.0360 -0.0801 -0.0762 -0.0264 -0.0647 -0.0453 -0.0576 -0.0588 -0.0650 -0.0720 -0.0624 -0.0616 -0.0393 -0.0659 -0.0539 -0.0488 -0.0802
B004SDYQI2 -0.0992 -0.0693 -0.0731 -0.0360 -0.0801 -0.0762 -0.0264 -0.0647 -0.0453 -0.0576 -0.0588 -0.0650 -0.0720 -0.0624 -0.0616 -0.0393 -0.0659 -0.0539 -0.0488 -0.0802
B00866CKU8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B000SKNYAU -0.0700 -0.0539 -0.0727 -0.0713 -0.0787 -0.0920 -0.0633 -0.0581 -0.0854 -0.0985 -0.1013 -0.0622 -0.0824 -0.0400 -0.0461 -0.0992 -0.0569 -0.0430 -0.0755 -0.0557
B00127QC0C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B003TSTS94 -0.0700 -0.0539 -0.0727 -0.0713 -0.0787 -0.0920 -0.0633 -0.0581 -0.0854 -0.0985 -0.1013 -0.0622 -0.0824 -0.0400 -0.0461 -0.0992 -0.0569 -0.0430 -0.0755 -0.0557
B004AE1X1C -0.0700 -0.0539 -0.0727 -0.0713 -0.0787 -0.0920 -0.0633 -0.0581 -0.0854 -0.0985 -0.1013 -0.0622 -0.0824 -0.0400 -0.0461 -0.0992 -0.0569 -0.0430 -0.0755 -0.0557
B0072T3QTE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.5: Item factors related to implicit information denoted with yj in Eq. 4.7
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f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20
user 1 0.0822 0.2629 0.7631 0.6840 0.3025 0.1328 0.7877 0.3515 -0.0015 0.7541 0.1706 0.2351 0.1593 0.0728 0.2467 0.6672 0.6877 0.5001 0.7393 0.7930
user 2 0.6424 0.5492 0.3299 0.1598 0.6869 0.2295 0.1986 0.0519 0.3549 0.6328 0.3271 0.5915 0.4710 -0.0722 0.5344 0.5301 -0.1029 0.7741 0.4161 0.7054
user 3 -0.0530 0.7669 0.5231 0.6359 0.7617 -0.1180 0.4554 0.5740 -0.0055 0.7951 0.3723 0.4836 0.6092 0.0791 0.0777 0.8633 0.7452 0.1484 0.4426 0.2340
user 4 0.3072 0.2536 0.6987 -0.0445 0.6494 0.0397 0.6141 -0.0536 0.7736 0.6069 0.0309 0.0730 0.6275 0.1423 0.8735 0.7397 0.3743 0.4795 0.3760 0.7398

Table 4.6: User static factors denoted with γu in Eq. 4.6

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20
user 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
user 2 -0.2654 -0.0772 -0.0797 -0.1811 -0.1462 -0.1360 -0.2361 0.0866 -0.2846 -0.0871 -0.0337 -0.1622 0.1640 -0.0924 -0.0109 0.0595 -0.1484 -0.1264 0.1419 -0.0532
user 3 0.0240 -0.1111 -0.1677 -0.0550 -0.1590 0.0529 0.0298 -0.2385 0.2020 -0.1503 -0.0899 -0.2477 0.1956 0.1834 -0.1768 -0.0906 0.0195 -0.0186 -0.0774 -0.0673
user 4 0.1305 -0.0069 -0.1392 -0.1384 0.0657 0.0132 0.1516 -0.1088 -0.1064 0.0997 0.0270 0.1901 0.1142 0.0821 -0.1198 -0.0223 -0.0967 0.0355 -0.0211 -0.1195

Table 4.7: User time-dependent related parameter αu,k, presented in Eq. 4.6

• user 1:

day f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20
1502 -0.1379 -0.0863 -0.0725 -0.1022 -0.0180 -0.0775 -0.0337 -0.1026 -0.0813 -0.1392 -0.1072 -0.1221 -0.0621 -0.1407 -0.1677 -0.1064 -0.1574 -0.0517 -0.1287 -0.0921

Table 4.8: User time-dependent related factors γuk,t for the corresponding days to user 1, presented in
Eq.4.6

• user 2:

day f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20
1111 -0.0149 -0.0138 -0.0270 -0.0241 -0.0140 -0.0052 -0.0334 -0.0826 -0.0013 0.0021 -0.0641 -0.0313 -0.0749 -0.0434 -0.0636 -0.0187 -0.0524 -0.0305 -0.0896 -0.0512
1425 -0.1117 -0.0415 -0.0550 -0.0895 -0.0670 -0.0550 -0.1185 -0.0468 -0.1058 -0.0299 -0.0734 -0.0894 -0.0110 0.0753 -0.0646 0.0039 -0.1043 -0.0755 -0.0331 -0.0683

Table 4.9: User time-dependent related factors γuk,t for the corresponding days to user 2, presented in
Eq.4.6

• user 3:

day f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20
881 -0.0691 -0.0133 -0.0209 -0.0244 -0.0505 -0.0547 -0.0011 -0.0101 -0.0442 -0.0079 -0.0272 -0.0226 -0.0664 -0.0497 -0.0178 -0.0155 -0.0610 -0.0281 -0.0073 -0.0634
1298 -0.0369 -0.0435 -0.0278 -0.0016 -0.0003 -0.0343 -0.0365 -0.0167 -0.0401 -0.0290 -0.0183 0.0006 -0.0434 -0.0501 -0.0159 -0.0101 -0.0067 -0.0255 -0.0340 -0.0031
1542 -0.0841 -0.0758 -0.0700 0.0299 -0.0880 -0.0388 -0.0121 -0.0747 -0.0076 -0.0549 -0.0567 -0.0830 -0.0204 -0.0225 -0.0660 -0.0225 -0.0500 -0.0490 -0.0375 -0.0710
1634 -0.0141 -0.0100 -0.0318 -0.0181 -0.0261 -0.0292 -0.0046 -0.0317 -0.0013 -0.0268 -0.0190 -0.0289 -0.0180 -0.0063 -0.0272 -0.0328 -0.0181 -0.0084 -0.0215 -0.0275

Table 4.10: User time-dependent related factors γuk,t for the corresponding days to user 3, presented in
Eq.4.6

• user 4:

day f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20
1509 -0.0969 -0.0454 -0.0261 -0.0251 -0.0869 -0.0844 -0.0967 -0.0216 -0.0462 0.1135 -0.0964 -0.1062 -0.1034 -0.0574 -0.0080 -0.0811 -0.0238 -0.0474 -0.0606 -0.0165
1554 -0.0258 -0.0493 -0.1020 -0.1006 -0.0512 -0.0772 -0.0142 -0.0809 -0.1042 -0.0593 -0.0817 -0.0027 -0.0412 -0.0127 -0.0733 -0.0934 -0.0765 -0.0280 -0.0722 -0.0817

Table 4.11: User time-dependent related factors γuk,t for the corresponding days to user 4, presented in
Eq.4.6

In the following, the set of items rated by each user is provided. Thus, in Table 4.1, the items where
users have different value on the rating section than 0 show the items that have been rated by certain user,
such that:

• R(1) = {B0058V LRIA,B009V 06HGG,B00B1V FWDW}
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• R(2) = {B00517ABLA,B00671EMO6, B007KFS10O,B0081U2V CG,B00AB93O5S,
B00B5505V I,B00D5ZLMKE}

• R(3) = {B00062NHGQ,B004K1KR4E,B004SDY QI2, B00866CKU8}

• R(4) = {B00127QC0C,B004AE1X1C,B0072T3QTE}

Having learned the parameter values, now the application of each component from the model can be
applied to predict the preference value of given user and item at given point in time.

• X1,B003EAORCA (1383177600)︸ ︷︷ ︸
day 1502,bin 9

=?

– item bias (applying Eq. 4.2)
βB003EAORCA(1383177600) = βB003EAORCA + βB003EAORCA,bin(9) = 0 + 0 = 0

– user bias (applying Eq. 4.5)
β1(1383177600) = β1 + α1 ∗ dev(1, 1502) + β1,1502

= −0.2072 + 0 ∗ (sign(1502− t1)|1502− t1|0.2)︸ ︷︷ ︸
dev(1,1502)

+(−0.2072)

= −0.2072 + 0 ∗ (sign(1502− 1502/1)|1502− 1502/1|0,2) + (−0.2072) = −0.4144,
where t1 is the mean rating date

– user factors (applying Eq. 4.6)
γ1,1(1383177600) = γ1,1 + α1,1 ∗ dev(1, 1502) + γ1, 1502︸︷︷︸

factor 1,day 1502

= 0.0822 + 0 + (−0.1379) = −0.0557
γ1,2(1383177600) = γ1,2 + α1,2 ∗ dev(1, 1502) + γ1, 1502︸︷︷︸

factor 2,day 1502

= 0.0822 + 0 + (-0.0863) = -0.0041
·
·
·
γ1,3(1383177600) = γ1,20 + α1,20 ∗ dev(1, 1502) + γ1, 1502︸︷︷︸

factor 20,day 1502

= 0.0822 + 0 + (-0.0921) = -0.0099

– |R(1)|−1/2 = 1−1/2 = 1

– factors related to implicit info.

R(1) =
∑
jεR(1)

yj

= {−0.000504358336,−0.000123505992,−7.3034632e− 05,−0.000205379,−1.092727e− 06,

− 8.9314623e− 05,−7.414875e− 06,−0.000207474688,−0.000103161709,−0.000517781627,

− 0.000237176659,−0.000348913664, ,−4.5882712e− 05,−0.000535387328,−0.000907039232,

− 0.000231475544,−0.000751089429,−2.6463592e− 05,−0.000410172407,−0.000149721291}
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– predicting the preference value (applying Eq. 4.7)

x1,B003EAORCA(t) = 4.117 + β1(t) + βB003EAORCA(t)+

+ γTB003EAORCA

(
γ1(t) + |R(1)|−1/2

∑
jεR(u)

yj

)
= 4.117 + 0 + (−0.4144) + 0.0001

= 3.7027

• X2,B001RNO3KC (1376524800)︸ ︷︷ ︸
day 1425,bin 8

=?

After applying the same procedure as the one for user 1, the result is the following:
x2,B001RNO3KC(t) = 4.3543

• X3,B00025FROW (1299110400)︸ ︷︷ ︸
day 529,bin 3

=?

After applying the same procedure as the one for user 1, the result is the following:
x3,B00025FROW (t) = 5.0000

• X4,B000SKNY AU (1310860800)︸ ︷︷ ︸
day 665,bin 4

=?

After applying the same procedure as the one for user 1, the result is the following:
x4,B000SKNY AU (t) = 5.0000

As we can see from the example above, user’s 1 preference value on day 1502 against itemB003EAORCA
shows a preference above the average. With regard to item bias, as item B003EAORCA did not have
any interaction with any other user on the training set, the bias value remained 0 (as initialized in the
beginning). Regarding the user 1 bias, user 1 has been active only one day, such that not any big change
with regard to the evolution of his preferences can be captured. Moreover, the day-related parameter
γ1,1502 could be associated to shorter periods of time than the lasting of one day (e.g.breakfast time, lunch
time, etc.), and thus we would be able to capture those small dynamics (but in such context, more data
would be needed).

4.2 TVBPR+
This section is based on [4]. TVBPR+ is one-class collaborative filtering for modeling the evolution of
fashion trends. The evolution of fashion trends is learned by uncovering the factors that are considered
to have impact on users’ opinions at given period of time. TVBPR+ is applied on the data provided by
Amazon, and has shown to provide promising results. TVBPR+ adapts the ’basic’ formulation of matrix
factorization as well, where the preference of the user towards an item is predicted by using formulation
4.1 above, which has proven to capture rich interaction between users and items. But, considering the
context where the data is really sparse (only few items get rated), as described in [4], the formulation
above suffers in cold-start situations. Thus, involving other source of information about users or items
helps dealing with such an issue. Regarding TVBPR+, as the focus is on uncovering the visual dimensions
from the data being at play, they use the information about the visual characteristics of the item, and thus
being able to uncover the preferred visual style for each user. The formulation that involves the visual
characteristics of the items looks as follows:
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x̂u,i = α+ βu + βi + 〈γu, γi〉+ 〈θu, θi〉, (4.8)

where θu represents the visual factors characterizing user u, whereas θi represents the visual factors
describing item i.

The Deep CNN has been used to extract the features from the images of the items. The Deep CNN
features has demonstrated to capture visual dimensions that resemble to the human notions of the visual
style. Such that, an embedding matrix E has been introduced to linearly embed the high−dimensional
features extracted from Deep CNN representing items into a K ′ lower−dimensional visual space. Let fi
denote the features of item i extracted from the Deep CNN, and F the number of dimensions representing
the item i. Then, θi is formulated as follows:

θi = Efi (4.9)

To model the temporal dynamics that are at play with regard to the fashion data, three types of temporal
dynamics are considered:

• temporally visual factors

• temporally evolving visual bias

• non-visual temporal dynamics

4.2.1 Temporally Visual Factors
Regarding the temporally-evolving visual factors, here the focus is on modeling the visual dimensions
being time-aware. This is based on the fact that, as new items come in new visual dimensions might
come at play. Thus, the embedding matrix representing the visual space should be time-aware and change
with new data coming in accordingly. Such that, the following formulation represents the time-dependent
embedding matrix E:

E(t) = E + ∆E(t) (4.10)

The formulation above captures the ‘attractiveness’ of items as some items might lose or gain it.
Considering the formulation of the time−dependent embedding matrix E, the visual factors of item i at
given point in time t are formulated as follows:

θi(t) = E(t)fi (4.11)

Considering that visual dimensions are weighted differently by different users, a weighting vector is
proposed. Such that, the formulation of θi looks as follows:

θi(t) = Efi � ω(t), (4.12)

where � refers to Hadamard product.
If all the formulas above are combined, the following formulation follows:

θi(t) = Efi � ω(t)︸ ︷︷ ︸
base

+ ∆E(t)fi︸ ︷︷ ︸
deviation

(4.13)

The formulations above capture only the global drifts that are shared by all users, and thus we can
capture the fashion evolution with respect to the entire population. But, considering the personal tastes, the
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user u at time t is modeled in the same way as modeled in timeSVD++. Such that, the similar formulation
to timeSVD++ above for capturing user bias is used:

θu(t) = θu + sign(t− tu) · |t− tu|kηu (4.14)

4.2.2 Temporally Evolving Visual Bias
A visual bias term is also introduced, which captures the biases for each dimension in the visual space of
K’ dimensions. As stated on [4], it captures ”the portion of the variance which is common to all factors”.
The proposed formulation for the visual bias is the following:

β(t) = β � b(t) + ∆β(t) (4.15)

Having formulated the visual bias, then the visual bias of item i at time t is calculated by using the
following inner product 〈β(t), fi〉.

4.2.3 Non-visual Temporal Dynamics
Besides the dynamics of the visual dimensions, also non-visual dynamics might be at play. Non-visual
dynamics involve: sales, promotions, etc. In order to capture such dynamics, two approaches has been
proposed. One approach provides capturing per-item level dynamics, whereas the other provides capturing
per-subcategory dynamics.

Per-item level dynamics is formulated by making the static bias item term βi being time-dependent.
Regarding the per-subcategory dynamics, a new parameter is introduced, βCi

(t), which makes use of
subcategory information, and thus checking if there is any drifting behavior of a user u with regard to the
subcategory of item i falls into.

At the end, combining all the components together, the final model looks as follows:

x̂u,i = α+ βu + βi(t) + βCi
(t) + 〈β(t), fi〉+ 〈γu, γi〉+ 〈θu(t), θi(t)〉 (4.16)

4.2.4 Fashion Segmentation
Having already described the parameters involved in the model, now the way learning them such that the
involved dynamics in data are captured is a challenging part. As described on [4], some experiments have
been performed by trying similar approaches as the ones proposed for timeSVD++, but those approaches
have not been expressive enough for capturing fashion dynamics. Thus, as the task is to show the evolution
of fashion trends, such that uncovering the visual dimensions and finding the partition of the dataset that
most accurately shows that certain visual dimensions are predominating, time-windows design has been
more appropriate one for learning the parameters.

4.2.5 Learning the Model
For learning the model, the BPR (Bayesian Personlized Ranking) [9] state of the art ranking optimization
framework has been used. It accounts both positive and negative items to learn the preferences of the users.
Thus, a ranking of items that users have not interacted with is provided for each user - BPR considers
only the negative items when a personalized ranking is provided for the users, such that to the users are
recommended only the items they have not interacted with before. Basically, the training set used for BPR
consists of triples of the following form (u, i, j), where i ∈ Pu and j ∈ I \ Pu, with Pu being the set
of items user u showed positive feedback to. Thus, given a training tuple, BPR models the probability
that user u prefers item i over item j with σ(x̂u,i − x̂u,j), where σ is the sigmoid function and x̂u,i is the
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predicted preference of user u towards the positive item i and x̂u,j is the predicted preference of user u
towards the negative item j. Then, the parameters are learned by maximizing the following regularized
log-likelihood function: ∑

(u,i,j)∈DS

log σ(x̂u,i − x̂u,j)−
λΘ

2
||Θ||2 (4.17)

As we deal with learning the parameters for different epochs or partitions of the dataset, the formulation
above takes the following form:

Θ̂, Λ̂ = argmax
Θ,Λ

∑
(u,i,j,tu,i)∈DS

log σ(x̂u,i(t)− x̂u,j(t))−
λΘ

2
||Θ||2 (4.18)

As it can be seen, now we deal with two components that are needed to fit to the training set, in order
to maximize the function 4.18. One of the component is fitting the parameter set to the training set, and
the other one is finding the optimal segmentation of N given epochs. Such that, the first step is to fit the
parameters to the training set. For doing this, the stochastic gradient ascent has been used. And, given
quadruple (u, i, j, tui) , the update is formulated as follows:

Θ← +ε · (σ(−x̂uij(ep(tui)))
∂x̂uij(ep(tui))

∂Θ
− ΛΘΘ), (4.19)

where x̂uij(ep(tui)) = x̂u,i(ep(tui))− x̂u,j(ep(tui))
The second step, fitting the epoch segmentation respectively, involves operation that finds the optimal

segmentation of the training set, such that the best performance is achieved. For doing this, firstly
partitioning of the timeline is applied into N equal size bins. Afterwards, using dynamic programming, the
optimal segmentation of the timeline is calculated. As the ranking quality is evaluated by considering all
non-observed items for each positive item, it is time-consuming when dealing with a large dataset, such
that it is considered as a naive approach. But, as proposed and turned out to be correct, finding the optimal
segmentation by considering a small amount of non-observed items (1000 non-observed items) for each
positive item has shown to approximate the full log-likelihood.

The two steps above are repeated until the convergence is achieved.

4.2.6 Example
In this section, an example of the application of TVBPR (which does not make use of the non-visual item
bias being time-dependent compared to TVBPR+), is shown. For this experiment, the same input as the
one used for timeSVD++ example is used, which is shown in Table 4.1.

For applying TVBPR, firstly the parameters are initialized with some initial random values in a range of
(0,1). After having the initialization performed, the learning process related to TVBPR+ described above
is applied. Since the focus is on how to apply the formulations comprising TVBPR+, we will show the
learned parameter values after the training process, and then the necessary calculations for predicting the
preference values of the users toward items.

The learned values of the parameters grouped as non-visual and visual parameters are the following:

• Non-visual Parameters
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βi f1 f2 f3 · · · f18 f19 f20
B003EAORCA -0.126497080523 0.79291628 0.0942274 0.12946723 · · · 0.00450682 0.23187143 0.59745123
B0058VLRIA 0.0360332618834 0.44927379 0.27674382 0.07707751 · · · 0.00750875 0.47936094 0.50171547
·
·
·
B004AE1X1C 0.056327757216 0.54971403 0.23841549 0.47751374 · · · 0.50562419 0.50174873 0.39999973
B0072T3QTE 0.105598827606 0.04724386 0.46893825 0.35245932 · · · 0.27777953 0.30072391 0.15983745

Table 4.12: Item Bias and Factors, βi and γi respectively

f1 f2 f3 · · · f18 f19 f20
user 1 0.11456169 -0.00334641 0.05491303 · · · -0.01743169 0.1317918 0.1086825
·
·
·
user 4 0.06634314 0.14788008 0.21030185 · · · 0.14978394 0.05361435 0.13154633

Table 4.13: User factors, γi respectively

• Visual Parameters

f1 f2 f3 · · · f18 f19 f20
user 1 -0.02821587 -0.02273798 -0.03115407 · · · -0.03079309 -0.02479417 -0.02862124
·
·
·
user 4 -0.02776621 -0.02219125 -0.02451551 · · · -0.02617196 -0.02854347 -0.02287346

Table 4.14: User visual factors, θu respectively

Table 4.15: The static embedding matrix E
feat. 1 feat. 2 feat. 3 . . . feat. 4094 feat. 4095 feat. 4096

dim. 1 0.58330717 0.52471568 0.67077409 . . . 0.13782374 0.82254404 0.60793853
dim 2 0.32496333 0.96775872 0.12271576 . . . 0.40672053 0.85121154 0.91168397
·
·
·
dim. 19 0.78688158 0.301584 0.12155727 . . . 0.74460072 0.75458812 0.01627602
dim. 20 0.58541302 0.53279108 0.22762106 . . . 0.98218826 0.58276142 0.71937913
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feat. 1 feat. 2 feat. 3 . . . feat. 4094 feat. 4095 feat. 4096
dim. 1 0.00766428 0.26873741 0.04666985 . . . 0.06897313 0.27515169 0.21383483
dim. 2 0.72086256 0.83005209 0.11380367 . . . 0.95005043 0.42140941 0.54632146
·
·
·
dim. 19 0.59722358 0.68681844 0.86969353 . . . 0.2340534 0.18622787 0.29477795
dim. 20 0.58806162 0.79240562 0.1954462 . . . 0.2967964 0.45799249 0.06106239

Table 4.16: The embedding matrix E(t) at epoch 1

feat. 1 feat. 2 feat. 3 . . . feat. 4094 feat. 4095 feat. 4096
dim. 1 0.69727987 0.14991916 0.74905501 . . . 0.22856041 0.984096 0.71723818
dim. 2 0.47607473 0.06242676 0.31915043 . . . 0.43664639 0.12154159 0.61208573
·
·
·
dim. 19 0.1482202 0.98006643 0.11739262 . . . 0.62164919 0.73375898 0.42174419
dim. 20 0.96662511 0.86619557 0.96428079 . . . 0.6678679 0.95800838 0.43764076

Table 4.17: The embedding matrix E at epoch 10

f1 f2 f3 · · · f18 f19 f20
epoch 1 0 0 0 · · · 0 0 0
epoch 2 0 0 0 · · · 0 0 0
·
·
·
epoch 9 -0.0330897 -0.03301007 -0.03064873 · · · -0.03312334 -0.03137209 -0.03511399
epoch 10 -0.04046583 -0.05153918 -0.08073335 · · · -0.05576696 -0.06817314 -0.04643101

Table 4.18: The visual factor weighting vector - ω(t)

Table 4.19: Visual bias - related parameters
f1 f2 f3 . . . f4 f5 f6

β 0.05594762 0.7334017 0.55102493 . . . 0.81667302 0.00930684 0.9288046
epoch 1 0 0 0 . . . 0 0 0
·
·
·
epoch 9 2.15334724e-04 -1.43662100e-03 -7.41753571e-03 . . . -6.16337720e-03 4.30688062e-05 1.10145173e-02
epoch 10 -2.89831271e-04 -1.75205729e-04 -7.83686021e-03 . . . 7.99366815e-03 -4.40916704e-05 -1.65295899e-02



CHAPTER 4. TIME-AWARE MODELS 28

f1 f2 f3 . . . f4 f5 f6
epoch 1 0 0 0 . . . 0 0 0
epoch 1 0 0 0 . . . 0 0 0
·
·
·
epoch 9 0.00384893 -0.00195887 -0.01346312 . . . -0.00754734 0.00462774 0.01186071
epoch 10 -0.00518049 -0.00023889 -0.01422415 . . . 0.00978863 -0.00473767 -0.01779932

Table 4.20: The visual bias weighting vector - b(t)

Now, having already the learned values, we can apply the necessary formulations of TVBPR to predict
the preference values of the users toward certain items. In order to get the β(t) (visual bias) and θi(t)
for the corresponding items, the formulation in Eq. 4.15 and the formulation in Eq. 4.13 are applied
respectively. In our example, the prediction of the preference value of user 1 towards item B003EAORCA
at timestamp of 1383177600 (which corresponds to epoch 9) is considered. Firstly, the calculation that
differ from timeSVD++ are shown. Such that, for getting the visual biases at given epoch, the following
calculation is performed:

• 〈β(t), fi〉

β(1383177600) =

〈
(β � b(1383177600) + ∆β(1383177600)), fB003EAORCA

〉
=

〈
(
(
0.05594762 · · · 0.9288046

)
�
(
2.15334724e− 04 · · · 1.10145173e− 02

)
+
(
0.00384893 · · · 0.01186071

)
), fB003EAORCA

〉
= 0.0839220950793

Whereas in order to get the visual factors for the corresponding epoch of the item B003EAORCA, the
following calculation is performed:

• θi(t)
θB003EAORCA(1383177600) = EfB003EAORCA�ω(1383177600)+∆E(1383177600)fB003EAORCA

=

0.58330717 · · · 0.60793853
...

. . .
...

0.58541302 · · · 0.71937913


︸ ︷︷ ︸

E

fB003EAORCA �
(
−0.0330897 · · · −0.03511399

)︸ ︷︷ ︸
ω(t)

+

0.40736556 · · · 0.306776
...

. . .
...

0.45930571 · · · 0.96964655


︸ ︷︷ ︸

∆E(t)

fB003EAORCA =
(
12.51976488 · · · 13.04875802

)︸ ︷︷ ︸
θi

Afterwards, in order to calculate the preference of user 1 towards item B003EAORCA, the following
calculation is performed:
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• xu,i(t)
X1,B003EAORCA(1383177600)
= βB003EAORCA + 〈β(t), fB003EAORCA〉︸ ︷︷ ︸

visual bias

+ 〈γ1, γB003EAORCA〉︸ ︷︷ ︸
non−visual factors

+ 〈θ1(t), θB003EAORCA(t)〉︸ ︷︷ ︸
visual factors

= −0.126497080523 + 0.0839220950793︸ ︷︷ ︸
after applying Eq. 4.15

+

((
0.11456169 · · · 0.1086825

) (
0.79291628 · · · 0.59745123

))
︸ ︷︷ ︸

non−visual factors

+

((
0.11456169 · · · 0.1086825

) (
0.79291628 · · · 0.59745123

))
︸ ︷︷ ︸

visual factors

= (−0.126497080523)+0.0839220950793+0.96314291182201561+(−7.2675641472693639)
= −6.346996220891048

The same procedure is followed for predicting the preferences of other users toward other items.
As we can see from the calculation above, we do not consider the offset value of the model and user

bias (which was considered when timeSVD++ was applied). As proposed on [4], we deal with an item
recommendation task, such that making it unnecessary of using those parameters (whereas, timeSVD++ is
designed for a rating prediction task). If we consider the predicted preference value of the user 1 against
item B003EAORCA, we deal with a bigger absolute value of the result compared to timeSVD++, as
a result of the image features being involved (e.g. the visual interaction score between user 1 and item
B003EAORCA is around -7.2675, whereas the non-visual interaction score is around 0.9631).

Regarding the time-dependent parameters being involved, TVBPR models the time-dependent char-
acteristics by mostly considering the visual aspects, and such that considering the non-visual user-item
interaction between user and item as static one - where this part is defined as a time-dependent one with
regard to timeSVD++.



5
TimeSVD++ with the Visual Component Included

After the introduction of two reference models in Chapter 4, we introduce in this Chapter a new model
to predict fashion using visual components. The introduced model is a combination of the two models
presented in Chapter 4, which is, an extended version of timeSVD++ with the visual component of TVBPR.
From now on, we will refer at the newly introduced model as timeSVDV C . Such that, in the following
section, a detailed description for timeSVDV C . As timeSVDV C involves the same calculations (with respect
to the parameters used from other models) as the ones used for timeSVD++ and TVBPR, an example for
timeSVDV C is not provided.

5.1 Description
As timeSVDV C is an extension of timeSVD++, it makes use of all parameters that comprise timeSVD++.
Thus, the item bias and user bias formulations shown in Eq. 4.2 and the formulation in Eq. 4.5 respectively
are used as baseline predictors. Regarding the component capturing the interaction between the user and
item, the component from timeSVD++ formulated as follows is used:

γTi

(
γu(t) + |R(u)|−1/2

∑
jεR(u)

yj

)
(5.1)

Whereas, with regard to the additionally introduced component, the visual-related parameters presented
in TVBPR+ are used, which is formulated as follows:

〈θu(t), θi(t)〉︸ ︷︷ ︸
temporal visual interaction

+ 〈βu(t), fi〉︸ ︷︷ ︸
temporal visual bias

(5.2)

All the visual parameters from above are formulated in the same way as presented in TVBPR+, such
that:

• θi(t) = Efi � ω(t)︸ ︷︷ ︸
base

+ ∆e(t)fi︸ ︷︷ ︸
deviation

30
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• θu(t) = θ + sign(t− tu) · |t− tu|kηu

• β(t) = β � b(t) + ∆β(t)

After extending the timeVDD++ model with the visual component shown in Eq. 5.2, the newly
introduced model is formulated as follows:

x̂u,i = α+βu(t)+ βi(t)︸ ︷︷ ︸
temporal non-visual bias

+ γTi

(
γu(t) + |R(u)|−1/2

∑
jεR(u)

yj

)
︸ ︷︷ ︸

temporal non-visual interaction

+ 〈θu(t), θi(t)〉︸ ︷︷ ︸
temporal visual interaction

+ 〈βu(t), fi〉︸ ︷︷ ︸
temporal visual bias

(5.3)

Fashion Segmentation In order to model the time-dependent parameters in such a way that the model
would be able to capture the signals that influence users’ opinions, or signals that indicate change in the
characteristics of products being trendy at given point in time, a very ”clear” segmentation of the dataset
should be provided. As described on [4], fashion tends to move in an abrupt manner and unexpected way,
thus being harder to capture those unexpected changes with just simple fixed-size split of the dataset. Thus,
the same approach as the one used on TVBPR+ is applied on timeSVDV C .

Learning the Model For learning the timeSVDV C model, different approaches have been tested (see
Chapter 7). The chosen approach is the one that is used for TVBPR+ as well, as shown in Eq. 4.19.



6
Experiments

In order to see the power of the models, different experiments were performed. In this chapter, we show
the performed experiments and their results. Firstly, a description of the datasets where the experiments
are applied on is given. Then, an experiment is performed which aims to give a ’feeling’ about the
performance of the models, such that it involves observing the performance of the models while using the
same hyper-parameter values, and thus giving an overview why certain model performs better than the
other one in given context. Afterwards, in order to compare the models, several tasks are defined, such that
the models are tested in different settings.

Regarding the first task, considering the fact that the way how the dataset is split for learning the
time-dependent parameters is important as it influences the performance of the model, this task involves
testing the models while the number of epochs is changing. Assuming that in fashion context the items are
characterized by more complex features, the number of factors or characteristics should play an important
role on the performance of the model. Thus, the second tasks involves testing the models while setting the
number of factors to different values. Then, with regard to the third task, it involves testing the models
while the number of the visual factors is set to different values, i.e. thus these experiments involve only the
models that include the visual component, TVBPR and timeSVDV C respectively. Afterwards, in order to
see how the performance of the models is affected by dealing with different sizes of the dataset, a new
set of experiments is provided where different datasets are considered for each model. Additionally, an
exploratory study is presented, where visually are shown the items representing the visual dimensions
captured by the models which involve the visual component.

The experiments above show only the performance with regard to the accuracy of the models, and not
showing the performance with regard to the efficiency - the running time each model needs to learn the
parameter values. Thus, the following experiments involve tests which show the running time each model
needs for learning the parameter values.

For all the experiments, the number of iterations is set to 100. Whereas, other parameters are varying
according to the experiment being considered. Regarding the evaluation of the models, the dataset is split
into training set, testing set and validation set. Leave-two-out cross validation technique has been used
to split the data. For our experiments, the evaluation is performed only by considering the items from
the testing set. Note, regarding the TVBPR+ model, the version that has been used for the experiments is
TVBPR, which doesn’t make use of making the non-visual item bias parameter time-dependent. Regarding
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the performance of the machine where the experiments were run, its characteristics are provided in the
following:

• Processor: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

• RAM: 16GB

6.1 Dataset
The dataset used for the experiments is the one provided by Amazon. The whole dataset provides product
reviews of categories such as: clothing, shoes and jewelry. Using the tools provided in [4], we were able
to extract different categories of products, which are the following: women, men, girls and babies. For
our experiments, the product reviews of men category have been used. Moreover, from the men category
datasets, different subsets of data have been created. Firstly, a dataset is created which involves the users
who have rated at least 40 items. Then, four more datasets have been created from the same dataset (i.e.
users having at least 40 actions), by reducing the number of actions, and setting them to certain number of
actions. The statistics of the created datasets are provided in Table 6.1 below:

Table 6.1: Dataset statistics (after processing)

Dataset #users #items #actions #actions/user Timespan

Dataset1 78 4099 4136 ≥ 40 Jul. 2006 – Jul. 2014

Dataset2 78 2196 2325 30 Jul. 2006 – Jul. 2014

Dataset3 78 1460 1549 20 Jul. 2006 – Jul. 2014

Dataset4 78 722 774 10 Jul. 2006 – Jul. 2014

Dataset5 78 359 388 5 Jul. 2006 – Jul. 2014

As we can see from the Table 6.1 above, the number of items is much bigger than the number of users,
and the number of actions is close to the number of items. This means that only few items get rated more
than once, as new items are constantly coming in. For example, considering the Dataset1 from Table 6.1
(from where the other datasets are extracted), after an analysis, we saw that there are only few items which
have been rated more than once. Such that, 161 items out of 4099 items are rated more than once, where
27 out of 161 items have more than two ratings.

In order to have a better overview of how the data are spread out over time, in Figure 6.1 some graphs
are provided.
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(a) Dataset1 - #actions per day. (b) Dataset2 - #actions per day.

(c) Dataset3 - #actions per day. (d) Dataset4 - #actions per day.

(e) Dataset5 - #actions per day.

Figure 6.1: The evolution of the number of ratings over time.

The plots in Figure 6.1 show , for each dataset, the actions of users over time on daily basis - from the
action given on the first day, until the action given on the last day for the dataset that is being considered.
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6.1.1 A Single Context Showing the Performance of the Models
As described above, in this part, we show a single context where each model is tested. This experiment
aims to give an overview of why one model performance better than the other one.

Each model was tested using the following setting:

• Dataset used: Dataset1

• # of non-visual factors: K = 20

• # of visual factors: K’ = 20

• # of Epochs: epochs = 10

• # of iterations: iterations = 100

After running the experiments, the performance of the models was the following:

• timeSVD++: AUC = 0.6090

• TVBPR: AUC = 0.6830

• timeSVDV C : AUC = 0.8051

As we can see from the results above, timeSVD++ is showing the worst results compared to other
models. Whereas, the model which showed to provide a better performance is timeSVDV C . The reason
of having such results are described in the following. As timeSVD++ is designed for rating prediction
task, its performance is poor when applied to an item recommendation task. Moreover, timeSVD++ is
trained by considering only the positive items from the training set (compared to two other models, where
both positive and negative items are considered for training the parameter values). With regard to the
performance ofTVBPR and timeSVDV C , the second showed a better performance for the fact that more
parameters are involved related to the parameters describing the non-visual factors of the users (thus having
more impact on maximizing the difference between positive items and negative items). In order to prove
this, an experiment has been performed where the parameters which describe the non-visual factors of
user-item interactions were reduced, such that the timeSVDV C gets the following form:

x̂u,i = α+βu(t)+ βi(t)︸ ︷︷ ︸
temporal non-visual bias

+ 〈γi, γu(t)〉︸ ︷︷ ︸
temporal non-visual interaction

+ 〈θu(t), θi(t)〉︸ ︷︷ ︸
temporal visual interaction

+ 〈βu(t), fi〉︸ ︷︷ ︸
temporal visual bias

(6.1)

As we can see from the Eq. 6.1, this version of the model does not make use of the parameters related
to the implicit information (i.e. the set of items rated by certain user). Having reduced the number of the
parameters of timeSVDV C , the performance of the model reduced as well. Such that, AUC = 0.7898.

6.2 Accuracy - Comparisons and Analysis of the Performance of
the Models

In this section, we show the performances of the models in different settings with regard to their accuracy
(AUC value), thus being able to see in which situation certain model is performing better, and in which
situation the performance of the model is worsen. As mentioned above, certain tasks are defined, in order
to measure the accuracy of the models. In the following, we show the dataset (from the datasets described
in Table 6.1) that is being used for each defined task:
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• Task 1: Dataset1 is used

• Task 2: Dataset1 is used

• Task 3: Dataset1 is used

• Task 4: Dataset1, Dataset2, Dataset3, Dataset4 and Dataset5 are used

6.2.1 1st Task
In this task, the performance of each model is evaluated by setting the number of epochs to different values.
Considering the fact that as the number of epochs is increasing, the number of actions(user u rated item
i is considered as single action) within epochs is decreasing, we should not expect improvements in the
performance of the models.

Figure 6.2 shows how the performance of each model varies while the number of epochs is changing.

Figure 6.2: The performance of the models over different number of epochs.

As we can see in Figure 6.2, with regard to TVBPR and em timeSVDV C model, a better performance is
achieved when the number of epochs is set to 5. The reason of having such results is for the fact that, we
deal with small dataset. The time-dependent parameters get it harder to capture the right effects occurring
on the data, since splitting the dataset and learning the time-dependent parameters for certain partition of
the dataset which does not have enough data results in poor performance of the model (as proven with our
results, and thus having better results with a smaller number of epochs). This can be proven if we run the
same model over different sizes of the datasets, but having the number of epochs set to the same value.
This is shown in Task 4, Figure 6.6, where the results of each model run over different sizes of the datasets
are shown. For example, TVBPR and timeSVDV C showed an improvement of the accuracy while more
data were considered.
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Figure 6.3 shows how the dataset is split while different number of epochs is used, and thus being able
to see the volume of the data in each epoch for given number of epochs.

Figure 6.3: The distribution of data across different number of epochs.

6.2.2 2nd Task
As already described above, since we deal with fashion-related data, we can assume that the products in
such context can be characterized by more complex factors. Such that, our assumption is that, increasing
the number of factors helps on characterizing better the items, and thus resulting in having a better
performance of the model. This was proven to work in the context of movie data, where the performance
of timeSVD++ was improving as the number of factors was increasing [7]. Such that, the second task
involves experiments where the number of non-visual factors is set to different values.

Figure 6.4 shows the performance of each model while the number of non-visual factors is changing.
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Figure 6.4: The performance of the models while the number of non-visual factors is changing.

As we can see from the Figure 6.4 above, a better effect on the performance caused as a consequence
of changing the number of non-visual factors can be seen in the timeSVD++ model and the timeSVDV C

model. This is for the fact that, timeSVD++ andtimeSVDV C model involve more parameters for describing
users’ non visual characteristics compared to TVBPR (where the non-visual factors are set to static, thus
less parameters needed). Additionally, as timeSVD++ does not involve the visual component, it makes use
of only the ratings as input data, and thus uncovers the factors accordingly by not making use of other
source of information. Thus, the effect of changing the number of non-visual factors is more emphasized
in the timeSVD++ model. Whereas, with regard to TVBPR, its performance is not affected as the other
models being affected.

6.2.3 3rd Task
The third set of experiments comes from the same idea used for the second task. Such that, as mentioned
above, it involves experiments where the performance of the models is observed while the number of
visual factors is changing. As only the TVBPR model and timeSVDV C include the visual component, these
experiments consider only those models. Here, our assumption is that, we do not expect to have a better
performance while the number of visual factors is increased, but instead, finding a better representation of
the visual space which is ”described” by the visual dimensions.

Figure 6.5 shows the performance of both models mentioned above:
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Figure 6.5: The performance of the models while the number of visual factors is changing.

As we can see from the Figure 6.5, the accuracy of both models while the number of visual factors is
changing does not show any improvement, but it almost has a constant trend when the number of visual
factors is changing. Here we can apply the fact that, the visual dimensions representing the visual style
space are represented by the embedding matrix E (as described in section 4.2), whose values are learned
from the image features of the items (or products) - this helps in the efficiency of the algorithm, and also
better representing the human notion of fashion style rather than having impact on the performance of the
model.

6.2.4 4th Task
In order to see how the models are influenced by different dataset sizes, some experiments were performed
where each model is tested on different sizes of the datasets. The statistics of the datasets are shown in
Table 6.1. Thus, in Figure 6.6, a graph showing the results of the models while applied in different dataset
sizes is presented.
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Figure 6.6: The performance of the models while the dataset size is changing.

As it can be seen from Figure 6.6, TVBPR has gradual improvement on the performance when the size
of the dataset is increased. Also, timeSVDV C’s performance is improving while the number of data is
increased. This comes from the fact that, the more data we have, more accurate models we have. Here,
with regard to the models involving the visual component, we can emphasize that the amount of data plays
a key role for learning the values of the embedding matrix E.

6.2.5 An Exploratory Study
In this section, some insights are provided based on what models where able to capture from the dataset
being used. As we see from Figure 6.1 with regard to Dataset1, the number of actions is constantly
increasing after day 1500. This effect is occurring as consequence of the number of new items coming in
is increasing. In order to show this, in Figure 6.7 below, a graph is presented which shows the number of
items coming in per day with regard to the time span of the dataset:
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Figure 6.7: The number of items per day - calculated by considering only the first rating given to them.

Considering the effect described above, one would be interested to see how the parameters of the
models express this effect. Firstly, as more items appear, we should expect a better match between users
and items (considering the fact that the more data we have, the better performing model we have). Also,
we want to see how the bias values are affected by this phenomenon. Considering that, for each model, we
show a graph of how user-item interaction and item bias values evolve over time, as the number of new
data coming in is increasing. The user-item interaction and item bias values are calculated by considering
each action that has occurred on the dataset. A higher user-item interaction value indicates a better fit
between user and item. Thus, in the following, with respect to each model, we show the graphs visualizing
the evolution of the parameters mentioned above:

• timeSVD++: Figure 6.8, shows the item bias and user-item interaction score over time.
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Figure 6.8: Bias score vs user-item interaction score over time when timeSVD++ is applied.

As we can see from the Figure 6.8, as expected, the user-item interaction score is more emphasized
on the area where more items are present, and at the same time showing high value.

• TVBPR: In Figure 6.9 below, a graph showing the evolution of the total item bias values (i.e.
including visual and non-visual bias) and the total user-item interaction score (i.e. summing up both
the non-visual interaction score and the visual interaction) over time is presented.
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Figure 6.9: Bias score vs user-item interaction score over time when TVBPR is applied.

As we can see from the Figure 6.9, the user-item interaction score increases (i.e. showing a better fit
between the user and item), as the number of data increases. Such that, here can also be stated that,
the more data provided the better the performance is. Whereas, regarding the item bias, there is not
any unexpected shift happening.

In order to see how the visual user-item interaction score is affecting the total user-item interaction
score, in Figure 6.10, a graph showing the evolution of visual user-item interaction against the total
user-item interaction score over time is presented.



CHAPTER 6. EXPERIMENTS 44

Figure 6.10: Visual user-item interaction score vs total user-item interaction score when TVBPR is applied.

As we can see from the Figure 6.10 above, a same trend is shown by both interactions involved. This
means that, the visual user-item interaction score has a high impact on the total user-item interaction
score, which is a consequence of dealing with a context of fashion data.

• timeSVDV C : As timeSVDV C involves the same components as TVBPR, similar graphs are provided.
Such that, the graph in Figure 6.11 is showing how the total user-item interaction and the total bias
values evolve over time.
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Figure 6.11: Total bias score vs total user-item interaction score when timeSVDV C is applied.

As we can see from the Figure 6.11 above, as the number of new items is increasing, the user-item
interaction value is increasing as well, thus showing a better fit between users and items, i.e. better
performance of the model. Whereas, the bias values shows the same trend as the one which is
present on the TVBPR model.

Since timeSVDV C involves a time-dependent component with regard to the non-visual factors
(as opposed to TVBPR, which involves a static non-visual component with regard to user-item
interaction), one would be interested to see how these both components evolve over time. Thus, in
Figure 6.12, a graph is presented showing the evolution of the components mentioned above.
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Figure 6.12: Visual user-item interaction score vs total user-item interaction score when timeSVDV C is
applied.

As it can be seen from the Figure 6.12, the value of the non-visual user-item interaction is increasing
as new items appear (for the reasons described in the experiments above), and the same trend is
followed by the visual user-item interaction value.

We would also be interested in showing what kind of dimensions are captured by each model. For
doing this, for each epoch, the top items representing each dimension are extracted. In fact, only the top
items for 5 dimensions out of 20 dimensions are shown considering all the epochs (with the number of
epochs being 10). To get the top item of certain dimensions, the following calculation is applied:

argmax
i

Ekfi � ω(ep) + ∆Ek(ep)fi, (6.2)

where k is the k-th row from the embedding matrix E representing the learned visual dimension, f
representing the Deep CNN extracted features of item i, and ω(ep) and ∆Ek(ep) representing the weighting
vector value and the kth row of the time-dependent embedding matrix E (capturing the deviation) at
given epoch respectively. The item that provides the highest value with respect to the visual dimension
considered is the item that best ”describes” that visual dimension. Thus, in the following , in Table 6.2
and Table 6.3, the top items of certain visual dimensions captured by TVBPR and timeSVDV C are shown
respectively.
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Epoch Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5

Epoch 10

Epoch 9

Epoch 8

Epoch 7

Epoch 6

Epoch 5

Epoch 4

Epoch 3

Epoch 2

Epoch 1

Table 6.2: TVBPR Visualization
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Epoch Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5

Epoch 10

Epoch 9

Epoch 8

Epoch 7

Epoch 6

Epoch 5

Epoch 4

Epoch 3

Epoch 2

Epoch 1

Table 6.3: timeSVD VC Visualization

In order to compare the dimensions captured by both models in the figures above, we will consider
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only the items representing the dimensions at epoch 9 and 10 - the number of items appearing during that
period is bigger, and thus expecting better representation. Thus, as we can see from the figures above, both
of the models capture similar style. For example, if we compare the items representing the dimensions
above at epoch 10, we can see that both models capture 2 watches, but not in the exact same dimensions -
here we can consider the fact that adjacent items should provide similar style. The same occurs at epoch 9.
As we can see, there cannot be made a clear distinction between the models, since more data are needed to
learn the embedding matrices, and thus providing much clearer dimensions. But, considering the Figure
6.10 showing the trend of visual user-item interaction captured by TVBPR, and the Figure 6.12 showing
the trend of visual user-item interaction captured by timeSVDV C , we can see that both models follow the
same trend, i.e. similar visual dimensions are captured.

6.3 Efficiency - Comparisons and Analysis of the Performance of
the Models

In this section, the performance with respect to the efficiency of the algorithms is shown. In order to
compare the efficiency between the models, different settings are provided. Such that, in order how the
running time of the model is influenced by the size of the dataset, experiments with different dataset sizes
are provided. Thus, the Table 6.4 below shows the time each model needs per iteration, while being applied
in different dataset sizes.

Table 6.4: Efficiency of the algorithms while applied on different dataset sizes in seconds

Dataset timeSV D + + TV BPR timeSV D V C
Dataset1 57.7556290627s 2181.24168897s 2204.37025881s
Dataset2 10.9023280144s 1181.67354703s 1241.4301590s
Dataset3 4.83943891525 731.152724981s 780.174357891s
Dataset4 1.24761009216s 335.848999023s 328.515271902s
Dataset5 0.324027061462 120.352180004s 128.471446991s

In order to have better overview of how the dataset size influence the running time of the models, in
Figure 6.13, graph is presented showing the performance of the models over different dataset sizes.
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Figure 6.13: The running time of the models over different dataset sizes - the time is presented in seconds.

As we can see from the Figure 6.13, the size of the dataset has higher impact on the models that
involve the visual component, TV BPR and timeSV D V C respectively. This is for the fact that more
parameters are involved as well.

In the following, in order to see how certain hyper-parameters influence the performance of the models,
some experiments with different values of those hyper-parameters have been performed. Such that, Table
6.5 shows the performance of the models, while the number of non-visual factors is changing. Whereas
Table 6.6 shows the performance of the models while the number of visual factors is changing (this involves
only the models that include the visual component). Each experiment measures the time elapsed in one
iteration.

Table 6.5: Efficiency of the algorithms while the number of the non-visual factors varies

#non-visal factors timeSV D + + TV BPR timeSV D V C
10 31.0021281242s 2187.32572913s 2185.51214814s
20 57.7556290627s 2181.24168897s 2204.37025881s
30 84.3528568745s 2290.82228398s 2183.78547597s
40 112.017258167s 2123.2769351s 2265.52259803s
50 134.62360692s 2151.59400511s 2218.22223496s
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#visual factors TV BPR timeSV D V C
10 1148.070225s 1259.39852905s
20 2181.24168897s 2204.37025881s
30 3222.12467694s 3370.24087381s
40 4424.4775281s 4437.88044596s
50 5351.33963895s 5288.38298702s

Table 6.6: Efficiency of the algorithms while the number of the visual factors varies

In order to have a better representation of the tables above, some graphs were provided for showing the
results. Such that, Figure 6.14 below shows the running time of the models while the number of non-visual
factors varies. Whereas Figure 6.15 shows the running time of the models over different number of visual
factors.

(a) The running time of timeSVD++. (b) The running time of TVBPR and timeSVDV C.

Figure 6.14: The running time of the models while the # of non-visual factors differs - the time is presented
in seconds.
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Figure 6.15: The running time of the models while the # of visual factors differs - the time is presented in
seconds.

As we can see from the figures above, the running time of the models while number of non-visual factors
is changing, it affects more the timeSVD++ model as it only depends on those factors, no other factors
involved. Whereas, with regard to TVBPR and timeSVDV C, it does not show any significant influence
while the number of non-visual factors is increased. This is as a consequence of the visual component
being involved. From Figure 6.15, we can see that, while the number of visual factors increases, the
running time of the models involving the visual component is also increased. Thus, timeSVD++ requires
O(K) to update the parameter values, with K denoting the number of non-visual factors. Whereas, as
TVBPR and timeSVDV C involve the visual component additionally, both of them require O(K +K ′) to
update the parameters, where with K ′ is denoted the number of visual factors.
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Discussion

In this chapter, a discussion about the problems faced throughout this work, and possible improvements of
the results from the experiments is provided.

The main part of this thesis was to extend the timeSVD++ model with the visual component from
the TVBPR model, and thus forming the timeSVDV C model. As timeSVD++ and TVBPR model are
designed for different tasks, choosing the right learning approach for the parameter values of timeSVDV C ,
which is a combination of both, was a challenging part. As described earlier, timeSVD++ is designed
for rating prediction task, and makes use of stochastic gradient descent(SGD) to reduce the loss function.
Whereas TVBPR, as mentioned above, is designed for item recommendation task, and applies the Bayesian
Personalized Ranking (BPR) pair-wise ranking optimization framework to learn the parameter values.
Respectively, the first one makes use of explicit feedback, whereas the second one makes use of implicit
feedback. Thus, there are few approaches that have been tested with regard to the learning approach for
timeSVDV C :

• timeSVD++-based Approach: Intuitively, one would try to apply the same learning approach as the
one used for the timeSVD++, since timeSVDV C is considered as an extension of timeSVD++. Thus,
the first approach was simply by applying the stochastic gradient descent as applied on timeSVD++,
and learning the parameter values by reducing the loss function (i.e. the different between the real
rating and the predicted rating), and making use of only explicit feedback (i.e. only positive items).
But, this approach was not suitable as the prediction value was a high value, such that not helping
on minimizing the loss function.

• Using Implicit Feedback: The second approach tested is related to the same idea for learning the
parameter values as the one used for TVBPR, but instead it makes use of only positive items. This
method did not provide an objective function, and thus making it not applicable (even though
some experiments were performed). Basically, applying this approach, it will only increase the
values of the parameters being involved, and thus might help on showing the evolution of the visual
dimensions uncovered from the positive items (since only these items are considered).

• Using Explicit Feedback: This approach is making use of positive items, and by using the explicit
feedback(i.e. ratings), the following function is minimized:
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∑
(u,i,t)∈T

−xu,i(t) log(x̂u,i(t))− (1− xu,i(t))log(1− x̂u,i(t)), (7.1)

where T refers to the training set, and the values of xu,i(t) and x̂u,i(t) represent the real rating and
the predicted rating of user u towards item i at time t respectively. As we were dealing with high
values with regard to the predicted values (because of the visual component being involved), the
values of the real rating xu,i(t) and the predicted values x̂u,i(t) were bounded into (0,1) range by
using the sigmoid function. But, as the predicted value is always a big value, and when the sigmoid
function is applied in high values, let’s say of 178, the output is 1.0. Afterwards, when log is applied
to 1.0, the output is 0. Such that, this approach was not the appropriate one for applying in our
context.

• TVBPR-based Approach: The fourth approach applies the same learning approach as the one used
for TVBPR. Such that, the objective function is to maximize the difference between positive and
negative items (as shown in Eq. 4.18. This approach showed suitable for applying it on timeSVDV C
model.

With regard to finding the optimal segmentation of the dataset by applying the DP (Dynamic Program-
ming) approach mentioned above, for our experiments, the DP did not improve the performance when
applied on our datasets. Different tests have been performed while applying the dynamic segmentation
on TVBPR which maximizes the log-likelihood function presented in Eq. 4.18. The reason for DP not
providing an improvement of the performance is because of the small dataset being involved. DP makes
use of the validation set to evaluate the performance of each positive item (i.e. positive item from the
validation set) at given bin against 1000 negative item with respect to the positive item being considered.
But, as the items from the validation set have only few ratings or not at all, it makes it hard to find the
optimal segmentation for the given number of epochs.
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Conclusion

The focus of this thesis has been, firstly to evaluate two existing models, then introducing a new model,
and at the end evaluate them on fashion datasets. We have provided implementation of the two existing
algorithms: timeSVD++ providing the state-of-the-art with regard to rating prediction task, and TVBPR
providing the state-of-the-art with regard to item recommendation task. Moreover, we introduced a new
algorithm, which is a combination of both algorithms mentioned above. The newly introduced model,
called timeSVDV C , comprises the parameters of timeSVD++, and additionally uses the visual component
presented in TVBPR. In order to see the performance of the models, we evaluated them on real data
(Amazon data), such that providing empirical comparison with respect to the accuracy and the efficiency of
the algorithms. timeSVDV C showed to outperform the other algorithms with regard to accuracy. Whereas,
regarding the efficiency, timeSVD++ is the most efficient algorithm when it comes to learning the parameter
values compared to the two others, since it does not make use of any other source of information compared
to the other ones. Whereas, timeSVDV C and TVBPR require more time to learn the parameter values since
they make use of the image features extracted through Deep CNN to learn the visual-related parameters.

Since our experiments have been performed on a small dataset, a cold-start situation (i.e. all items
the model are evaluated on having less than 5 ratings given to according to [4]) for all the experiments
performed was provided. Considering that, a potential future work might involve the same experiments
on a larger dataset. As shown on [4], TV BPR model and other models considered, their performance
was increasing as the size of the dataset was larger. Moreover, since different dynamics might be at play
between men’s actions and women’s actions, also experimenting on a women dataset is suggested.
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