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e Extract relations from raw corpus pairs of words (« Paris -
France ») using Word2Vec.

* Generate new pairs with the same relation type given in
input.

* Evaluate and measure the reliability of the retrieved pairs.
* Focus on improving the precision of the retrieved pairs.

* Improve the computation time.



CHALLENGES

» Extract relation from unlabeled big data corpus.

» Starting from an existing undocumented program(Matus
Pikuliak) which runs on a single machine.

» Using words embedding for extracting pair relations.

» Work in a distributed environment



OUTLINE

> Pre-process a big data corpus from "Wikipedia dump" (General Field).
» Use the pre-processed corpus in order to create a Word2Vec Model.
» Deploy the relation extraction program from Gensim to Spark

> Select the pairs in input of the RE program with our new selection
methods.

» Extract relations with our algorithm using the Word2Vec model.

» Evaluate the relations in an automatic way with a Knowledge
Base(KB).

» Measure scores of the results(precision/nDCG) of these relations and
compare them.

» Compare the execution time.
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MAIN TECHNOLOGIES USED

» Hadoop for the Distributed File
system HDFEFS.

» Yarn for the resource management
(included in hadoop).

» Spark for the execution of our APACHE
algorithms in a distributed s Q K
environment (using hdfs). p

» Gensim framework for the pre-
processing tools. n s'm

» Word2Vec with Spark (MLLIB) and ge l
the Gensim implementation.

» Wikidata is a Free Knowledge
Database (KB), more precisely a
document-oriented database for

Semantic Web. WIKIDATA

™
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WORD2VEC QUICK OVERVIEW

» This algorithm produces
word embeddings.

INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT

» Words from corpus are = -

w(t-2)

mapped to vectors in -

w(t-1)

multi-dimensional space A\
of real numbers. Each ™ e
word is positioned in "
function of its context in
the corpus. cBow Skip-gram

w(t-2)

w(t-1)

w(t+1)

w(t+2) w(t+2)

» CBOW and Skip-gram
architecture models.
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PAIR STRUCTURE

> A pair is composed of 3 embedding instances.

» An embedding instance is composed of one word and its
vector representation.

Embedding 1 Embedding 2

Word : "Paris" Word : "France"
Vector : Word Vector : Word
Vector Vector

Embedding 3

Word : Concatenation of words from embedding
1 and 2 = "Paris - France"

Vector : Word Vector from embedding 2 - Word
Vector from embedding 1
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APPROACH

» Pre-processing

» Fitting the Word2Vec model
» Input Pair Selection Methods
» Relation extraction

» Evaluation

» Results comparison

14



PRE-PROCESSING

» Select a global corpus from wikidata.

» Remove the XML Wikidata template.

» Transform upper case letters to lower case letters.
» Remove accent on letters.

» Remove non-ASCII characters.

» N-Gram (bi-gram, tri-gram and quadri gram).

» Stopword Lists .
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FIT WORD2VEC MODEL

» Vector Size (Number of neurons)

» Min Count

» Window Size (Context)
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INPUT PAIR SELECTION

» Some input pairs are close in the multi-dimensional space.

» During the generation of neighbours we will obtain almost
the same result for closest pairs.

> One of the objectives is to obtain a high precision and nDCG
score with fewer input pairs as possible.

» 4 Methods :
» Word Count Selection
» Cosine and Euclidean Input Pair Selection

» K-Means Selection
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Set of Pairs in Input

INPUT PAIR SELECTION - PART 1

T
T

Pairs Input

Example of Dictionary of List in our case

et the . .
Pl crouoor. (NG| _Cicsly ol e ot o
of groups . 4 roup
omee (REERY P 1 i RO
... until K number of groups
List of Tuples composed of a sublist and its
Set the R The £ e score. All sublist has the same size defined
o ber Generation of 'he Sum of the in the first step (Ex: with a size of 3).
all possible . . ‘]llllllil.llBY'”’ C,
and the Mw List of lists e w) of the * m——
size of ~O il' -). Same aroup ﬂ Slml anty Group 1
groups. combinations Same group core
... until the number of combinations possible
List of Tuples composed of one pair and
Apply Transform all its occurrence score
\éV:L:ﬁt ptalpr)ls |r(1)tf02a ‘ List of tuples * Add the occurrence of
u e . .
. each word in the pair * - Occurence Score
CLeCUILIN words ((word1, > i
on the word2), Pair)
original Occurence Score
corpus
Step 1 Input/output of step 1 Step 2 ... until the number of input pairs

PairCosiney Euclideany WordCount Selection

Selection Method

K-Means Method Method
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INPUT PAIR SELECTION - PART 2

For each group in the Dic cetum o of
dictionary, compute the iclionary Heturn the numboer o
SSE score of each pair ‘ of list of ‘ Rank each tuple by the SSE * Dictionary — pairs wanted by the user,
(Sum of Squared Errors tup[es score !n order to obtain the of ranked selected U'I the best

between each element of a gpgg ! best pairs at the top of the list ists represent of each group
group). Score)

LN
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in the tuple of tuples remove the groups with with the other group
dup! I&:”:& glements.

BEARERGE

Ranked list of pairs

B AE
G1

P5
G2 G3

Sort all lists by their score

Sorted List ‘ Return the number of pairs
wanted by the user

>

in the tuple

of tuples

Step3 Step 4

WordCount Selection

K-Means Method Method
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PAIRS EXTRACTION

> Pairs used as Input s
for the algorithm

> Generate neighbours
of each pair word
and perform a
Cartesian product
between them.

Step 2

> Each pair from the  stes
output list is
compared to all the stees
input pairs using a
Euclidian
similarity.

Paris - France
Bern - Switzerland
Madrid - Spain

Berlin
Lisbon

Madrid

I London - Germany, London - Portugal , London - Belgium, London - Spain, Berlin - Germany,
| | Berlin - Portugal, Berlin - Belgium, ..., Madrid - Belgium, Madrid - Spain

e o mme G DGaow ESGAG GG DOWSU Emms BGAay RS GOnas s e DG Dm0 Sees e GG S D mewa GAeww a0 mmaw s sy

I
I
| Word = London
| - Germany
V = VectorLondon -
| VectorGermany = (3,
I 2, 5)
I
I
I

Word = Paris- France
V = VectorParis - VectorFrance = (2, 0, 9)

Word = Ben - Switzerland
V = VectorBern - VectorSwitzerland = (5, 1, 2)

Word = Madrid - Spain
V = VectorMadrid - VectorSpain = (1, 0, 1)




EVALUATION

» Use a knowledge Base with Wikidata for binary evaluation
» Manual validation for more complex relation (e.g., Genre):
» 2 : True relation (Barman - Waitress)
» 1 : Half True relation (Bartender - Waitress)

» O : False relation
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NORMALIZED DISCOUNTED CUMULATIVE GAIN(NDCG)

» Used to evaluate the extracted pairs(ranked).

» The nDCG score takes into account if a good candidate is correctly
ranked.

» The DCG and the iDCG formulas are almost similar except for the
rank order, in effect the iDCG formula sorts in descending order.

> p is the number of relations extracted and rel corresponds to the
score of the relation i.

I DCG
- nDCG, = P
—~ log, (i + 1) IDCG,

M=

DCG, =
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PRECISION RESULT BETWEEN 4 METHODS
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NDCG RESULT BETWEEN 4 METHODS
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RESULT OF INCREASING THE NUMBER OF PAIRS RETURN

» For the precision we obtain almost the same « shape » with

lower scores when the number of returned pairs increases.

» For the NDCG score the result is the same, so it is not

aftected by the number of pairs.

Selection - NDCG
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) 0 O N © P ¥ 0N
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©0dN

Output size

Output size
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EXECUTION TIME

» We compare the Results with the original implementation

» Using fewer pairs in input (5 pairs instead of 20) can
considerably reduce the execution time.

[ Local [ Cluster

air in input

Number of

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Time in secondes
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CONCLUSION

» This new implementation in distributed environment
improves the computation time

» The corpus and the pairs chosen in input influence the
extracted pairs.

» Input pairs selection methods improve the precision of the
model with less pair in input.

» Evaluation can be done automatically.

» Word2Vec is very powerful for Relation Extraction.
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FUTURE WORK

» Try our algorithms of « pair extraction » and our « input pair

selection method » with other words embedding algorithms
like GloVe from the Stanford NLP Group.

» One improvement can be to link the extracted information to
a knowledge base of the type of relation, before the generation
of similar words in the relation extraction part.
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