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GOALS

• Extract relations from raw corpus pairs of words (« Paris - 
France ») using Word2Vec.  

• Generate new pairs with the same relation type given in 
input. 

• Evaluate and measure the reliability of the retrieved pairs. 

• Focus on improving the precision of the retrieved pairs. 

• Improve the computation time.
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CHALLENGES

➤ Extract relation from unlabeled big data corpus. 

➤ Starting from an existing undocumented program(Matúš 
Pikuliak) which runs on a single machine. 

➤ Using words embedding for extracting pair relations. 

➤ Work in a distributed environment
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OUTLINE

➤ Pre-process a big data corpus from "Wikipedia dump" (General Field). 

➤ Use the pre-processed corpus in order to create a Word2Vec Model. 
➤ Deploy the relation extraction program from Gensim to Spark 

➤ Select the pairs in input of the RE program with our new selection 
methods. 

➤ Extract relations with our algorithm using the Word2Vec model. 

➤ Evaluate the relations in an automatic way with a Knowledge 
Base(KB). 

➤ Measure scores of the results(precision/nDCG) of these relations and 
compare them. 

➤ Compare the execution time.
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MAIN TECHNOLOGIES USED

➤ Hadoop for the Distributed File 
system HDFS. 

➤ Yarn for the resource management 
(included in hadoop). 

➤ Spark for the execution of our 
algorithms in a distributed 
environment (using hdfs). 

➤ Gensim framework for the pre-
processing tools. 

➤ Word2Vec with Spark (MLLIB) and 
the Gensim implementation. 

➤ Wikidata is a Free Knowledge 
Database (KB), more precisely a 
document-oriented database for 
Semantic Web.
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WORD2VEC QUICK OVERVIEW

➤ This algorithm produces 
word embeddings. 

➤ Words from corpus are 
mapped to vectors in 
multi-dimensional space 
of real numbers. Each 
word is positioned in 
function of its context in 
the corpus. 

➤ CBOW and Skip-gram 
architecture models.
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PAIR STRUCTURE

➤ A pair is composed of 3 embedding instances. 

➤ An embedding instance is composed of one word and its 
vector representation. 

Word : "Paris"
Vector : Word 

Vector

Word : Concatenation of words from embedding 
1 and 2 = "Paris - France"

Vector : Word Vector from embedding 2 - Word 
Vector from embedding 1

Word : "France"
Vector : Word 

Vector

Embedding 1 Embedding 2

Embedding 3
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APPROACH

➤ Pre-processing 

➤ Fitting the Word2Vec model 

➤ Input Pair Selection Methods 

➤ Relation extraction 

➤ Evaluation 

➤ Results comparison
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PRE-PROCESSING

➤ Select a global corpus from wikidata. 

➤ Remove the XML Wikidata template. 

➤ Transform upper case letters to lower case letters. 

➤ Remove accent on letters. 

➤ Remove non-ASCII characters. 

➤ N-Gram (bi-gram, tri-gram and quadri gram). 

➤ Stopword Lists .
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FIT WORD2VEC MODEL

➤ Vector Size (Number of neurons) 

➤ Min Count 

➤ Window Size (Context)
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INPUT PAIR SELECTION

➤ Some input pairs are close in the multi-dimensional space.  

➤ During the generation of neighbours we will obtain almost 
the same result for closest pairs. 

➤ One of the objectives is to obtain a high precision and nDCG 
score with fewer input pairs as possible. 

➤ 4 Methods :  

➤ Word Count Selection 

➤ Cosine and Euclidean Input Pair Selection 

➤ K-Means Selection
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INPUT PAIR SELECTION - PART 1
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INPUT PAIR SELECTION - PART 2

K-Means Method
Pair Cosine / Euclidean 

Selection Method
WordCount  Selection 

Method
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PAIRS EXTRACTION

➤ Pairs used as Input 
for the algorithm 

➤ Generate neighbours 
of each pair word 
and perform a 
Cartesian product 
between them. 

➤ Each pair from the 
output list is 
compared to all the 
input pairs using a 
Euclidian 
similarity.
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EVALUATION

➤ Use a knowledge Base with Wikidata for binary evaluation 

➤ Manual validation for more complex relation (e.g., Genre): 

➤ 2 : True relation (Barman - Waitress) 

➤ 1 : Half True relation (Bartender - Waitress) 

➤ 0 : False relation
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NORMALIZED DISCOUNTED CUMULATIVE GAIN(NDCG)

➤ Used to evaluate the extracted pairs(ranked). 

➤ The nDCG score takes into account if a good candidate is correctly 
ranked. 

➤ The DCG and the iDCG formulas are almost similar except for the 
rank order, in effect the iDCG formula sorts in descending order. 

➤ p is the number of relations extracted and rel corresponds to the 
score of the relation i.
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PRECISION RESULT BETWEEN 4 METHODS 
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NDCG RESULT BETWEEN 4 METHODS 
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RESULT OF INCREASING THE NUMBER OF PAIRS RETURN

➤ For the precision we obtain almost the same « shape » with 
lower scores when the number of returned pairs increases. 

➤ For the NDCG score the result is the same, so it is not 
affected by the number of pairs.
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EXECUTION TIME 

➤ We compare the Results with the original implementation 

➤ Using fewer pairs in input (5 pairs instead of 20) can 
considerably reduce the execution time.
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CONCLUSION

➤ This new implementation in distributed environment 
improves the computation time 

➤ The corpus and the pairs chosen in input influence the 
extracted pairs. 

➤ Input pairs selection methods improve the precision of the 
model with less pair in input. 

➤ Evaluation can be done automatically. 

➤ Word2Vec is very powerful for Relation Extraction.
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FUTURE WORK

➤ Try our algorithms of « pair extraction » and our « input pair 
selection method » with other words embedding algorithms 
like GloVe from the Stanford NLP Group.  

➤ One improvement can be to link the extracted information to 
a knowledge base of the type of relation, before the generation 
of similar words in the relation extraction part.
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