
Real-Time Centroid Decomposition of
Streams of Time Series

Master Thesis

OLIVER STAPLETON

University of Bern

Supervisor
Dr. Mourad KHAYATI

eXascale Infolab, Department of Informatics, University of Fribourg

Co-Supervisor
Prof. Dr. Philippe CUDRÉ-MAUROUX

eXascale Infolab, Department of Informatics, University of Fribourg

February 7, 2017

Abstract

The Centroid Decomposition (CD) is a matrix decomposition technique that has been
successfully applied to recover blocks of missing values in batches of time series. The state-
of-the-art solution to compute CD achieves quadratic run-time complexity with the length
of time series. Therefore, the CD technique is not efficient when applied to streams of time
series. The inefficiency is mainly due to the fact that each update to the streams requires a
re-computation of the entire CD from scratch. In this thesis, we introduce a novel technique
called cached-CD that achieves a linear run-time complexity with the length of the streams.
The proposed solution i) allows an efficient computation of the CD for streams of time series
and ii) speeds up the recovery of blocks of missing values in batches of time series. The
cached-CD leverages the fact that, between two consecutive executions of the CD algorithm,
the input matrices for both use cases (streaming and batch recovery) change only slightly,
yielding very similar maximizing sign vectors for consecutive executions. Through caching
of these maximizing sign vectors and re-using them as initializing values during the next
execution, the cached-CD reduces the run-time complexity from quadratic to linear. We
perform experiments on real-world time series data to evaluate i) the efficiency of our solution
in comparison to existing solutions for computing the CD for streams of time series and ii)
the improved run-time of the recovery of missing blocks for batch time series performed by
the cached-CD in comparison to existing solutions.

Additionally, we have developed a graphical tool called c-ReVival that implements our
proposed solution. c-ReVival allows i) to perform the computation of cached-CD for streams
of time series in a scalable fashion, ii) to visualize the recovery of blocks of missing values in
time series using cached-CD and iii) to analyze the main properties of the CD technique.

1

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Mourad Khayati, for his constant and valuable support,
feedback and advice throughout the work on this thesis.

I would also like to extend my gratitude to Prof. Dr. Philippe Cudré-Mauroux for his co-supervision of
the thesis.

Thank you also to the sources that provided us the real-world data sets for c-ReVival and the evaluation
part. Namely, these were the Federal Office for the Environment and the Federal Office of Meteorology
and Climatology.

Last but not least, I would like to thank my family and friends for their patience and encouragement
during the time I spent working on the thesis.

2

Contents

1 Introduction 8
1.1 Context of work and motivation . 8
1.2 Contributions . 9
1.3 Outline . 9

2 Background 10
2.1 Notations . 10
2.2 Centroid Decomposition (CD) . 10

2.2.1 Definition . 10
2.2.2 Maximizing sign vector . 11
2.2.3 Scalable Sign Vector (SSV) . 12

2.3 Recovery of missing values . 12

3 Updating Centroid Decomposition (updating-CD) 13
3.1 Idea . 13
3.2 Implementation . 13
3.3 Running example . 14

4 Cached Centroid Decomposition (cached-CD) 16
4.1 Idea . 16
4.2 Caching . 18

4.2.1 Caching algorithm . 18
4.2.2 Custom Sign Vector (CSV) . 19
4.2.3 Running example . 19
4.2.4 Complexity . 21

4.3 Streaming algorithm . 22
4.4 Cached-CD based recovery algorithm . 22

5 c-ReVival 24
5.1 Components . 24

5.1.1 Displaying data sets . 25
5.1.2 Recovery of missing blocks . 26
5.1.3 Maximizing sign vector strategy comparison 28
5.1.4 Streaming computation . 29

6 Evaluation 31
6.1 Cached Centroid Decomposition (cached-CD) . 31

6.1.1 Setup . 31
6.1.1.1 Data sets . 31
6.1.1.2 Environment . 31

3

CONTENTS 4

6.1.2 Streaming computation . 32
6.1.2.1 Scalability . 32

6.1.3 Recovery . 36
6.1.3.1 Scalability . 36

6.2 c-ReVival . 38
6.2.1 Recovery using CD . 38

6.2.1.1 Temperature data set . 38
6.2.1.2 Hydrology data set . 39

6.2.2 Maximizing sign vector strategies . 41

7 Conclusion and Future Work 43

List of Figures

2.1 Schematic diagram of CD . 11

4.1 Break-down cost of CD operations . 17
4.2 Maximizing sign vectors Hamming distance comparison 17
4.3 Schematic diagram of cached-CD . 19

5.1 Displaying batch time series . 25
5.2 Displaying streaming time series . 26
5.3 Recovery on synthetic data . 27
5.4 Recovery on real-world data . 28
5.5 Maximizing sign vector strategy comparison . 29
5.6 Stream decomposition run-time comparison . 30

6.1 Run-time of regular-CD vs. updating-CD vs. cached-CD with varying n 33
6.2 Sign switches of regular-CD vs. updating-CD vs. cached-CD with varying n 34
6.3 Run-time of cached-CD for varying n . 35
6.4 Run-time of regular-CD vs. updating-CD vs. cached-CD for varying m 35
6.5 Run-time of RecM vs. cached-RecM for varying n . 36
6.6 Iteration run-time and sign switches of RecM vs. cached-RecM 37
6.7 Number of RecM iterations for a varying n . 38
6.8 Recovery performed on the Temperature data set: case 1. 39
6.9 Recovery performed on the Temperature data set: case 2 39
6.10 Recovery performed on the Hydrology data set: case 1 40
6.11 Recovery performed on the Hydrology data set: case 2 41
6.12 Maximizing sign vector strategy comparison . 42

5

List of Tables

5.1 Description of real-world data sets . 25

6.1 Description of the real-world time series. 31
6.2 Description of machine . 32

6

List of Algorithms

1 CD(X) . 11
2 SSV(X) . 12

3 updating-CD(L0, R0, A) . 14

4 cached-CD(X) . 18
5 CSV(X, Z) . 20
6 streaming-CD(S) . 22
7 cached-RecM(X, Tm

j , ε) . 23

7

1
Introduction

Time series are sequences of coupled data points consisting of a time stamp and an associated value. Time
series usually contain sensory, transactional, or web data. Missing values can occur in time series due to
multiple reasons, such as temporary connectivity issues between a sensor and its data base, or machine
failure that could result in a measurement not being recorded or getting lost. Many studies have shown
that the a priori recovery of these missing values is beneficial in many data analysis applications, e.g.,
compression, prediction, similarity, etc [1–3]. In the case of discrete missing values, basic statistical
methods such as a linear interpolation might suffice to accurately recover the missing values. However,
when dealing with longer blocks of missing values, the application of basic statistical methods yields poor
recovery accuracy. In such cases, it is pivotal to benefit from the correlation to other time series. The
recovery becomes more challenging in the case of streams of time series.

The Centroid decomposition (CD) has been been applied to recover blocks of missing values in
correlated time series [4]. CD is able to accurately reconstruct the type, the shape and the amplitude of the
missing blocks by learning from the history of the time series that contains the missing blocks together
with the history of other correlated time series. At a formal level, the CD technique decomposes an input
matrix X into two separate matrices, i.e., the loading matrix L and the relevance matrix R, such that
X = L×RT . The naive application of CD for streams of time series requires to recompute from scratch
the new L and R each time new data arrives. Due to its quadratic run-time with the number of values per
time series, the application of CD is inefficient when dealing with long streams of time series.

1.1 Context of work and motivation
The data analysis on batches of historical data has been extensively studied in the literature [1–3]. Up
to a certain length of time series, the proposed algorithms are efficient. However, there are limitations
when applying an algorithm with non linear (e.g., quadratic) run-time complexity to large time series
with potentially millions of values or more. Additionally, due to the emergence of much more connected
technologies, such as the Internet of Things (IoT), we have faced a paradigm shift towards real-time data
analysis in recent years. This has caused a massive increase in the volume and velocity of data being
produced. A lot of this data comes as data streams [5]. The latter are nothing else than ever growing time
series that receive updates at a certain, mostly constant, interval. The analysis of data streams is similar to

8

CHAPTER 1. INTRODUCTION 9

that of time series, except that it happens in real-time and therefore is more expensive to perform [6, 7].
For example, the CD technique, previously described, is one of these data analysis techniques that are
inefficient when applied to streams of time series, mainly due to the fact that the existing solution to
compute CD is not incremental. In fact, the state-of-the-art solution recomputes the decomposition of the
entire stream of time series from scratch each time a new set of values is added, even though the impact of
the addition is extremely minor.

1.2 Contributions
The main contributions of this thesis are:

a) Cached-CD: We propose a novel and efficient technique called the cached Centroid Decomposition
(cached-CD) that reduces the run-time complexity, to compute CD for streams of time series, from
quadratic to linear. More specifically, cached-CD generally improves the computation efficiency in cases
where it is necessary to iteratively recompute the CD in between minor updates to the input matrix. This
new approach extends the regular CD by caching the so called maximizing sign vectors of CD(X0) (the
Centroid Decomposition of matrix X at time 0) and reuses them during the computation of CD(X1), after
the input matrix X has been altered slightly, e.g. when only selected values in the input matrix have
changed or a new row has been added to it.

The efficiency improvement of cached-CD speeds up both the computation of the CD for streams of
time series and the recovery of missing values in batches of time series. For the streaming use case, the
cached-CD reduces the run-time complexity from quadratic to linear with respect to the number of values
per time series. As an example, for a stream of three time series, where we already know the CD for
n− 1, the cached-CD computes the CD 2’500 times faster than the current state-of-the-art CD algorithm at
n = 50k (cf. Chapter 6). For the recovery use case, cached-CD speeds up the computation by a factor that
depends on the amount of separate necessary computations of CD for the recovery. For example, using
the cached-CD for the recovery on an input matrix consisting of four time series with 10k values each,
cached-CD based recovery achieves a run-time improvement by a factor of 10 (cf. Chapter 6).

b) Updating-CD: We implement the updating Centroid Decomposition (updating-CD), an approach of
on-line computing the CD of streams of time series and compare its performance against our proposed
cached-CD algorithm.

c) c-ReVival: We implement an online graphical tool called c-ReVival (Cached RecoVery of missing
Values). c-ReVival allows i) to visualize the recovery process of missing values in real-world data using
cached-CD, ii) to compare the obtained decomposition on a stream of time series using cached-CD against
the regular-CD and the updating-CD, and iii) to illustrate the main properties of the CD technique.

1.3 Outline
The structure of this thesis is as follows. Chapter 2 introduces the used notation and provides the
background to the thesis by covering the CD technique. Chapter 3 covers the updating-CD technique
and describes an implementation of the algorithm together with a running example. In Chapter 4, the
novel cached-CD technique is introduced together with possible implementations of algorithms for the
streaming and recovery use cases. Chapter 5 introduces the c-ReVival tool and describes the purpose
and functionality of its components. The performance of the cached-CD algorithms for both streaming
computation and recovery are evaluated in Chapter 6. Additionally, some observations made with the
c-ReVival tool are discussed. Chapter 7 concludes the thesis and highlights possible future work that could
be conducted on the topic of using the cached-CD for the on-line recovery of missing values in time series.

2
Background

This chapter serves as an introduction to the Centroid Decomposition. It covers the relevant background to
the techniques and algorithms on which we base our own propositions, implementations and improvements.

2.1 Notations
The following notations are used throughout the thesis. Variables in bold upper-case letters refer to
matrices, regular upper-case letters to vectors (possibly rows and columns of matrices), and lower-case
letters to individual elements of a vector or matrix. Double subscript indices denote rows and columns (in
that order) of a matrix, e.g., vector Xi∗ is the i-th row of matrix X and xij is the j-th element of the row
Xi∗. Single subscript indices are used to distinguish either different states of the variable based on the
current iteration/time, or to distinguish between multiple variables using the same denotation. E.g., X0

and X1 denote matrix X at time t = 0 and t = 1, respectively, and Z1, ..., Zm denote all m different sign
vectors used during the computation of CD(X). XT stands for the transpose of matrix X.

We consider an n × m input matrix X with n rows and m columns. A time series X∗i =
((t1, v1), . . . , (tn, vn)) is a set of n temporal values that are ordered with respect to their timestamps
tj (j ∈ {1, . . . , n}). When dealing with multiple time series, we assume the time series to be aligned,
i.e. having the same set of timestamps, and we omit the timestamps in time series altogether by writing
X∗i = (4,−1, 3, 2) instead of X∗i = ((0, 4), (1,−1), (2, 3), (3, 2)). The time series are considered
columns of the input matrix. Thus, vector X∗i is the column of X that contains all the values of i-th time
series, and vector Xj∗ is a row that contains the j-th value of each time series in X.

2.2 Centroid Decomposition (CD)

2.2.1 Definition
The Centroid Decomposition (CD)[8] is a matrix decomposition technique that decomposes a given input
matrix X into a loading matrix L and a relevance matrix R, such that X = L×RT .

10

CHAPTER 2. BACKGROUND 11

Algorithm 1 describes the pseudo code of the CD technique. The algorithm takes as input an n×m
matrix X and computes the n ×m loading matrix L and the m ×m relevance matrix R by iteratively
appending intermediate column vectors to L and R. For each of the m iterations i, the maximizing sign
vector Zi for the current state of X is computed. Zi ∈ {−1, 1}n is the sign vector that produces the
maximal centroid value, ‖XT × Zi‖, in iteration i.

Algorithm 1: CD(X)
Input :n×m matrix X
Output :n×m loading matrix L, m×m relevance matrix R

1 for i← 1 to m do
2 Zi ← MaximizingSignVector(X);
3 L∗i ← NextColumnL(X, Zi);
4 R∗i ← NextColumnR(X, Zi);
5 X← X− L∗i ×RT

∗i;
6 end
7 return L,R;

Figure 2.1 shows schematically the Centroid Decomposition of an input matrix X. Note how, for each
iteration i, a maximizing sign vector Zi, loading column vector L∗i and relevance column vector R∗i is
computed.

Figure 2.1: Schematic diagram of CD

2.2.2 Maximizing sign vector
A sign vector Z ∈ {−1, 1}n is a column vector that consists of only the values 1 and -1. For any given
matrix X with dimensions n×m, the maximizing sign vector Z is the vector Z ∈ {−1, 1}n for which
‖XT × Z‖ is maximized. A maximizing sign vector is computed for each iteration of the CD algorithm.
Thus, the efficiency of CD heavily depends on the computation of the maximizing sign vector. Strategies
to compute the maximizing sign vectors usually start by initializing some sign vector Z, and iteratively
flipping the sign of individual elements in Z until the maximizing sign vector is found (cf. Section 6.2.2).

CHAPTER 2. BACKGROUND 12

2.2.3 Scalable Sign Vector (SSV)
The SSV algorithm [9] is an efficient and greedy solution to compute the maximizing sign vector for a
given input matrix X. SSV has a linear space complexity and thus, outperforms existing techniques to
compute the maximizing sign vector such as the Quadratic Sign Vector (QSV) algorithm [8]. Algorithm 2
describes the pseudo code of SSV. It starts by initializing column vector ZT = [1, 1, . . . , 1] of length n,
after which it iteratively computes column vector V out of X and Z. Next, the signs of the values in the
vectors Z and V for each position j ∈ {0, 1, . . . , n} are compared. SSV greedily flips the sign of zpos (the
element at position pos in Z) from plus to minus, or vice-versa, such that |vpos · zpos| is maximal. Once Z
and V have pair-wise the same sign at all positions, the SSV terminates and returns Z, the maximizing
sign vector.

Algorithm 2: SSV(X)
Input :n×m matrix X
Output :maximizing sign vector Z (length n)

1 pos← 0;
2 repeat
3 if pos = 0 then
4 ZT ← [1, . . . , 1];
5 else
6 changeSign(zpos);
7 end
8 V ← computeV(Z,X);
9 pos← 0;

10 find pos such that sign(zpos) 6= sign(vpos) and |vpos · zpos| is maximized;
11 until pos = 0;
12 return Z;

Since we will introduce an another algorithm of finding maximizing sign vectors later, to avoid
confusion, we define regular-CD as the CD (Algorithm 1) that uses SSV on line 2 to find the maximizing
sign vectors.

2.3 Recovery of missing values
The Centroid Decomposition technique can be applied to recover missing values in time series data. To
achieve this, multiple time series need to first be aligned in respect to their time stamps. Usually, there
is exactly one time series with missing values (called the base time series), and several other, complete
time series (called reference time series). The time series are merged to a matrix, where each time series
represents a column. The RecM algorithm introduced by Khayati et al.[4] iteratively applies the CD
algorithm combined with dimensionality reduction to the input matrix to recover (blocks of) missing values
in the base time series through correlation.

The pseudo code of RecM is very similar to that seen in Algorithm 7 (cached-RecM), except for line 4,
where the regular-CD is used instead of cached-CD.

3
Updating Centroid Decomposition (updating-CD)

In this chapter, we describe a technique, called updating-CD, to compute the CD of an input matrix with
updated rows. This solution exploits the properties of the decomposition to avoid recomputing CD from
scratch each time new data arrives.

We slightly extend our notations. We denote the matrix containing the time series before appending
the new row of values (row vector A) as X0, and X1 after appending A. Subsequently, we denote CD(X0)
= L0 ×RT

0 and CD(X1) = L1 ×RT
1 .

3.1 Idea
Chu and Blevins introduce a rank-1 updating framework [10], that embeds a method for an updated
computation of the CD of the updated input matrix X1, given the row vector A of the update and CD(X0)
before the update. This approach is based on the fact that in CD, the loading matrix L is a stationary point,
i.e., CD(L) = L× IT (where I is the identity matrix). The authors show that computing CD(X1) can be
achieved by orthogonal rotations of the loading matrix L0 (part of CD(X0)) based on A. Namely, the
orthogonal rotations are used to construct an intermediate matrix S, from which L1 and R1 of the updated
matrix X1 are derived by, among other steps, computing the CD(S). The gain that the authors aim to
achieve is that S is very similar to L0 (a stationary point). They argue that it should theoretically require
less computations to compute CD(S) than CD(X1), even though S and X1 have the same dimensions.

3.2 Implementation
We implemented the updating-CD algorithm based on the approach introduced by Chu and Blevins. Its
pseudo code can be seen in Algorithm 3. The algorithm is part of the c-ReVival tool (see Section 5.1.4),
where we compare its performance in on-line computation to the cached-CD and the regular-CD.

The algorithm takes as parameters the CD (loading and relevance matrices) of X0, L0 and R0, together
with the row vector A that contains the row of values to appended to X0 (to form X1). The algorithm
terminates by outputting the CD (loading and relevance matrices) of X1, L1 and R1. The algorithm works
as follows: On lines 1 and 2, vector Q is built which is used to determine whether or not A is within the

13

CHAPTER 3. UPDATING CENTROID DECOMPOSITION (UPDATING-CD) 14

Algorithm 3: updating-CD(L0, R0, A)
Input :n×m matrix L0, m×m matrix R0; row vector A (m values to be added)
Output :(n+1)×m matrix L1, m×m matrix R1

1 N ← RT
0 A;

2 Q← A−RT
0N ;

3 if ||Q|| 6= 0 then
4 // A is not in rowspace of X0

5 Q← scalarDivision(Q, ||Q||);
6 S← append as column value 0 to L0;
7 U ← append as column value ||Q|| to NT ;
8 S← append as row vector U to S;
9 else

10 // A is within rowspace of X0

11 Q← 0;
12 S← append as row vector NT to L0;
13 end
14 LS , RS ← regular-CD(S);
15 L1 ← LS ;
16 V← append as column vector Q to R0;
17 R1 ← V×RS ;
18 return L1, R1;

rowspace of X0. The construction of matrix S and modification of vector Q depend on this (either on lines
5 to 8, or 11 and 12). After S has been constructed, the CD(S)=LS ×RS is computed. Finally, based on
LS , RS , R0 and A, the Centroid Decomposition of X1 (loading matrix L1 and relevance matrix R1) is
constructed (not computed!) and outputted.

3.3 Running example
Example 1. Consider a matrix X0 = {X∗1, X∗2, X∗3} consisting of three streaming time series at time
t = 0. There are four values in each time series: X∗1 = (1, 4,−3,−4), X∗2 = (2, 4,−4, 3) and
X∗3 = (2, 6,−3,−2). For X0, we happen to know the Centroid Decomposition (loading matrix L0 and
relevance matrix R0):

CD(


1 2 2
4 4 6
−3 −4 −3
−4 3 −2


︸ ︷︷ ︸

X0

) =


2.73 1.22 0.22
8.09 1.42 0.68
−5.41 −1.97 0.90
−2.79 4.61 0.00


︸ ︷︷ ︸

L0

×

 0.63 0.37 0.68
−0.49 0.87 −0.02
−0.60 −0.32 0.73


︸ ︷︷ ︸

R0
T

At this point, a value is added to each time series. Combined, these added values form a row vector

CHAPTER 3. UPDATING CENTROID DECOMPOSITION (UPDATING-CD) 15

A = [−1, 1,−3] that is appended to X0, forming X1.


1 2 2
4 4 6
−3 −4 −3
−4 3 −2


︸ ︷︷ ︸

X0

,
[
−1 1 −3

]︸ ︷︷ ︸
A

→


1 2 2
4 4 6
−3 −4 −3
−4 3 −2
−1 1 −3


︸ ︷︷ ︸

X1

We have all the required parameters (L0,R0, A) to execute updating-CD (Algorithm 3). A is within
the rowspace of X0, so the construction of Q and S (lines 11 and 12) gives the following:

Q =
[
0
]
,S =


2.73 1.22 0.22
8.09 1.42 0.68
−5.41 −1.97 0.90
−2.79 4.61 0.00
−2.31 1.42 −1.90


Next, (regular) CD(S) is computed:

CD(


2.73 1.22 0.22
8.09 1.42 0.68
−5.41 −1.97 0.90
−2.79 4.61 0.00
−2.31 1.42 −1.90


︸ ︷︷ ︸

S

) =


−2.65 1.36 0.32
−8.01 1.90 0.45
5.17 −2.59 0.76
3.07 4.22 1.33
2.56 1.63 −1.33


︸ ︷︷ ︸

LS

×

−0.99 0.09 −0.07
0.07 0.97 0.25
−0.09 −0.24 0.97


︸ ︷︷ ︸

RS
T

Based on the intermediary constructions and computations, L1 and R1 can be constructed.

updatingCD(L0,R0, A) =


−2.65 1.36 0.32
−8.01 1.90 0.45
5.17 −2.59 0.76
3.07 4.22 1.33
2.56 1.63 −1.33


︸ ︷︷ ︸

L1

,

−0.61 −0.27 −0.75
−0.28 0.95 −0.12
−0.75 −0.14 0.65


︸ ︷︷ ︸

R1

= CD(X1)

The Centroid Decomposition of X1 is successfully obtained.
1 2 2
4 4 6
−3 −4 −3
−4 3 −2
−1 1 −3


︸ ︷︷ ︸

X1

=


−2.65 1.36 0.32
−8.01 1.90 0.45
5.17 −2.59 0.76
3.07 4.22 1.33
2.56 1.63 −1.33


︸ ︷︷ ︸

L1

×

−0.61 −0.28 −0.75
−0.27 0.95 −0.14
−0.75 −0.12 0.65


︸ ︷︷ ︸

R1
T

4
Cached Centroid Decomposition (cached-CD)

This chapter introduces cached-CD, a novel approach of caching the maximizing sign vectors between two
separate executions of the CD algorithm to improve its performance. When applied to streams of time
series, cached-CD reduces the run-time complexity from quadratic to linear with the length of time series
that compose the input matrix (cf. Chapter 6).

4.1 Idea
The idea behind cached-CD is based on two properties of the regular-CD computation.

1. The computation of the maximizing sign vectors in regular-CD is time intensive. Figure 4.1 describes
the break-down time cost of the CD operations during their execution. In fact, we take a 100×4 input
matrix populated with random values and compute its CD with an implementation of regular-CD (cf.
Algorithm 1), which uses SSV (cf. Algorithm 2) to find the 4 maximizing sign vectors. The results
of Figure 4.1 show that the most processing and time intensive part of computing the CD of an input
matrix is finding its maximizing sign vectors, i.e., 98% of the time execution.

2. Input matrices that differ only on few rows (e.g., when adding a row) have very similar maximizing
sign vectors. To illustrate this observation, we take a n×m input matrix X, where initially n = 1
and m = 4, consisting of random numbers (positive and negative, in the range [-50, 50]), compute
the CD(X) and log the maximizing sign vectors (4 column vectors with n values each). Then, we
incrementally increase n by adding a row (4 random numbers in the range [-50, 50]) to X, recompute
the CD(X) and log the maximizing sign vectors. For each n, we measure the dissimilarity between
its 4 maximizing sign vectors with the following vectors:

• 4 ’neutral’ sign vectors of length n consisting just of 1s (as the sign vectors would be initialized
in the SSV algorithm)

• the 4 corresponding maximizing sign vectors obtained in the computation of CD(X) for n− 1

• 4 random sign vectors of length n consisting of a random distribution of 1s and -1s

16

CHAPTER 4. CACHED CENTROID DECOMPOSITION (CACHED-CD) 17

Figure 4.1: Break-down cost of CD operations

Note that we append the value 1 to the corresponding maximizing sign vectors of the previous
computation, as they are only of length n− 1 and we are comparing them to sign vectors of length
n. In Figure 4.2, we use the Hamming distance [11], as dissimilarity function, to count the number
of pairwise elements that are not equal (either 1 instead of -1, or vice-versa) between two sign
vectors. For the sake of simplicity, we show only the measurements for n = {10, 20, . . . , 100}.
The results show that the ’neutral’ sign vectors perform fairly equally to the random sign vectors,
with Hamming distance just below (n×m)/2. On the other hand, the Hamming distance between
the maximizing sign vectors for the computation of CD(X) and those of the previous computation
of CD is extremely low and does not grow proportionally to n. In fact, the distance even remains
constant.

Figure 4.2: Maximizing sign vectors Hamming distance comparison

Our cached-CD approach exploits these two properties. More specifically, when computing the m

CHAPTER 4. CACHED CENTROID DECOMPOSITION (CACHED-CD) 18

maximizing sign vectors of the current input matrix, cached-CD uses the m cached maximizing sign
vectors from the previous CD computation as the initial sign vectors. At any time, there are exactly m
maximizing sign vectors from the last computation of the cached-CD stored in the cache. Thus, the memory
usage of the cached-CD is very low (cf. Section 4.2.1). This solution replaces the naive initialization
strategy of the SSV algorithm that uses the default sign vector of all 1’s.

4.2 Caching

4.2.1 Caching algorithm
Algorithm 4 describes the pseudo code of cached-CD. The sign vector, used to initialize the search for
the maximizing sign vector, is read from the cache (line 2), passed on to the algorithm that finds the
maximizing sign vector (line 3), and written back to the cache after it has been updated (line 4). Note that
cached-CD reads and writes to the same cache position. For this reason, a cache overflow could occur only
if the maximizing sign vectors of one computation of the CD would be too large in size to be stored in the
cache simultaneously.

The combined number of elements of all the sign vectors produced during the computation of cached-
CD(X) is equal to the amount of elements in the input matrix X. For example, for dim(X) = n ×m,
CD(X) needs exactly m sign vectors with n elements each. However, unlike the elements in X (which
could theoretically be any real number), the elements of the sign vectors are by definition either 1 or
-1, which essentially makes the sign vectors binary arrays. Through optimisation, it would therefore be
possible to reduce the memory-usage of the cached-CD to n ·m bits. Assuming the input matrix X consists
of values of 8 byte (64 bit) double-precision floating-point format, then the cache size required to store the
maximizing sign vectors is only 1/64 of the cache size that would be required to store the input matrix X.

Algorithm 4: cached-CD(X)
Input :n×m matrix X
Output :n×m matrix L, m×m matrix R

1 for i← 1 to m do
2 Zi ← read from cache position i;
3 Zi ← CSV(X, Zi);
4 store in cache position i← Zi;
5 L∗i ← NextColumnL(X, Zi);
6 R∗i ← NextColumnR(X, Zi);
7 X← X− (L∗i ×RT

∗i);
8 end
9 return L,R;

In each iteration, the cached-CD algorithm finds the maximizing sign vector based not only on the
current state of X (as would the regular-CD using SSV), but also based on the initial sign vector that was
read from the cache (lines 2 and 3).

Figure 4.3 shows a schematic diagram of cached-CD being applied before and after a row is added
to the input matrix X. Note how the sign vectors Zi are read from and written back to the same position
in the cache for each execution of cached-CD. Note also how the loading columns L∗i, maximizing sign
vector Zi, and the loading matrix L each grow by a row, just as the input matrix X.

In the next section, we define the Custom Sign Vector (CSV) algorithm, an extension of the SSV
that takes a custom sign vector (e.g. a sign vector loaded from cache) as a parameter and uses it as the
initializing sign vector before iteratively changing signs of elements to find the maximizing sign vector.

CHAPTER 4. CACHED CENTROID DECOMPOSITION (CACHED-CD) 19

Figure 4.3: Schematic diagram of cached-CD

4.2.2 Custom Sign Vector (CSV)
Algorithm 5 describes the pseudo of the the Custom Sign Vector (CSV) algorithm, a modification of
the SSV algorithm. Instead of initializing the first sign vector entirely with 1s (as the SSV would), the
CSV takes a custom initial sign vector as an input parameter. CSV takes into consideration the fact that
the length of the custom initial sign vector might not match the dimensions of the input matrix X. This
is because the input matrix might have grown since the last computation of the cached-CD and require
larger sign vectors than those cached (the length n of a sign vector is identical to amount of rows n in the
input matrix). CSV appends additional 1s at the end of the sign vector until the length is correct. This
characteristic is especially important when dealing with streaming time series, as these grow in between
two computations of the cached-CD.

4.2.3 Running example
Example 2. Assume we have a stream of 3 time series with currently 4 elements each. Thus, at time t = 0,
we have m = 3 and n = 4.

X0 =


1 2 2
4 4 6
−3 −4 −3
5 4 −2


We apply the regular-CD to X0 and we get the 3 following maximizing sign vectors:

CHAPTER 4. CACHED CENTROID DECOMPOSITION (CACHED-CD) 20

Algorithm 5: CSV(X, Z)
Input :n×m matrix X, initial sign vector Z
Output :maximizing sign vector Z (length n)

1 while length(Z) > n do
2 remove last element of Z;
3 end
4 while length(Z) < n do
5 append as row value 1 to Z;
6 end
7 pos← 0;
8 repeat
9 if pos 6= 0 then

10 changeSign(zpos);
11 end
12 V ←computeV(Z);
13 find pos such that sign(zpos) 6= sign(vpos) and |vpos · zpos| is maximal;
14 until pos = 0;
15 return ZT ;

Z1 =


1
1
−1
1

 , Z2 =


−1
−1
1
1

 , Z3 =


−1
1
1
−1


At time t = 1, we obtain new values in our stream: (1, 2, -3). The added values form a new row in the

input matrix X1.

X1 =


1 2 2
4 4 6
−3 −4 −3
5 4 −2
1 2 −3


We compute now the CD of X1 by taking advantage of the fact that we know Z1, Z2 and Z3 of CD(X0).

The cached-CD takes the (cached) maximizing sign vectors Z1, Z2, and Z3, respectively, as the initial sign
vectors in the CSV algorithm (instead of [1, 1, . . . , 1], as we would in the regular-CD with SSV). Because
the input matrix has one row more than the cached maximizing sign vectors, the CSV adds a 1 at the end
before commencing with switching signs to finally obtain the maximizing sign vectors for t = 1.

• Z1 computation through CSV during cached-CD(X1):

– Initialization: append (1) to the sign vector

CHAPTER 4. CACHED CENTROID DECOMPOSITION (CACHED-CD) 21

– → maximizing sign vector found


1
1
−1
1

→


1
1
−1
1
1

 = Z1

• Z2 computation through CSV during cached-CD(X1):

– Initialization: append (1) to the sign vector

– → maximizing sign vector found


−1
−1
1
1

→

−1
−1
1
1
1

 = Z2

• Z3 computation through CSV during cached-CD(X1):

– Initialization: append (1) to the sign vector

– Iteration 1: switch sign at position 2

– Iteration 2: switch sign at position 1

– Iteration 3: switch sign at position 3

– → maximizing sign vector found


−1
1
1
−1

→

−1
1
1
−1
1

→

−1
-1
1
−1
1

→


1
−1
1
−1
1

→


1
−1
-1
−1
1

 = Z3

In total, to find the 3 maximizing sign vectors needed for the computation of CD(X1), there were
exactly 3 sign switches necessary (after initialization) in the 3 instances where the CSV algorithm was
executed. The application of the regular-CD (where SSV uses the standard initial sign vector of all 1s)
would yield a combined total of 6 necessary sign switches.

4.2.4 Complexity
Cached-CD takes as input n ×m matrix. In this thesis, we specifically deal with streams of (growing)
time series. Thus, the number of time series, m, is therefore usually fixed, while the number of values per
time series, n, is incessantly increasing. For this reason, the complexity is expressed with respect to n
(unless stated otherwise).

a) run-time complexity: when using SSV to compute the maximizing sign vectors, the regular-CD
has a quadratic run-time complexity with respect to n [9]. If the maximizing sign vectors of the previous
computation of the CD of a very similar input matrix are cached, then the CSV is a lot faster and requires a
lot less iterations than the SSV does. In such a case the run-time of the cached-CD is linear with respect to

CHAPTER 4. CACHED CENTROID DECOMPOSITION (CACHED-CD) 22

n (cf. Section 6.1). We conclude the that run-time of the cached-CD depends not only on n, but also on how
similar the current input matrix X1 is to the previous one (X0, for which we know the maximizing sign
vectors). It was not within the scope of this thesis to determine how ’close’ these input matrices must be to
guarantee the run-time complexity of cached-CD to be linear. However, our experiments in Section 6.1
show, that either adding a single row to the input matrix (when using cached-CD to continuously compute
the CD of a stream of time series) or updating just a few selected values in the input matrix (when using
cached-CD for CD based recovery of missing values) both result in linear run-time complexity. A formal
proof has yet to follow.

a) space complexity: the memory complexity of the cached-CD is simple to compute. As already
discussed in Section 4.2.1, the combined amount of elements of the maximizing sign vectors that need to
be kept in the memory between two computations of the cached-CD is equal to the amount of elements
in the input matrix X. Since the amount of values in X is n ·m, and we assume m to be constant, the
amount of values stored in the cache at any time is exactly linear to n. Thus, we can conclude that the
cached-CD has linear space complexity in respect to n.

4.3 Streaming algorithm
We define S as a stream object that contains m streams of time series. The time series are syn-
chronized and they are updated with a new value simultaneously. The time series within S are
aligned like a grid, essentially creating an n × m matrix, where n increases every time S receives
an update. The function getMatrix(S) returns the n × m matrix of all time series and values cur-
rently in S. S triggers an event each time it is updated, i.e., we can ’listen’ for updates of S
in an algorithm. Algorithm 6 describes the pseudo code of the streaming procedure that takes a
stream object S as input and recomputes and prints the current CD each time S receives an update.

Algorithm 6: streaming-CD(S)
Input :Streaming object S

1 while true do
2 waitForUpdate(S);
3 X← getMatrix(S);
4 L,R← cached-CD(X);
5 print(L,R);
6 end

4.4 Cached-CD based recovery algorithm
The utilization of cached-CD for CD based recovery of missing values in batches of time series is very
straightforward. We adapt the RecM algorithm introduced by Khayati et al.[4] and construct cached-RecM

CHAPTER 4. CACHED CENTROID DECOMPOSITION (CACHED-CD) 23

(Algorithm 7).

Algorithm 7: cached-RecM(X, Tm
j , ε)

Input :n×m matrix X; set of missing time stamps Tm
j in X,j ; termination threshold ε

Output :n×m matrix X̃ with recovered values
1 linearly interpolate/extrapolate all missing values in X
2 repeat
3 X̃← X
4 L,R← cached-CD(X);
5 Lk ← truncate L by factor k;
6 Xk ← Lk ×RT ;
7 foreach t ∈ Tm

j do
8 x̃tj ← wtj ;
9 // xtj element of X; wtj element of Xk

10 end
11 until ‖X− X̃‖F < ε;
12 return X̃;

The algorithm starts by initializing the missing values of the input matrix X using either linear
interpolation or extrapolation, depending on the position of the missing values in X. Next, the cached-CD
of the current state of X is computed, to receive L and R. Lk is the truncation of L, where the values
in the k last columns are replaced by 0s. The truncation of X, Xk = Lk × RT is computed and the
input matrix X is updated with the values of Xk in exactly the positions of the initially missing values.
Cached-RecM iterates until the calculated Frobenius distance [12] between X before and after the update
computed by an iteration of RecM falls below a defined threshold value ε.

An evaluation of cached-RecM (”cached-CD based recovery”) in comparison to RecM (”regular-CD
based recovery”) is conducted in Section 6.1.3.

5
c-ReVival

In the scope of this thesis we have implemented a graphical tool called c-ReVival (Cached REcoVery of
mIssing VALues). This tool allows to:

• Visualize the properties of CD based recovery on synthetic time series.

• Compare different strategies for finding the maximizing sign vector.

• Display real-world data sets with multiple time series:

– Browse aligned and non-aligned time series with different granularities.

– Browse the missing blocks of values throughout the entire history of data.

– Work with raw data as well as normalized data (Min-Max, Z-Score).

– Display globally and partially the similarities between time series.

• Display the result of the cached-CD based recovery on real-world batch times series.

• Compare the scalability of the cached-CD compared to the updating-CD and the regular-CD.

At a technical level, c-ReVival has a server-client architecture, and it is accessed via a web browser 1.
The server is connected to a PostgreSQL database, where all the time series and meta data are stored.
Messages between client and server are exchanged using HTTP. The code for the server-side logic is
written and executed in PHP; the code for the client-side logic is written and executed in JavaScript directly
in the web browser.

5.1 Components
c-ReVival consists of six individual components that each serve a concrete purpose.

1c-ReVival tool can be accessed on a server of the eXascale Infolab: http://revival.exascale.info/

24

http://revival.exascale.info/

CHAPTER 5. C-REVIVAL 25

5.1.1 Displaying data sets
Two components are dedicated to displaying time series data. The first component 2 (see Figure 5.1) allows
the user to explore entire real-world data sets, consisting of batch time series (TS). Currently, the contains
two real-world data sets:

Table 5.1: Description of real-world data sets

Name Source Description # of TS # of values per TS
Hydrology FOEN 3 The TS represent water level data of

rivers in 7 places. The unit of the
data is meters. The data is aggre-
gated to 4 values per day from 1974
to 2009.

7 52’589

Temperature MeteoSwiss 4 The TS represent temperature data
of 6 cities. The unit of the data is
degrees Celsius. The data is aggre-
gated to 4 values per day from 1990
to 2015.

6 37’984

Figure 5.1: Displaying batch time series

2http://revival.exascale.info/display/datasets.php
3Federal Office for the Environment: http://www.hydrodaten.admin.ch/en
4Federal Office of Meteorology and Climatology: https://gate.meteoswiss.ch/idaweb/more.do

http://revival.exascale.info/display/datasets.php
http://www.hydrodaten.admin.ch/en
https://gate.meteoswiss.ch/idaweb/more.do

CHAPTER 5. C-REVIVAL 26

The available data sets together with some meta data are listed in the list view of the tool. When
clicking on one of the data sets in the list, a graph chart of the data set appears. Each graph represents an
individual time series, and can be hidden and made visible by clicking on its label above the chart. The
zoom level can either be selected by clicking on one of the corresponding buttons in the top left corner, or
by selecting a time range directly within the chart. Below the chart, there is a range selector to navigate
through the entire time range of the data. In the top right corner, the data representation can be chosen. By
default, the data in the chart is z-score normalized, but it is also possible to use Min-Max normalization or
to show the raw data values.

The second component 5 (see Figure 5.2) visualizes an example of streaming time series data. There
are three time series that receive updates at a constant rate.

Figure 5.2: Displaying streaming time series

5.1.2 Recovery of missing blocks
The main feature of c-ReVival is to visualize the cached-CD based recovery of missing blocks. One
component 6 (see Figure 5.3), illustrates the important properties of the recovery algorithm cached-RecM
(cf. Algorithm 7) on synthetic data. The current state of the input matrix X is illustrated both as a graph
chart (left-hand side) and printed in absolute values (right-hand side). The development of the Frobenius
distance between X at the beginning and at the end of each separate computation of the CD is shown in
the chart on the bottom of the page. The red line in that chart marks the chosen threshold value ε. The
recovery process terminates after the Frobenius distance drops below ε. Additionally, further charts that
display characteristics of each individual iteration can be made visible below the aforementioned charts.
Namely, there is an additional chart that shows the progress of the CSV algorithm finding each of the four
the maximizing sign vectors required per computation of the CD.

5http://revival.exascale.info/display/datastream.php
6http://revival.exascale.info/recovery/static.php

http://revival.exascale.info/display/datastream.php
http://revival.exascale.info/recovery/static.php

CHAPTER 5. C-REVIVAL 27

Figure 5.3: Recovery on synthetic data

Figure 5.4 shows the component 7 that allows the user to perform cached-CD based recovery on the
large real-world data sets also used in the display component (cf. Section 5.1.1). Additionally, there are
modified versions of some of the data sets, where extra values have been removed in order to have more
and especially larger blocks of missing values. When clicking on a data set from the list, it gets displayed
as a chart with the same controls as in the display component. In addition, there is a panel on the right-hand
side to set the parameters for the recovery process. The base time series is the time series for which the
missing values are to be retrieved. Any of the time series of the data set can be selected. The reference
time series are the time series to be used for the retrieval of the missing values of the base time series.
If the reference series have missing values themselves, these values are linearly interpolated before the
actual retrieval takes place. There are two modes for selecting the reference time series. The manual mode
allows the user to manually select the references time series from a multi-select dropdown menu. The
globally correlated mode allows the user to choose the number of reference time series to use, after which
the system selects those time series with the highest correlation to the base time series.

The time range, for which to recover the missing values, can be set to predefined values of either one
week, one month, one year, or to a manual duration. As a starting point for the recovery, automatically the
time of the left edge of the chart is used. If manual duration was selected, the recovery will cover the entire
currently visible time range of the chart. The threshold value epsilon ε can also be adjusted. The selection
of ε has great impact on the duration of the recovery, since the smaller epsilon, the more iterations of the
recovery algorithm are necessary.

7http://revival.exascale.info/recovery/datasets.php

http://revival.exascale.info/recovery/datasets.php

CHAPTER 5. C-REVIVAL 28

Figure 5.4: Recovery on real-world data

5.1.3 Maximizing sign vector strategy comparison
This rather experimental component 8 (see Figure 5.5) visualizes the comparison of four (theoretical)
strategies for finding the maximizing sign vector given an input matrix. It was implemented to get a better
understanding of i) the order in which the SSV algorithm (cf. Section 2.2.3) switches signs, and ii) if
there are any alternative strategies to or variations of SSV that could speed up the computation of the
maximizing sign vector. The three considered strategies are:

• DSV: The “double SSV” is identical to the SSV, except that it switches the sign of two elements
(instead of one) of the sign vector Z at each iteration.

• TSV: The “triple SSV” is identical to the SSV, except that it switches the sign of three elements
(instead of one) of the sign vector Z at each iteration.

• PSV: The “positive SSV” is identical to SSV, except that it switches the sign of an element of the
current sign vector Z if its corresponding element in the weight vector V has the same sign (versus
the opposite sign, as in the regular SSV).

8http://revival.exascale.info/cd/signvectors.php

http://revival.exascale.info/cd/signvectors.php

CHAPTER 5. C-REVIVAL 29

Figure 5.5: Maximizing sign vector strategy comparison

The comparison consists of four charts per example which are iteratively updated after the correspond-
ing play button has been clicked. The chart on the very left shows for each strategy the sign vectors
(represented vertically; blue stands for value 1 and red for value -1) and the order in which their signs
are switched. The most right sign vector shows the maximizing sign vector (computed by brute-force
approach). The chart in the middle shows a graph that tracks for each strategy and each algorithm the
product |ZT × V |. The red line shows the value of the maximizing sign vector. If a strategy terminates
correctly, its last |ZT × V | will be on this line. The two bar charts on the right show the current count of
a) iterations (top) and b) sign switches (bottom) per strategy. On the far right the input matrix X of the
example is printed.

5.1.4 Streaming computation
The last component 9 (see Figure 5.6) compares the run-time of three approaches for computing the CD
for a stream of time-series. For n = {1, 2, . . .}, the run-time of each algorithm to compute CD(Xn) is
measured, given the fact that CD(Xn−1) is already computed. Xn is Xn−1 plus the appended row vector
An. The three implemented approaches are:

• The regular-CD, that simply computes CD(Xn) from scratch each time.

• The updated-CD, that uses the previously computed loading and relevance matrices, Ln−1 and
Rn−1, of CD(Xn−1), in combination with row vector An to construct an intermediate matrix S,
compute its (regular) CD(S), and construct CD(Xn).

• The cached-CD, that re-uses from cache the maximizing sign vectors obtained during CD(Xn−1) to
speed up the computation of CD(Xn).

9http://revival.exascale.info/cd/streaming.php

http://revival.exascale.info/cd/streaming.php

CHAPTER 5. C-REVIVAL 30

The values of the streaming time series are taken from the Hydrology data set that was introduced in
Section 5.1.1. The computation of the CD using each of the three algorithms can be started by clicking the
play button. Initially, the input matrix X has the dimensions m = 3 and n = 8. n grows as the rows are
added to X, m is constant. The chart shows the run-time (y-axis) for each algorithm to compute the CD
after each addition of a new row (x-axis). Underneath the chart, a collapsed panel is added for each row
that was added. It contains the details of the CD computation for each algorithm.

Figure 5.6: Stream decomposition run-time comparison

6
Evaluation

In this chapter, we evaluate the performance of our proposed cached-CD approach. More specifically, we
compare i) the decomposition scalability for streams of time series of our cached-CD solution against the
updating-CD and the regular-CD, and ii) the efficiency of recovery of missing values using cached-CD
against using regular-CD. Additionally, we qualitatively evaluate two components of the c-ReVival tool: i)
the comparison of different sign vector strategies, and ii) the accuracy of CD based recovery on real-world
data sets.

6.1 Cached Centroid Decomposition (cached-CD)

6.1.1 Setup
6.1.1.1 Data sets

For all experiments, we used a subset of the real-world data sets featured in c-ReVival (cf. Section 5.1.1).
Table 6.1 describes the data sets we have used for the experiments.

Table 6.1: Description of the real-world time series.

ID Source Base TS Reference TS values per TS
Hyd1 Hydrology data set Appenzell Jonschwil, Wiler, Halden 52’589
Hyd2 Hydrology data set Appenzell Liestal, Moutier, Rheinhalle 52’589

Temp1 Temperature data set Bern Luzern, Geneve, Chur 37’984
Temp2 Temperature data set Bern Chur, Lugano, St.Gallen 37’984

6.1.1.2 Environment

We use an Apache2 web server hosted on an Ubuntu machine for the computations. All algorithms
are implemented in PHP, and are the same as those used in the c-ReVival tool. Table 6.2 shows the

31

CHAPTER 6. EVALUATION 32

specifications of the server used for the experiments. The data sets are stored and accessed on the same
server in a PostgreSQL database.

Table 6.2: Description of machine

Operating System Environment Processor RAM
Linux Ubuntu Apache2 quad-core at 3.40 GHz 8 GB at 1600 MHz

6.1.2 Streaming computation
6.1.2.1 Scalability

In this first set of experiments, we measure the scalability of the three different approaches of computing
the CD for streams of time series, i.e., regular-CD, updating-CD and cached-CD.

For each of the previously defined test data sets, we build a matrix X, consisting of all reference
time series. For several selected values of n, we compute first the CD of Xn−1. Then, we compute
CD(Xn) with all three approaches independently, by using cached values of the previous computation.
More specifically, we use the maximizing sign vectors of CD(Xn−1) for cached-CD(Xn), and the loading
and relevance matrices(Ln−1 and Rn−1) of CD(Xn−1) for updating-CD(Xn). For each approach, we
measure exactly the run-time for computing CD(Xn), and count the number of sign switches necessary to
find the maximizing sign vectors.

CHAPTER 6. EVALUATION 33

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 0 5 10 15 20 25 30 35 40 45 50

ru
n

-t
im

e
 (

s
)

[1
0

]

length of TS [k]

regular-CD
cached-CD

updating-CD

(a) Run-time for Hyd1 data set

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 0 5 10 15 20 25 30 35 40 45 50

ru
n

-t
im

e
 (

s
)

[1
0

]

length of TS [k]

regular-CD
cached-CD

updating-CD

(b) Run-time for Hyd2 data set

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 0 5 10 15 20 25 30 35

ru
n

-t
im

e
 (

s
)

[1
0

]

length of TS [k]

regular-CD
cached-CD

updating-CD

(c) Run-time for Temp1 data set

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 0 5 10 15 20 25 30 35

ru
n

-t
im

e
 (

s
)

[1
0

]

length of TS [k]

regular-CD
cached-CD

updating-CD

(d) Run-time for Temp2 data set

Figure 6.1: Run-time of regular-CD vs. updating-CD vs. cached-CD with varying n

In the experiment of Figure 6.1, we measure the run-time varying n. The results of this experiment show
that, for each of the data sets, the cached-CD algorithm scales extremely well compared to updating-CD
and the regular-CD. The updating-CD and the regular-CD are not scalable, as they both have a nearly equal
quadratic run-time with respect to n. For instance, for n = 10k in the Hyd1 data set, the cached-CD’s
run-time is 834 times faster than that of regular-CD (0.32s vs. 266.42s) and 871 times faster than that of
updating-CD (0.32s vs. 278.06s). These factors increase as n grows. For n = 50k, cached-CD is already
2586 times faster than regular-CD (2.09s vs. 5408.57s) and 2603 times faster than updating-CD (2.09s vs.
5443.29s). Cached-CD is essentially reducing the run-time from hours to seconds.

CHAPTER 6. EVALUATION 34

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35 40 45 50#
 o

f
s
ig

n
 v

e
c
to

r
e

le
m

e
n

t
s
w

it
c
h

e
s
 +

 1

length of TS [k]

regular-CD
cached-CD

updating-CD

(a) # of sign vector element switches for Hyd1 data set

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35 40 45 50#
 o

f
s
ig

n
 v

e
c
to

r
e

le
m

e
n

t
s
w

it
c
h

e
s
 +

 1

length of TS [k]

regular-CD
cached-CD

updating-CD

(b) # of sign vector element switches for Hyd2 data set

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35#
 o

f
s
ig

n
 v

e
c
to

r
e

le
m

e
n

t
s
w

it
c
h

e
s
 +

 1

length of TS [k]

regular-CD
cached-CD

updating-CD

(c) # of sign vector element switches for Temp1 data set

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35#
 o

f
s
ig

n
 v

e
c
to

r
e

le
m

e
n

t
s
w

it
c
h

e
s
 +

 1

length of TS [k]

regular-CD
cached-CD

updating-CD

(d) # of sign vector element switches for Temp2 data set

Figure 6.2: Sign switches of regular-CD vs. updating-CD vs. cached-CD with varying n

In the experiment of Figure 6.2 we measure the number of sign switches in the sign vectors by varying
the value of n. Note the log scale in the y-axis. The results of this experiment confirm the assumption,
that the scalability of cached-CD is achieved thanks to a reduced number of sign vector element switches
needed in comparison to regular-CD and updating-CD. For the latter two, the number of sign vector
switches grows linearly with n, while for the cached-CD it remains constant. We can conclude from
this experiment, that the caching approach of the cached-CD (and, thus, by using CSV instead of SSV)
does achieve a significant improvement over the regular-CD. The SSV algorithm is clearly the bottleneck
regarding run-time of the regular-CD, as it grows quadratically to n.

The high run-time of the updating-CD technique is expected. In fact, while the updating-CD is an
incremental approach for the computation of CD, it still ends up having to use regular-CD to compute
CD(S) (line 12 of Algorithm 3). Because S has identical dimensions as X, the computations of CD(S)
and CD(X) will yield a very similar run-time. The regular-CD is even a little faster than the updating-CD,
as the updating-CD has the additional overhead of computing S first. For the updating-CD to be more
efficient, an alternative decomposition approach for computing CD(S) would need to be found. This
extension would need to take advantage of the fact that S is very similar to a loading matrix L, which, as
we pointed out (cf. Section3.1), is also a stationary point.

In the experiment of Figure 6.3, we evaluate the scalability of the cached-CD for larger n. We discard
the regular-CD and the updated-CD from this experiment due to their high execution time (up to several
hours). Since the time series of our test data sets are limited in length, we concatenate the time series

CHAPTER 6. EVALUATION 35

to form two longer time series. Starting at n = 1, we iteratively increase n and compute for each n
cached-CD(Xn). The results confirm that the run-time of cached-CD is linear with the length of the times
series (n).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

ru
n
-t

im
e
 (

s
)

length of TS [k]

cached-CD

Figure 6.3: Run-time of cached-CD for varying n

So far, we have focused on evaluating the performance of regular-CD, updating-CD and cached-CD
with respect to the length of time series (n). To verify that the improvements of cached-CD in terms of
run-time complexity with n do not sacrifice its scalability with the amount of input time series (m), we
conduct a further experiment. In Figure 6.4, we evaluate the scalability of cached-CD, regular-CD and
updating CD by fixing n = 1k but varying m. For this experiment, we use all the time series from our test
data sets combined. We start with m = 2 time series in the input matrix and measure the run-time of the
computation of CD with all three approaches, just as in the previous experiment. We iteratively increase
m by adding a time series to the input matrix and re-run the experiment. The results of this experiment
show that cached-CD does not compromise on scalability with m: It scales just as well as regular-CD and
updating-CD.

 0.001

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12

ru
n
-t

im
e
 (

s
)

of input time series

regular-CD
cached-CD

updating-CD

Figure 6.4: Run-time of regular-CD vs. updating-CD vs. cached-CD for varying m

CHAPTER 6. EVALUATION 36

6.1.3 Recovery
6.1.3.1 Scalability

In the second set of experiments, we compare the impact of the chosen CD computation technique (regular-
CD vs. cached-CD) on the recovery run-time for various length n of input time series. RecM is the
recovery algorithm that uses regular-CD, and cached-RecM is the recovery algorithm that uses cached-CD.
We set the threshold to ε = 0.01 and perform the same experiment on each of our four test data sets.

 0.1

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9 10

ru
n

-t
im

e
 (

s
)

length of TS [k]

RecM (regular-CD)
cached-RecM (cached-CD)

(a) Hyd1 data set (base TS: Appenzell)

 0.1

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9 10

ru
n

-t
im

e
 (

s
)

length of TS [k]

RecM (regular-CD)
cached-RecM (cached-CD)

(b) Hyd2 data set (base TS: Appenzell)

 0.1

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9 10

ru
n

-t
im

e
 (

s
)

length of TS [k]

RecM (regular-CD)
cached-RecM (cached-CD)

(c) Temp1 data set (base TS: Bern)

 0.1

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9 10

ru
n

-t
im

e
 (

s
)

length of TS [k]

RecM (regular-CD)
cached-RecM (cached-CD)

(d) Temp2 data set (base TS: Bern)

Figure 6.5: Run-time of RecM vs. cached-RecM for varying n

The results in Figure 6.5 show that the cached-CD based recovery (cached-RecM) is faster than the
regular-CD based recovery (RecM) by quite a multiple for all compared measurements. For example,
at n = 10k, cached-RecM is more than 10 times faster than RecM for all our tested data sets (Hyd1:
669s vs. 7028s; Hyd2: 558s vs. 5981s; Temp1: 788s vs. 8238s; Temp2: 788s vs. 8263s). The run-time
complexity for both algorithms is quadratic to n. The equal run-time complexity is due to the fact that for
the first computation of CD (remember, RecM/cached-RecM make multiple computations of CD before
they terminate), RecM and cached-RecM both start the recovery process with no maximizing sign vectors
in cache. This makes the cached-CD equivalent to regular-CD in this first recovery iteration, meaning also
that all sign vectors are initialized with 1s within the CSV algorithm in cached-CD. Only for the second
and all subsequent recovery iterations of cached-RecM, the caching effect can be leveraged, yielding linear
run-time complexity for all the cached-CD computations after the first one. However, the overall run-time

CHAPTER 6. EVALUATION 37

complexity remains quadratic for both competitors.
In the experiment of Figure 6.6 we show the run-time and the needed sign vector element switches of

each computation of CD made during cached-RecM (using cached-CD) and RecM (using regular-CD).
For n = 2.5k, using both cached-RecM and RecM, the recovery in the Temp1 data set (with base time
series Bern and reference time series Luzern, Geneve, and Chur) takes 18 iterations until the obtained
’recovery progress’ (measured with the Frobenius norm) of the iteration drops below the selected threshold
ε = 0.01. The equal number of sign vector element switches in the first iteration is explained by the
fact that both algorithms compute the CD of the input matrix for the first time and use identical sign
vectors in the process. For all following iterations, cached-RecM substantially performs less sign vector
element switches than RecM, yielding the result that cached-CD based recovery is faster than regular-CD
based recovery by a fairly constant factor. In fact, the exact factor by which cached-RecM is faster than
RecM depends on the number of iterations needed for the recovery. Both algorithms compute exactly the
same recovery and have an equal number of iterations, they just use a different technique (cached-CD
or regular-CD, respectively) to compute the CD within the iterations. Assuming the recovery needs k
iterations to terminate, cached-RecM has exactly one iteration with quadratic run-time complexity (and
thus, equal run-time than RecM) and k−1 iterations with linear complexity, while RecM has all k iterations
at quadratic run-time complexity. We conduct a separate experiment to illustrate the impact of the number
of iterations performed by cached-RecM/RecM, k, on the number of rows (n).

(a) Run-time per iteration number (b) Sign vector element switches per iteration number

Figure 6.6: Iteration run-time and sign switches of RecM vs. cached-RecM

Figure 6.7 shows the number of iterations k of cached-RecM/RecM for each of our test data sets
given n and the threshold of ε = 0.01. The result of this experiment shows that there is no direct relation
between n and k. The number of iterations k needed seems to depend more on the characteristics of the
data set such as the amount/placement of missing values within the input matrix. Since there is no apparent
relation between k and n, it is not possible to express the factor by which the run-time of cached-RecM
(cached-CD based recovery) is faster than RecM (regular-CD based recovery) with respect to the number
of rows n of the input matrix.

CHAPTER 6. EVALUATION 38

Figure 6.7: Number of RecM iterations for a varying n

6.2 c-ReVival
The main functionality of c-ReVival is to visualize the cached-CD based recovery and the properties of the
CD technique on time series. In this section, we qualitatively evaluate two components of the tool.

6.2.1 Recovery using CD
The recovery component of c-ReVival uses cached-RecM for the recovery of blocks of missing values in
real-world data sets. The visualization of the results show some interesting characteristics of cached-CD
based recovery.

6.2.1.1 Temperature data set

The Temperature data set (cf. Section 5.1.1) has a very high average pairwise correlation between its
time series (0.98). This has to do with nature of the data, namely measured temperatures in Swiss cities.
The high correlation results in the recovery being very accurate. Figure 6.8 shows a recovery of a block
of missing values in the Temperature data set performed with c-ReVival. For the recovery, we set the
threshold to ε = 0.01. The green and blue lines show the reference time series. The black line shows the
values we used for the base time series. We removed some of the original values of the base time series to
be able to compare our recovery to the ground truth. The removed values were not part of the recovery
process and are shown by the solid red line. Finally, the cached-CD based recovery is represented by the
dotted red line.

The visualization allows to compare the recovered values (red dotted line) with those that were removed
before the recovery process started (solid red line). The recovery appears to be extremely accurate for
the Temperature data set. The shapes and amplitude of the curves are nicely recovered with just minimal
deviation.

CHAPTER 6. EVALUATION 39

Figure 6.8: Recovery performed on the Temperature data set: case 1.

Figure 6.9 shows a further recovery of missing values in the Temperature data set. The visualization
allows for the same observations as those made in Figure 6.8.

Figure 6.9: Recovery performed on the Temperature data set: case 2

6.2.1.2 Hydrology data set

The Hydrology data set (cf. Section 5.1.1) is a lot less regular than the Temperature data set, which also
causes the average pairwise correlation between pairs of time series to be lower (0.69 vs. 0.98). This is
due to the nature of the measurements, namely water levels of rivers in different cities. Since rain can be
quite a regional phenomena, the time series might be shifted in time with respect to observable curves in
the data, or even have trends that appear only in a subset of the time series. Given these characteristics of
the data set, the expectations of the recovery accuracy can not be quite as high as for the Temperature data
set. Figure 6.10 shows an excerpt of cached-CD based recovery of blocks of missing values performed
with c-ReVival

Again, the dotted red line shows the recovery as computed by the cached-CD with a threshold of
ε = 0.01. The solid red line shows the removed values (original values we removed from the base time

CHAPTER 6. EVALUATION 40

series to compare to our recovery). The black line shows the existing values of the base time series used
for recovery, and the other colored lines show the reference series.

When looking at the z-score normalized data representation (Figure 6.10(a)), as expected, the recovery
does not quite have the same accuracy as that of the Temperature data set. The recovery reconstructs all
the trends of the original, but either over- or underfits the original values slightly. The recovery seems
to exaggerate the amplitude of the curves. However, the raw data representation (Figure 6.10(b)) shows
nicely that the inaccuracy of the recovery observed in the z-score normalized data representation is only
minor, and that at any timestamp the recovery is very close to the original.

A further recovery process on the Hydrology data set, visualized in Figure 6.11, confirms the aforemen-
tioned observations. In the z-score normalized data representation (Figure 6.11(a)), the recovery (dotted
red line) gets most of the trends and curves right, but struggles slightly with the amplitude of the curves by
over- or undershooting the peaks. Again, the raw data representation (Figure 6.11(b)) shows that the effect
of over- and undershooting is only minor and the recovery still appears very accurate.

(a) Raw data representation.

(b) z-score normalized representation.

Figure 6.10: Recovery performed on the Hydrology data set: case 1

CHAPTER 6. EVALUATION 41

(a) Raw data representation.

(b) z-score normalized representation.

Figure 6.11: Recovery performed on the Hydrology data set: case 2

We can conclude that the observed accuracy of CD based recovery does depend on characteristics of
the data set. However, even when the accuracy seems slightly off in terms of amplitude/absolute distance
between the original and the recovered values, the CD recognizes all the trends in the data, even if these
are time-shifted between the time series.

6.2.2 Maximizing sign vector strategies
The sign vector strategies component of c-ReVival compares the strategy of finding the maximizing
sign vector of the SSV algorithm to some of its (theoretical) variations: The DSV, TSV, and PSV (cf.
Section 5.1.3). The goal of this component was initially to find methods of speeding up how the SSV
algorithm finds the maximizing sign vectors. As explained in Section 4.1, the SSV presents to be the
bottleneck to efficiently compute the CD of an input matrix.

A good indicator of the performance of a strategy for finding the maximizing sign vector Zmax is the
progress of the product ZT ·V (maximizing product) for each iteration. Ideally, a strategy should reach the

CHAPTER 6. EVALUATION 42

maximizing product (and thus, Zmax) within as few iterations as possible. Figure 6.12 shows the evolution
of ZT ·V for each strategy and iteration. The horizontal red line marks the value for ZT

max·V (which was
computed using the in-efficient brute-force approach of finding the maximizing sign vector Zmax). We
can disregard the PSV algorithm straight away, as it clearly does not find the correct maximizing sign
vector because it iteratively reduces the product ZT ·V before terminating. Interestingly, both the DSV
and TSV do not even terminate for our input matrix X. Instead, they seem to enter a ’race condition’:
Because the DSV and TSV can both switch more than one sign per iteration (two in the DSV, and three
in the TSV), they can fall into an infinite loop where they continuously switch the sign of some specific
element(s) in one iteration, only to switch it/them back again in the next iteration. Note that in the chart in
Figure 6.12, we only show the first 8 iterations. Since the DSV and TSV do not terminate for our input
matrix, the race-condition would continue to infinity.

-200

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1 2 3 4 5 6 7

Z
T
*V

 [
k
]

iterations

PSV SSV DSV TSV

Figure 6.12: Maximizing sign vector strategy comparison

The take-away message from this component is the fact that the SSV finds the maximizing sign vectors
more efficiently than any variations of the flipping sign strategies. More specifically, neither changing the
criteria for deciding which element to switch (PSV), nor switching the sign of more than one element at a
time (2 for the DSV, and 3 for the TSV) in a single iteration of the algorithm even produces the correct
maximizing sign vector.

7
Conclusion and Future Work

In this thesis, we have introduced three main contributions. The first contribution is a new technique
called cached-CD that i) allows an efficient computation with linear run-time complexity of the Centroid
Decomposition (CD) for streams of time series and ii) reduces the run-time for the CD based recovery of
missing values by a significant factor. In our experiments, we achieved a run-time reduction from hours to
seconds for the computation of CD for streams of time series,

The second contribution of this thesis is the implementation of the updating-CD technique. We have
compared its performance for computing the CD for streams of time series with that of the cached-CD
and the regular-CD. The results of the comparison have shown that the cached-CD is massively more
efficient than both the updating-CD and the regular-CD. In fact, the updating-CD leverages the the fact the
loading matrix is a stationary point of the CD, which is not reflected on the way the CD decomposition is
computed.

The third contribution is the development of c-ReVival, a graphical tool to visualize the properties of
CD and the process of recovering missing values in time series using cached-CD. Through the inclusion
of real-world data sets, c-ReVival also shows that it is indeed possible to recover missing blocks using
the cached-CD based recovery on real-world data. Last but no least, c-ReVival visualizes the scalability
improvement of our proposed cached-CD algorithm in comparison to the regular-CD and the updating-CD
algorithms when applied to streams of time series.

In future work, it would be of interest to find a formal proof of the linear run-time complexity of the
cached-CD for streams of time series. So far, we have only shown that the run-time of the cached-CD is
based primarily on how similar the current input matrix is to the previous one (for which we cached the
maximizing sign vectors). The worst-case run-time of the cached-CD is identical to that of the regular-CD
(i.e., quadratic), if there are no maximizing sign vectors of a previous computation cached. However, as
our experiments show, the average-case scenario is linear for streams of time series.

Another missing piece is the combination of cached-CD based recovery and cached-CD based compu-
tation of CD for streams of time series. It is yet to be determined and shown if the cached-CD is indeed
capable of performing real-time on-line recovery on streams of updating time series. This problem is a
bit more challenging since the recovery needs to be recomputed after each addition of rows to the input
matrix, but there only being a certain, constant time between two consecutive additions.

43

Bibliography

[1] Mourad Khayati and Michael H Böhlen. Rebom: Recovery of blocks of missing values in time
series. In Proceedings of the 18th International Conference on Management of Data, pages 44–55.
Computer Society of India, 2012.

[2] Abdullah Mueen, Suman Nath, and Jie Liu. Fast approximate correlation for massive time-series
data. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data,
pages 171–182. ACM, 2010.

[3] Lei Li, James McCann, Nancy S Pollard, and Christos Faloutsos. Dynammo: Mining and summa-
rization of coevolving sequences with missing values. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 507–516. ACM, 2009.

[4] Mourad Khayati, Michael H Böhlen, and Philippe Cudré Mauroux. Using lowly correlated time
series to recover missing values in time series: A comparison between svd and cd. In International
Symposium on Spatial and Temporal Databases, pages 237–254. Springer, 2015.

[5] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A symbolic representation of time series,
with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD workshop on
Research issues in data mining and knowledge discovery, pages 2–11. ACM, 2003.

[6] Georg Krempl, Indre Žliobaite, Dariusz Brzeziński, Eyke Hüllermeier, Mark Last, Vincent Lemaire,
Tino Noack, Ammar Shaker, Sonja Sievi, Myra Spiliopoulou, et al. Open challenges for data stream
mining research. ACM SIGKDD explorations newsletter, 16(1):1–10, 2014.

[7] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models and
issues in data stream systems. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 1–16. ACM, 2002.

[8] Moody T Chu and Robert E Funderlic. The centroid decomposition: Relationships between discrete
variational decompositions and svds. SIAM Journal on Matrix Analysis and Applications, 23(4):1025–
1044, 2002.

[9] Mourad Khayati, Michael Böhlen, and Johann Gamper. Memory-efficient centroid decomposition
for long time series. pages 100–111, 2014.

[10] Jason R Blevins and Moody T Chu. Updating the centroid decomposition with applications in lsi.
Technical report, Technical report, 2004.

[11] Richard W Hamming. Error detecting and error correcting codes. Bell Labs Technical Journal,
29(2):147–160, 1950.

[12] Ake Björck. Numerical methods for least squares problems. Siam, 1996.

44

	1 Introduction
	1.1 Context of work and motivation
	1.2 Contributions
	1.3 Outline

	2 Background
	2.1 Notations
	2.2 Centroid Decomposition (CD)
	2.2.1 Definition
	2.2.2 Maximizing sign vector
	2.2.3 Scalable Sign Vector (SSV)

	2.3 Recovery of missing values

	3 Updating Centroid Decomposition (updating-CD)
	3.1 Idea
	3.2 Implementation
	3.3 Running example

	4 Cached Centroid Decomposition (cached-CD)
	4.1 Idea
	4.2 Caching
	4.2.1 Caching algorithm
	4.2.2 Custom Sign Vector (CSV)
	4.2.3 Running example
	4.2.4 Complexity

	4.3 Streaming algorithm
	4.4 Cached-CD based recovery algorithm

	5 c-ReVival
	5.1 Components
	5.1.1 Displaying data sets
	5.1.2 Recovery of missing blocks
	5.1.3 Maximizing sign vector strategy comparison
	5.1.4 Streaming computation

	6 Evaluation
	6.1 Cached Centroid Decomposition (cached-CD)
	6.1.1 Setup
	6.1.1.1 Data sets
	6.1.1.2 Environment

	6.1.2 Streaming computation
	6.1.2.1 Scalability

	6.1.3 Recovery
	6.1.3.1 Scalability

	6.2 c-ReVival
	6.2.1 Recovery using CD
	6.2.1.1 Temperature data set
	6.2.1.2 Hydrology data set

	6.2.2 Maximizing sign vector strategies

	7 Conclusion and Future Work

