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Abstract

Building a taxonomy from textual data is an essential task in various applications and systems.
A taxonomy created from textual data helps to structure information into categories that
further enables search and reuse of those information effectively. This is the case of Vogue
retailer, where taxonomies are used to improve the online search and recommending products.
Taxonomies allow also to define rules and relationships among different information categories
in an abstract way that facilitates further development and refinement of a knowledge-base
system. Many applications such as Information Retrieval, Text Clustering and Classification
or Text Mining heavily relies on taxonomies built on textual data.

Similarly to the automatic creation of taxonomy, enriching an existing taxonomy based
on new text data is also gaining popularity now-a-days. For example, in fashion technology,
new product concepts or categories are needed to be identified from new textual data and then
these can be added in an existing product category taxonomy. This helps to create new product
and better product recommendations. However, both creating a taxonomy and enriching an
existing one are challenging tasks because these require domain knowledge of underlying
data which is not available most of the time. Moreover, enriching an existing taxonomy based
on little new data is almost impossible as most of the algorithms require large amount of data
to train the associated model.

In this thesis, we study different state-of-the art algorithms used for building taxonomy
automatically from textual data. We also propose a novel technique TaxoTL for enriching
existing taxonomy from new data. Our empirical results on several real-world datasets show
that TaxoTL is capable of enriching taxonomy correctly. Our measured scores of TaxoTL has
comparable accuracy with the other state-of-the-art algorithms. We also show that TaxoTL is
on average more than 20× faster compared to the other state-of-the-art algorithms (2min vs.
40mins). In addition, TaxoTL is more memory efficient and consumes on average 10× less
memory than other algorithms.
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1
Introduction

The notion of taxonomy generally defines the process that classifies things or concepts. It has various
applications in different branches of sciences and economics. For instance, in the biology domain, a
taxonomy includes the classification of different kinds of organisms. In this process, things are grouped
from the content of information that is otherwise not known. The information that it describes may contain
the description, nomenclature, or identification in the classification. Another real-world example related to
the importance of taxonomy is in search and recommending products online in vogue fashion. Earlier,
categorising fashion items was done manually which is not perfect. Now, taxonomy has transformed the
way of describing and classifying items in vogue fashion such that more comprehensive descriptions of
products are being assigned resulting in more lucrative product recommendations[6]. In this thesis, we
study different algorithms that leverage natural language processing techniques to find taxonomy in textual
data. We also propose a novel technique that relies on transfer learning to enrich existing taxonomy with
new information.

1.1 Context of work and motivation
The automatic construction of taxonomy from textual data has been studied in the literature[27],[11],[22],[3].
There are different types of algorithms that can be used for finding the taxonomies out of textual data.
However, these techniques are heavily dependent on learning word embeddings based on complex math-
ematical models. There are additional challenges that lie with text data. Varied texts contain hidden
information which does not follow proper grammatical rules, but colloquial senses. Therefore, applying
rules that depend on the grammar of the written text corpus remains a great challenge[18].

In this thesis, we study different algorithms that can be effectively used to extract taxonomy hidden in
any text corpus. We survey two main categories of algorithms where one uses the skip-gram[15] model
to learn word embedding and the other one leverages the Nested Chinese Restaurant Process[11] to learn
the representation. All these techniques however work for the entire set of text data that is given as input.
These are not capable of enriching existing taxonomy without training the model from the beginning
whenever new text data is available from the same domain of knowledge. Motivated by this shortcoming,
we develop a new approach where we can process the new data from the same domain of knowledge
without training the model from the beginning with a full set of data.
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CHAPTER 1. INTRODUCTION 8

1.2 Contributions
The main contribution of this thesis consists of two major parts. First, we study different state-of-the-
art algorithms to build a taxonomy. We study approaches that are based on the neural network where
algorithms use a skip-gram model and for others, the probabilistic nested chinese restaurant process (nCRP)
is used. We extensively study these algorithms and perform the evaluation for each of these algorithms.
With our analysis, we show that one algorithm performs consistently better than others for a wide range of
dataset, but sometimes, other algorithms also over-perform than the rest due to variation in the input data
that possess specific pattern.

Second, we propose a novel approach to enrich existing taxonomy based on new text data within the
same domain of knowledge. Here, we use the transfer learning technique. We retrain the already trained
model on new additional text data. This process shows significant benefits. First, we don’t have to train
the full model repetitively on the full dataset as soon as there are new additional text data available. It
reduces the overhead of the training time of the model on the full dataset. Additionally, we observe that
using Transfer Learning, we are efficiently using the existing knowledge from the trained model to get
the learned representation of words from new data. This significantly improves the performance to enrich
existing taxonomy by adding new words when we have a very less amount of data which is not enough
for training the neural network-based model and algorithm e.g.word2vec or nCRP based model. As soon
as we successfully find the new word embeddings, we use cosine similarity measures to find the closest
match between the embeddings of each word from the new text data and the existing taxonomy nodes
(concept). We evaluate the whole process justified with test results quantitatively (NMI and F1-Scores) as
well as qualitatively (Hypertree of taxonomy).

1.3 Outline
This thesis is structured into 5 chapters. Chapter 1 provides the introductory notes along with the
contribution of the used algorithms and processes to build a new taxonomy. It also highlights the novel
approach to enrich an existing taxonomy when there is a need for the availability of a new set of data from
the same domain of knowledge. Chapter 2 introduces the notations that are used throughout the thesis. Next,
it provides the background to the thesis by covering three main different embedding techniques. Topics
related to word2vec, Nested Chinese Restaurant Process (nCRP), and Transfer Learning are discussed in
detail. Here, along with the definition, theoretical derivations of important results are included. Moreover,
examples are also given to clarify the concepts. Chapter 3 covers the techniques to build a new taxonomy
using word2vec as a building block as well as the nCRP process. Here, each related algorithm is discussed
and explained in detail. Running examples are also given related to each process of building a taxonomy.
Finally, the evaluation based on Normalised Mutual Information (NMI) and F1-Scores (Micro & Macro) is
used to evaluate the performances of these algorithms. In Chapter 4, the novel Transfer Learning technique
to enrich an existing taxonomy is introduced together with algorithm description and running example.
This chapter also includes an evaluation of performance comparisons among our novel technique based
on two models of taxogen and one of its variation (nole), and a full run of the taxogen algorithm. Here,
critical analysis based on Normalised Mutual Information (NMI) and F1-Scores (Micro & Macro) is given
for our novel technique and other available algorithms (e.g. taxogen). Chapter 5 concludes the thesis and
highlights possible future work that could be conducted on the topic by employing other state-of-the-art
algorithms.



2
Background

This chapter serves as an introduction to the Word2Vector, Nested Chinese Restaurant Process, and Transfer
Learning. It covers the relevant background of the techniques and algorithms we use on our propositions,
implementations, and improvements.

2.1 Notation
The following notations are used throughout this thesis. Variables in bold upper-case letters refer to
matrices, and bold lower case letters refer to vectors. Normal lower case letters to individual elements of
matrix or vector. Double subscript indices denote rows and columns (in that order) of a matrix, e.g., wij is
the ith row and jth column of matrix X. Similarly, vi denotes ith element of the vector v. We denote the
transpose of a matrix X as XT and the norm of a vector v is denoted as ||v||.

We denote the probability of a random variable a as p(a). Also, we denote the conditional probability
of a random variable a given the random variable θ as p(a|θ). The probabilistic model parameter is denoted
by θ. We denote a probability distribution by the full name of the distribution with parameters enclosed in
pairs, e.g., normal distribution with parameter µ and σ2 as Normal(µ, σ2). We use a ∼ Normal(µ, σ2)
to say that random variable a has normal distribution as its probability distribution. The expectation of
a random variable a is denoted as E(a), the variance of a random variable a is denoted as V ar(a). We
denote set with normal capital letter and its elements are denoted comma-separated under curly braces e.g.
a set S is denoted as S = {a1, a2, . . . , an}. Finally, the corpus text data is denoted by D and the topic or
term set is defined as C.

2.2 word2vec model
word2vec[15] or w2v, in short, is a technique to learn word embedding from a text corpus. In this process,
a skip-gram model is used which is a linear neural network by the implementation. Every word here is
being fed into the neural network as a one-hot encoding vector representation which makes the input layer
of the network. The hidden layer consists of a different number of nodes each act as a linear function.
This function has weight vectors initialized randomly. Finally, all the outputs from hidden layers nodes
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CHAPTER 2. BACKGROUND 10

are passed into output layers nodes. Output layers consist of the same number of nodes as the number of
words in the vocabulary. Each of the output layer’s node has activation function softmax that essentially
provides a probability for the respective word defined for an individual node.

Figure 2.1: Schematic diagram of word2vec model. The softmax activation function is shown separate to
each output node, but in reality they belong to each perceptron of the output layer.

Figure 2.1 depicts the word2vec neural network of an input one-hot encoding vector x. Notice
that, how the hidden layer weight matrix Whidden acts as a projection that gives the embedding of a
word for associated one-hot encoding input vector x. The output of the hidden layer finally reaches the
output layer that each perceptron uses a soft-max activation function to generate conditional probability
p(context|target). This model learns the word embedding by optimizing the objective function that is
based on the conditional probability and can be defined as :

J(θ) =
∏
wεText

[ ∏
cεC(w)

p(c|w; θ)

]
(2.1)

Here, J(θ) is the objective function, θ is the parameter, Text is the corpus data, and p(c|w; θ) denotes the
conditional probability of a context word c given that the target word w with model parameter θ. Word2Vec
is essentially a neural network model having linear functions that learn the weight of the hidden layer’s
nodes. These weights correspond to the learned embedding of each word in the vocabulary defined from
the textual input. As per the work of Goldberg et. al.[8], we can write the objective function as below.

loge J(θ) =
∑

(w,c)εD

(vcvcvc.vwvwvw)−
∑

(w,c)εD

loge
∑
c′εC

evc′vc′vc′ .vwvwvw (2.2)
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Here vwvwvw and vcvcvc represent embedding of w and c respectively, C refers to the set of context words for w
and D is the set of word and context pairs.

The objective function given in equation 2.2 is very expensive to optimize due to the calculation of∑
c′εC e

vc′vc′vc′ .vwvwvw overall context words c′. To circumvent this issue, the authors of word2vecto proposed
to use a negative sampling technique where instead of updating all the vectors of incorrect contexts of a
word per iteration, only a sample of contexts vectors get updated. As a result, get the following objective
function:

loge J(θ) =
∑

(w,c)εD

loge σ(−vcvcvc.vwvwvw) +
∑

(w,c)εD′

loge σ(vcvcvc.vwvwvw) (2.3)

Optimizing the objective function as given in Equation 2.3 has the benefit of using negative sampling
which essentially has helped to reduce the processing burden which wouldn’t otherwise be possible.

2.3 Nested Chinese Restaurant Process model
Nested Chinese Restaurant Process (nCRP) is a nonparametric Bayesian probabilistic model for learning
hierarchical relationships available in data. Many state-of-the-art algorithms that deal with hierarchical
data (e.g. Taxonomy) have used nCRP probabilistic model as a prior distribution of tree-like structure
which is otherwise unknown. We first define Chinese Restaurant Process[2] before introducing nCRP.

Let us assume a restaurant with countably infinitely many tables. Customers walk in and sit down at
some table. Let’s denote zi as the indicator of ith customer’s sitting table. Thus if we have N number of
customers, then we’ll have a vector of “table assignments”, z = (z1, z2, ..., zN ). Next, let nk denote the
number of people sitting at the kth table, and let K denote the total number of non-empty tables. Then the
vector n = (n1, ..., nK) tells us how many people are at each table. Note that

∑K
k=1 nk = N . With these

arrangements, the tables are chosen by the customer according to the following random process.

1. The first customer always chooses the first table,

2. The n+ 1th customer sitting at kth table with the the probability:

p

(
zn+1 = k|n, α

)
=

{
α

n+α if k is a new table
nk

n+α if k is already occupied by nk customers
(2.4)

Here, α is a scalar hyper-parameter of the process. This whole process is named as Chinese Restaurant
Process (CRP). It is typically used as a prior probability distribution for partitioning a sample. The
probability of a particular set of assignments z (with corresponding count vector n) for a CRP with
hyper-parameter α is as follows:

P (z|α,N) =
Γ(α)

∏K
k=1 Γ(nk)

Γ(N + α)
αK (2.5)

nCRP is a distribution over hierarchical partitions. It generalizes the Chinese restaurant process (CRP),
which is a distribution over partitions. Let’s now imagine that we have tables that are organized in a
hierarchy. There is one table at the first level, and it is associated with an infinite number of tables at the
second level. Each of the second-level tables is again associated with an infinite number of tables at the
third level and so on until the Lth level. Each customer starts choosing a table at the first level and comes
out at the Lth level that creates a path with L tables as the customer sits each table. Here, the customer
chooses a table to move from level l to level l + 1 following the CRP defined by Equation 2.4.
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2.4 Transfer Learning
Let’s assume a domain D that consists of two components, a feature space X and a marginal probability
distribution p(X), in which X = {x1, . . . , xn} ∈ X . Given a specific domain D = {X , p(X)}, a task
can be defined that consists of two components, a label space Y and an objective predictive function f(.),
denoted by T = {Y, f(.)}, which can be learned from the training data pairs {xi, yi}, where xi ∈ X and
yi ∈ Y . The function f(.) can be used to predict the label of a new instance x, which can be rewritten by
the conditional probability distribution p(Y |X). A task can then be defined as T = {Y, p(Y |X)}. With
these definitions of domain and task, the transfer learning is defined as: given a source domain DS with a
corresponding source task TS and a target domain DT with a corresponding task TT , transfer learning is
the process of improving the target predictive function fT (.) by using the related information from DS

and TS , where DS 6= DT or TS 6= TT . Transfer learning is used to improve a learner from one domain by
transferring information from a related domain[25].

In the above definition, the condition DS 6= DT refers to either XS 6= XT or pS(X) 6= pT (X), i.e.,
the source and target domains have different feature spaces or marginal probability distributions, whereas
the condition TS 6= TT means either YS 6= YT or p(YS |XS) 6= p(YT |XT ), i.e., the source and target
domains have different label spaces or conditional probability distributions. Note that when the target and
source domains are the same, i.e., DS = DT , and their learning tasks are the same, i.e., TS = TT , the
learning problem becomes a traditional machine-learning problem. If the transfer learning improves the
performance upon using only DT and TT , the outcome is referred to as a positive transfer. Otherwise,
transfer learning deterioration leads to a negative transfer.[13][16]

Consider an example of retraining a word2vec model based on new textual data. Here, an already
trained word2vec model is given. Also, the new textual data is from the same domain of the data that had
trained the existing model. Now, the retraining of the word2vec model can be done efficiently by transfer
learning where the retraining process starts with the existing trained model’s word embeddings. Here,
essentially, the previously trained model has transferred the embeddings of words as ’knowledge’ to the
new retraining process. Therefore, the retraining process does not have to start with embeddings that are
initialized with random values. This ’transfer of knowledge’ is helping the algorithm to reach the optimal
state correctly and efficiently.



3
Building Taxonomy

In this chapter, we discuss different algorithms and processes that are being used to build hierarchical
taxonomy. We begin with a brief idea about how to build taxonomies using different processes. Then we
define and explain different algorithms in detail.

3.1 Idea
In this section, we study algorithms that use word2vec or nCRP while building taxonomy based on textual
data. First, we extract the important words a.k.a keywords, that convey the importance in the text by
employing different methods e.g. TF-IDF scoring to remove unimportant words or by using a chunker (e.g.
noun phrase chunker) to do the same. Once the list of important words (keyword) is available, we learn
the embedding of these words based on word2vec or nCRP based process. Finally, we use the clustering
algorithm recursively to build the taxonomy based on those embeddings of keywords.

Using the word2vec method is straightforward. Once we find all the learned embeddings of keywords,
we run the Spherical Clustering method to build the cluster of categories for the first level after the root
node of the hierarchy tree. Then, for each cluster, we either cluster further taking the words from that
respective cluster or we can relearn the words of that cluster using word2vec. In another approach, where
we use nCRP, first, we build the word co-occurrence network based on TF-IDF scoring from the text corpus.
Then with the word co-occurrence network, we run the nethiex[11] algorithm to learn the embedding of the
keywords that we need. Each of these word embedding consists of a subsection that learned the category
of each level. We then use these categories’ embeddings and employ clustering to build the nodes of
categories in each level of the hierarchy that eventually gives the taxonomy as a tree structure in the JSON
data format. There is a visualization program that makes use of the JSON file and creates hypertree based
on javascript functionality. This enables viewing taxonomy more user friendly. Like any other framework
& algorithm building process, we have an evaluation method that takes the output of the algorithm and
calculates different evaluation metrics e.g. NMI, F1-Score (Micro & Macro).

In this process flow, first, we are doing pre-processing of the textual data. This includes the removal
of unwanted words (e.g. stop words, common English words, etc.). Also, we are doing lemmatization
and stemming to make the text corpus invariant to change in the grammatical form of an individual
word. We also split the text corpus into tokens of words which are also known as tokenization. After the

13



CHAPTER 3. BUILDING TAXONOMY 14

data pre-processing is successfully done, we enter into taxonomy creation stage where the pre-processed
data goes into individual algorithm of choice (e.g. Taxogen or Nethiex or Hierarchical Clustering) that
eventually creates the taxonomy.

Now, we describe in detail three algorithms that we study as generating hierarchical taxonomy
algorithms: Taxogen, Hierarchical Clustering (HCLUS), and Nethiex.

3.2 Taxogen
As explained in the original paper Taxogen[27], there are two key challenges while building high-quality
taxonomies. First, it is difficult to determine the levels of different concept terms in the hierarchy. When
splitting a coarser node into fine-grained ones, not all the concept terms should be included to the child
level. Second, global embeddings have limited discriminative power at lower levels. Term embeddings are
typically learned based on the context words within the corpus, such that terms sharing similar contexts
tend to have close embeddings. However, as we move down in the hierarchy, the learned term embeddings
on corpus data have limited power in capturing subtle semantics. To solve these challenges, Taxogen[27]

has proposed the notions of Adaptive Clustering and local embedding.

Algorithm 1: Taxogen
Input: : A parent corpus D ; A parent topic C ; Number of clusters in each level N ; Depth of the

Hierarchy Hd

Output: A dictionary representing the hierarchy
Initialize: LV L← 0 , Center ← None

1 function taxogen(D,C,LV L,N,Hd, Center)
2 L← {name := None ; children := []}
3 if (LV L = 0) then
4 Wl ← word2vec(D)
5 {(S1,Center1)} ← SphericalKmeans(Wl, 1)
6 L[name]← ’Root’
7 else
8 {(S1,Center1), (S2,Center2), ..., (SN ,CenterN )} ← AdaptiveClustering(C,N, δ)
9 Wl ← LocalEmbeddings(D)

10 for w ∈ C do
11 wvector ← V ectorLookup(Wl, w)
12 ri ← EuclideanDistance(Centeri,wvector)
13 Rlist ← (ri, w)

14 wmin ←Min(Rlist) [Min(.) returns wi whose ri is minimum]
15 L[name]← wmin

16 if (LV L < Hd) then
17 for each Si do
18 Lret ← taxogen(Di, Si, LV L+ 1, N,Hd, Centeri)
19 L[children].add(Lret)

20 return L

With this information on adaptive clustering and local embedding, now we are ready to describe the
Taxogen[27] algorithm. Formally it is defined below in Algorithm 1. In this algorithm, it takes corpus D,
topic C to process it to build a taxonomy. It also takes a number that it clusters the topics in each level
along with the depth of the hierarchy. First, the level value LV L is initialized to value 0 that indicates
the root level. Now, the function taxogen(.) is used recursively to achieve the hierarchical taxonomy. At
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the beginning of the function taxogen(.), it initializes an empty dictionary L that eventually become the
taxonomy tree. When the LV L is 0, the dictionary L stores the name as root and children array as empty.
In other cases, L is completely blank.

Now as a next step, LV L is compared with the value of Hd, the depth of the hierarchy. If LV L is less
than Hd value, then adaptive clustering is applied on the topic C coming as input. This process produces
N number of clusters as provided as input. Each cluster Si along with its center vector Centeri are then
used in an iterative process where for each Si, first an empty dictionary Lret is initialized. Next, the local
embedding is applied on the corpus D. Now for each word w in Si, the lookup function V ectorLookup(.)
is done on the output of local embedding Wl and word w as its input. This lookup returns the embedding
of word w denoted as wvector. Next, euclidean distance is calculated between the center vector Centeri of
the respective cluster using function EuclideanDistance(.). The algorithm then stores the distance value
and the corresponding word in a list Rlist. Next, the algorithm finds the word from Rlist by calculating
the minimum distance value using Min(.) function. This word becomes the node name that represents the
respective cluster in the hierarchy. The algorithm calls the function taxogen(.) recursively to build the
hierarchical structure of the taxonomy.

One variation of Taxogen is no local embedding a.k.a nole. This particular variation has been proposed
to compare the performance of the Taxogen algorithm. The important point here is that nole uses global
embeddings throughout the process and does not use local embedding. Another variation of the Taxogen
is no adaptive clustering a.k.a noac. This particular variation has also been proposed to compare the
performance of Taxogen algorithm. Essentially, here the noac uses global embeddings throughout the
process but does not use adaptive clustering.

Example 1 (Taxogen). Let’s assume that we have a text corpus from a fashion dataset. Let’s also assume
that this text corpus contains customers’ feedback about the fashion products that include shoes, clothes,
and other accessories. There is a latent taxonomy of the fashion products in the text corpus which
the algorithm extracts upon successfully analyzing the related customer reviews using varied taxonomy
generation algorithms i.e. Taxogen, HCLUS, and Nethiex. In the latent taxonomy, each node represents a
concept term associated with the product categories. More generic terms represent nodes near to the root.
As we move down in the taxonomy, finer terms start to appear.

Step 1 Text corpus file has 5 sentences as below. Each sentence is considered as separate document within
the text corpus.

Natural Language Processing is a subdomain of Artificial Intelligence under computer science.
More often computer vision is now part of Artificial Intelligence in computer science.
Technology are changing where computer system is also a core part of computer science.
Database is playing an important role in system where many business applications depend.
Security is a prime concept in computer networking that work under computer system.

Figure 3.1: The corpus data for Taxogen. Each sentence in the corpus is individual document.

Step 2 In this step, we use NLP chunker to extract important keywords from the corpus.

natural language processing
artificial intelliegnece
computer science
computer vision
computer system
database
technology
security
computer networking
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Step 3 In this step, sentence tokenization happens where each sentence becomes list of words

[
[natural language processing, subdomain, artificial intelligence, computer science],
[computer vision, artificial intelligence, computer science],
[technology, computer system, computer science],
[database, system, business application],
[security, computer networking, computer system]
]

Figure 3.2: Tokenized corpus data for creating the initial embedding using word2vec (skip-gram) model.

Step 4 From this step, Taxogen creates the word embeddings a.k.a initial embedding using word2vec
skip-gram model.

natural language processing : [0.9, -2.1, 1.6, 2.3, 1.9, 1.7, 1.1, 0.6]
subdomain : [9.9, -3.1, -2.8, 7.9, 6.3, -2.9, 3.7, 10.5]
artificial intelligence : [1.0, -2.0, 1.5, 2.5, 1.7, 1.5, 1.0, 0.5]
computer vision : [0.8, -2.4, 1.7, 2.1, 1.7, 1.3, 1.2, 0.9]
artificial intelligence : [1.0, -2.0, 1.5, 2.5, 1.7, 1.5, 1.0, 0.5]
computer science : [5.0, -5.1, 2.6, -4.7, 2.3, -2.7, 1.9, 7.5]
technology : [5.0, -5.0, 2.5, -5.1, 2.7, -2.7, 1.9, 7.5]
database : [-8.0, 3.5, 2.3, -5.6, 8.7, -2.5, 2.9, 4.0]
computer system : [-9.1, 3.0, 2.5, -5.6, 7.7, -3.5, 1.9, 4.2]
business application : [9.0, -3.1, -2.6, 9.9, 8.3, -2.3, 3.9, 9.5]
security : [-9.3, 3.4, 2.7, -4.5, 8.8, -2.6, 2.9, 3.1]
computer networking : [-9.4, 3.3, 2.7, -4.5, 8.7, -2.5, 2.9, 3.2]
computer system : [-9.0, 3.0, 2.5, -5.5, 7.7, -3.5, 1.9, 4.2]

Figure 3.3: Initial word embedding created for Taxogen using word2vec (skip-gram) model.

Step 5 In this step, the initial embeddings from Step 4 are used in SphericalKmeans(.) with number
of cluster 1 for root node. This SphericalKmeans(.) gives the word ’computer science’ as the
closest word to the center of the cluster. This word ’computer science’ becomes the root node of the
taxonomy.

computer science

natural language
processing
computer vision
arificial intelligence
security
database
computer networking
computer system
technology

...

computer science Root node

Figure 3.4: Taxonomy created by Taxogen with root node highlighted.

Step 6 In this step, Taxogen runs recursively to build the rest of the nodes. Taxogen uses local embeddings
and adaptive clustering. First, it runs the adaptive clustering where it excludes the keywords that
can not be pushed further down in the hierarchy. For example, the term technology is not available
whist clustering in level 1 as ’technology’ is more generic name and can be placed in the root level.
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Step 7 Now, Taxogen runs the local embedding that generates new word embedding vectors.

natural language processing : [0.9, -2.1, 1.6, 2.3, 1.9, 1.7, 1.1, 0.6]
subdomain : [9.9, -3.1, -2.8, 7.9, 6.3, -2.9, 3.7, 10.5]
artificial intelligence : [1.1, -2.2, 1.7, 2.5, 1.6, 1.4, 1.1, 0.7]
computer vision : [0.9, -2.2, 1.8, 2.5, 1.6, 1.4, 1.2, 0.8]
database : [-9.0, 3.5, 2.3, -5.6, 8.7, -2.5, 2.9, 4.0]
Computer system : [-9.1, 3.0, 2.5, -5.6, 7.7, -3.5, 1.9, 4.2]
security : [-9.3, 3.4, 2.7, -4.5, 8.8, -2.6, 2.9, 3.1]
computer networking : [-9.3, 3.3, 2.7, -4.5, 8.7, -2.5, 2.9, 3.2]
computer system : [-9.1, 3.0, 2.5, -5.5, 7.7, -3.5, 1.9, 4.2]

Figure 3.5: The local embedding created by Taxogen before the level 1 formation in the taxonomy.

Step 8 Now, Taxogen runs the same SphericalKmeans() on the generated new word embeddings and
cluster the data as specified. This clustering creates the 1st level nodes.

computer science

artificial intelligence computer system

natural language
processing
computer vision

security
database
computer networking

... ...

computer science

computer systemartificial intelligence

Figure 3.6: 1st level nodes created by Taxogen where root node and its child nodes are shown at the left.
On the right, the taxonomy with topic nodes are shown.

Step 9 The step 6-8 runs recursively until the depth of taxonomy exceeds the level creation value in the
process. In this example, the Taxogen finally creates another level and then we get the final taxonmy.

computer science

artificial intelligence computer system

natural language
processing

computer vision

database

computer networking

Root node

1st level nodes

2ndlevel nodes

Figure 3.7: Taxonomy example created by Taxogen. Each node represents a concept topic.
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3.3 Hierarchical Clustering
In this section, we explain Hierarchical Clustering a.k.a HCLUS which is formally defined in Algorithm 2.

Algorithm 2: Hierarchical Clustering (HCLUS)
Input: : A parent corpus D ; A parent topic C ; Number of clusters in each level N ; Depth of the

Hierarchy Hd

Output: A dictionary representing the hierarchy
Initialize: LV L← 0 ; W ← word2vec(D) ; Center ← None

1 function hclus(D,C,LV L,N,Hd,W,Center)
2 L← {name := None ; children := []}
3 Wl ←W
4 if (LV L = 0) then
5 {(S1,Center1)} ← SphericalKmeans(Wl, 1)
6 L[name]← ’Root’
7 else
8 {(S1,Center1), (S2,Center2), ..., (SN ,CenterN )} ← Kmeans(Wl, N)
9 for w ∈ C do

10 wvector ← V ectorLookup(Wl, w)
11 ri ← EuclideanDistance(Centeri,wvector)
12 Rlist ← (ri, w)

13 wmin ←Min(Rlist) [Min(.) returns wi whose ri is minimum]
14 L[name]← wmin

15 if (LV L < Hd) then
16 for each Si do
17 Lret ← hclus(Di, Si, LV L+ 1, N,Hd,Wl, Centeri)
18 L[children].add(Lret)

19 return L

The Hierarchical Clustering (HCLUS) algorithm starts with the initial value of LV L as 0 which
indicates the root level. It also initializes the global embedding of corpus D to W . The HLCUS algorithm
once completed returns hierarchy or taxonomy as a dictionary data structure. The function hclus(.) runs
recursively to build the hierarchy. Upon starting the algorithm, hclus(.) function, it first initializes an
empty dictionary L. Then it checks if the current level of hierarchy LV L is less than the depth of the
hierarchy Hd. Based on the logical conclusion of this fact, the process starts. First, it clusters the data
using the Kmeans algorithm into N clusters (provided as input). Next, for each cluster or group, a loop
iterates for every word in that group that calculates the euclidean distance between every word vector in
that group with the centroid Centeri of that group and stores the word and distance pairs in an array Rlist.
After this, it identifies the word that is closest to the centroid by finding the minimum distance from the
array Rlist. This word becomes the node of the hierarchy for that corresponding group or cluster at that
level. This process continues until the algorithm exhausts when the current level LV L is greater than or
equal to Hd and the algorithm stops by returning the result of recursions. This whole method is based on a
depth-first search. In HCLUS Algorithm 2, we can see that we are only learning the word embedding at
the beginning before starting the algorithm. Therefore, HCLUS fully depends on the initial mechanism to
learn word representations.

Example 2 (HCLUS). In this example, we now show step by step how the data is being processed by
HCLUS algorithm. We use the same dataset as given in Example1.

Step 1-5 Here Step 1 to Step 5 are the same as corresponding Step 1 to Step 5 from Example1.
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Step6 In this step, HLCUS runs recursively to add the rest of the nodes in the taxonomy.

computer science

computer vision database

natural language
processing
artificial intelligence

security
computer system
computer networking
technology

computer system

... ...

computer vision database

Figure 3.8: Taxonomy with 1st level nodes created by HCLUS along with different child concept terms.

Step 7 HCLUS runs in similar way recursively as stated in previous Step6 and generates the taxonomy as
below.

computer science

computer vision database

natural language
processing

artificial intelligence

security

computer system

1st level nodes

Root node

2ndlevel nodes

Figure 3.9: Taxonomy created by HCLUS. Each node represents a topic or concept term.

3.4 Nethiex
In this section, we explain the nCRP based algorithm nethiex[11] which is formally given in Algorithm
3. Here, the algorithm first initializes the variable LV L to 0 which indicates the process of the root.
The algorithm then creates the word co-occurrence matrix using the TF-IDF scoring mechanism. Next,
from the word co-occurrence matrix, the algorithm builds network data where each node of the network
represents concept words or topics. This network data is then processed by nCRP based probabilistic
method as proposed in the original paper of nethiex[11]. This produces learned embeddings of the concept
words of topics. Each of the embeddings contains a number of compartments equal to the size of the
dimension. Each compartment represents the embedding of a corresponding level of the latent hierarchy.
The top compartment represents the root level and the lowest compartment represents the leaf node or
the topics in the network data. Now the algorithm triggers the function nethiex(.) function that runs
recursively to extract the hierarchical information for the taxonomy. At first, the function nethiex(.)
initializes the empty dictionary data type variable L. Next, for the root level process when LV L = 0, the
function nethiex(.) extracts the top-level compartment from every embedding from matrix W by using
the expression given below.

W

[
LV L ∗ b d

Dp
c : (LV L+ 1) ∗ b d

Dp
c
]

(3.1)
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The value of each of these compartments is stored in matrix Wl. Next, the function clusters the Wl

using Kmeans where the number of clusters is 1 for the root. The output of Kmeans is then used for the
next level process recursively. In the root level process, the function also assigns the value of the dictionary
L’s key ’name’ as ’Root’.

In the next phase, the root process triggers the function nethiex(.) from within as recursive calls where
LV L value is 1. In this process, the function nethiex(.) first initializes the empty dictionary L. Next,
it extracts the respective compartment for the embeddings using the same expression 3.1 and assigned
that to matrix Wl. Next, the function triggers the Kmeans(.) with Wl as input along with N which is
the number of clusters. This creates the N clusters each having its corresponding topics represented by
Si and centroid vector Centeri. Next, the function iterates over each word in topic C and calculates
the euclidean distance between the input center Center and stores that in array Rlist. The function then
finds the minimum value of the distance and get the corresponding word in wmin which is added to the
dictionary L as value for the key name.

Algorithm 3: nCRP based Nethiex
Input: A parent corpus D; A parent topic C ; Number of clusters in each level N ; Depth of the

Hierarchy Hd

Output: A dictionary representing the hierarchy
Initialize: LV L← 0 ; Center ← None

1 for each document d ∈ D do
2 for for each w ∈ d do
3 tf idf [d][w]← TF − IDF (w)

4 Gnet ← Graph(tf idf)
5 W ← Nethiex(Gnet)
6 function nethiex(D,C,LV L,N,Hd,W,Center)
7 L← {name := None ; children := []}
8 if (LV L = 0) then

9 Wl ←W

[
LV L ∗

⌊
d
Dp

⌋
: (LV L+ 1) ∗

⌊
d
Dp

⌋]
10 {(S1,Center1)} ← Kmeans(Wl, 1)
11 L[name]← ’Root’
12 else

13 Wl ←W

[
LV L ∗

⌊
d
Dp

⌋
: (LV L+ 1) ∗

⌊
d
Dp

⌋]
14 {(S1,Center1), (S2,Center2), ..., (SN ,CenterN )} ← Kmeans(Wl, N)
15 for w ∈ C do
16 wvector ← V ectorLookup(Wl, w)
17 ri ← EuclideanDistance(Centeri,wvector)
18 Rlist ← (ri, w)

19 wmin ←Min(Rlist) [Min(.) returns wi whose ri is minimum]
20 L[name]← wmin

21 if (LV L < Hd) then
22 for each Si do
23 Lret ← nethiex(Di, Si, LV L+ 1, N,Hd,Wl, Centeri)
24 L[children].add(Lret)

25 return L

The algorithm finally calls the nethiex(.) recursively where LV L is incremented by 1. This way the
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Algorithm3 builds the taxonomy.

Example 3 (Nethiex). In this example, we now show step by step how the data is being processed by
nethiex algorithm.

Step 1 Text corpus file has 5 sentences as below. Each sentence is considered as separate document within
the text corpus.

Natural Language Processing is a subdomain of Artificial Intelligence under computer science.
More often computer vision is now part of Artificial Intelligence in computer science.
Technology are changing where computer system is also a core part of computer science.
Database is playing an important role in system where many business applications depend.
Security is a prime concept in computer networking that work under computer system.

Figure 3.10: Corpus data for Nethiex. Each sentence within the corpus is considered as individual
document. The TF-IDF score is calculated based on the documents.

Step 2 In this step, based on TF-IDF scores, word co-occurrence is determined that creates the word
co-occurrence network as below.

natural language processing

artificial intelligence

computer vision

subdomain

computer science computer system

technology secutity

business appication database

computer networking

Figure 3.11: Word co-occurrence network based on TF-IDF score. The words are connected in the network
where the TF-IDF score is more than a threshold.

Step 3 In this step, the word co-occurrence network data is used by the nethiex algorithm and using nCRP
probabilistic framework model, it generates word embeddings for each word from the network.

natural language processing : [0.9, -2.1, 1.6, 2.3, 1.9, 1.7, 1.1, 0.6]
subdomain : [3.1, -3.2, 1.9, 2.5, 1.6, 1.4, 1.6, 0.7]
artificial intelligence : [1.1, -2.2, 1.7, 2.5, 1.6, 1.4, 1.1, 0.7]
computer vision : [0.9, -2.2, 1.8, 2.5, 1.6, 1.4, 1.2, 0.8]
database : [-9.0, 3.5, 2.3, -5.6, 8.7, -2.5, 2.9, 4.0]
security : [-9.3, 3.4, 2.7, -4.5, 8.8, -2.6, 2.9, 3.1]
computer networking : [-9.3, 3.3, 2.7, -4.5, 8.7, -2.5, 2.9, 3.2]
computer system : [-9.1, 3.0, 2.5, -5.5, 7.7, -3.5, 1.9, 4.2]
technology : [-8.9, 3.7, 4.3, -3.5, 0.7, -3.5, 1.9, 4.2]
business application : [-0.1, 2.5, 2.9, -3.5, 5.2, -3.6, 2.9, 3.2]
computer science : [3.6, -0.2, 5.9, 6.5, 1.6, 2.4, 1.3, 2.7]

Figure 3.12: The word embeddings created by Nethiex. Each embedding consists of embeddings of each
level’s concept nodes or topics.

Step 4 In this step, nethiex algorithm takes the top level part of each word embeddings that are for level 0
or root of the taxonomy and sends that to SphericalKmean() to cluster. Here cluster number is 1
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as this is the root node. Then nethiex algorithm finds the nearest word from the cluster center that
becomes the name of the root node of the taxonomy.

natural language processing : [0.9, -2.1, 1.6, 2.3, 1.9, 1.7, 1.1, 0.6]
subdomain : [3.1, -3.2, 1.9, 2.5, 1.6, 1.4, 1.6, 0.7]
artificial intelligence : [1.1, -2.2, 1.7, 2.5, 1.6, 1.4, 1.1, 0.7]
computer vision : [0.9, -2.2, 1.8, 2.5, 1.6, 1.4, 1.2, 0.8]
database : [-9.0, 3.5, 2.3, -5.6, 8.7, -2.5, 2.9, 4.0]
security : [-9.3, 3.4, 2.7, -4.5, 8.8, -2.6, 2.9, 3.1]
computer networking : [-9.3, 3.3, 2.7, -4.5, 8.7, -2.5, 2.9, 3.2]
computer system : [-9.1, 3.0, 2.5, -5.5, 7.7, -3.5, 1.9, 4.2]
technology : [-8.9, 3.7, 4.3, -3.5, 0.7, -3.5, 1.9, 4.2]
business application : [-0.1, 2.5, 2.9, -3.5, 5.2, -3.6, 2.9, 3.2]
computer science : [3.6, -0.2, 5.9, 6.5, 1.6, 2.4, 1.3, 2.7]

computer scienece

...

Root node

Figure 3.13: The 0th level word embeddings created by Nethiex on the left. The root node is shown on the
right.

Step 5 Now, nethiex takes the next section of each word embeddings from the top after the root level
section and using the SphericalKmeans() cluster the words. In this example, we are using number of
cluster as 2, so it cluster the words into two groups. This creates level 1 nodes in the taxonomy.

natural language processing : [0.9, -2.1, 1.6, 2.3, 1.9, 1.7, 1.1, 0.6]
subdomain : [3.1, -3.2, 1.9, 2.5, 1.6, 1.4, 1.6, 0.7]
artificial intelligence : [1.1, -2.2, 1.7, 2.5, 1.6, 1.4, 1.1, 0.7]
computer vision : [0.9, -2.2, 1.8, 2.5, 1.6, 1.4, 1.2, 0.8]
database : [-9.0, 3.5, 2.3, -5.6, 8.7, -2.5, 2.9, 4.0]
security : [-9.3, 3.4, 2.7, -4.5, 8.8, -2.6, 2.9, 3.1]
computer networking : [-9.3, 3.3, 2.7, -4.5, 8.7, -2.5, 2.9, 3.2]
computer system : [-9.1, 3.0, 2.5, -5.5, 7.7, -3.5, 1.9, 4.2]
technology : [-8.9, 3.7, 4.3, -3.5, 0.7, -3.5, 1.9, 4.2]
business application : [-0.1, 2.5, 2.9, -3.5, 5.2, -3.6, 2.9, 3.2]
computer science : [3.6, -0.2, 5.9, 6.5, 1.6, 2.4, 1.3, 2.7]

...

Root nodecomputer scienece

business application security 1st level nodes

...

Figure 3.14: 1st level embedding created by Nethiex. On the left, the embeddings are shown. Highlighted
part are the dimensions of each topic word that are used to cluster the data. On the right, the 1st level
nodes under the root node are shown.

Step 6 Nethiex runs Step5 recursively until the number of levels are less than the taxonomy depth defined
from outside. In this example we use depth as 3. So, Nethiex is creating the taxonomy as below.
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natural language processing : [0.9, -2.1, 1.6, 2.3, 1.9, 1.7, 1.1, 0.6]
subdomain : [3.1, -3.2, 1.9, 2.5, 1.6, 1.4, 1.6, 0.7]
artificial intelligence : [1.1, -2.2, 1.7, 2.5, 1.6, 1.4, 1.1, 0.7]
computer vision : [0.9, -2.2, 1.8, 2.5, 1.6, 1.4, 1.2, 0.8]
database : [-9.0, 3.5, 2.3, -5.6, 8.7, -2.5, 2.9, 4.0]
security : [-9.3, 3.4, 2.7, -4.5, 8.8, -2.6, 2.9, 3.1]
computer networking : [-9.3, 3.3, 2.7, -4.5, 8.7, -2.5, 2.9, 3.2]
computer system : [-9.1, 3.0, 2.5, -5.5, 7.7, -3.5, 1.9, 4.2]
technology : [-8.9, 3.7, 4.3, -3.5, 0.7, -3.5, 1.9, 4.2]
business application : [-0.1, 2.5, 2.9, -3.5, 5.2, -3.6, 2.9, 3.2]
computer science : [3.6, -0.2, 5.9, 6.5, 1.6, 2.4, 1.3, 2.7]

Root nodecomputer scienece

1st level nodesbusiness application

artificial intelligence

security

computer system

computer networking

2ndlevel nodes

natural language processing

Figure 3.15: Second level node created by Nethiex. The topic embeddings shown on the left where the
dimensions (highlighted in bold font) are used to create the taxonomy that is shown on the right.

3.5 Evaluation and Result
In this section, we describe our experiments and results. We begin by describing each dataset that we use in
our algorithms. Next, we provide information about different algorithms and their comparison. After that
detail test results of running each algorithm using all the datasets are given. We discuss the effectiveness
of different algorithms based on our experimental results.

3.5.1 Experimental Setup
Datasets and Environment For all our experiments, we use three real world datasets. The reason for
using these datasets is to evaluate all the algorithms’ unbiased performance as well as to determine how
much the models are generalized.

1. Amazon Fashion Review[10]: This dataset contains product reviews and metadata from Amazon.This
contains approximately 1000000 customer reviews on clothes, shoes and accessories product
categories.

2. DBLB Network: This contains approximately 48000 citations. In this dataset, titles of computer
science papers from the areas of information retrieval, computer vision, robotics, security & network,
and machine learning.

3. BBC News Article: This dataset contains around 2000 news articles. It has five categories of news
articles as business, entertainment, politics, sport or tech.

We use Python version 3.x as our main programming language to implement all the algorithms. We
built the software application in mac and tested in Ubuntu machine as well as mac.

Compared Algorithms We evaluate the below mentioned algorithms. Each of these algorithm is capable
of generating the taxonomy using different methodologies.

1. HCLUS (Hierarchical Clustering) uses hierarchical clustering to create the taxonomy. Here, initial
word embedding is created using word2vec model (a.k.a skip-gram). Then it uses clustering
algorithm (spherical kmeans) recursively to build the taxonomy.

2. Nethiex is based on nested chinese restaurant process probabilistic framework. It first creates
word co-occurrence network from the data corpus using TF-IDF scores. Then using the built word
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co-occurrence network, nethiex finds representations of path from root to leaf of the latent taxonomy.
The algorithm uses these representations and apply spherical clustering recursively to build the
taxonomy.

3. Taxogen uses adaptive clustering and local embedding techniques to first create the word embeddings.
Then recursively build the taxonomy using the embeddings from each level.

4. noac is a variant of Taxogen where adaptive clustering is not used.

5. nole is a variant of Taxogen where local embedding is not used.

Parameter Settings Algorithm Taxogen has two key hyper-parameters: number of cluster N to split
a topic and the representativeness threshold δ. The variations of Taxogen also use the same parameters
as applicable. For example, noac does not use adaptive clustering. Therefore, it does not use δ. For all
the three datasets as mentioned earlier, we use δ as 0.25. We use different value for N for each clustering
point during the entire algorithm process for each dataset. It is fully dependent on the dataset that we
use because each data is unique and different. Therefore, to get the taxonomy from the data, we set the
parameter N as pre-known value as supervised way. For example, we have three levels (including leaves)
for dataset BBC news article. For 0th level, we used N = 1 as trivial case. For 1st level, we used N = 2.
This non-uniformity produces our desired taxonomy more accurately. Nethiex algorithm has also two key
hyper-parameters, first the representation size d which we set to 60 for all the dataset. This gives effective
results while comparing the algorithm with others. The second hyper-parameter is number of cluster N to
split a topic. Now it is getting the value exactly same way like before that we explained for Taxogen. We
use different values for sample hyper parameter when training word2vec model for different datasets. In
our case, we use ’1e-4’ for ’amazon fashion’ and ’bbc’ and ’1e-3’ for ’dblp’. These yield best results for
our experiments.

Metrics We consider the following metrics to evaluate the topic level taxonomy:

• NMI Score is a normalization of the Mutual Information (MI) score to scale the results between 0
(no mutual information) and 1 (perfect correlation).

• F1 Score is a measure of a test’s accuracy where both the precision and the recall of the test are
used to compute the score. The F1 score is the harmonic mean of the precision and recall, where its
best value is at 1 (perfect precision and recall).

We also analyse the algorithms from a different perspective where prior knowledge of categories of unseen
data is known. This supervised way to providing data into different algorithms has significant impact on
the results.

3.5.2 Accuracy Results
NMI Score analysis We conduct our test for all the five algorithms on the three datasets and calculated
average level-wise Normalized Mutual Information (NMI) score. Figure 3.16 depicts the results.
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Figure 3.16: NMI scores for different algorithms with varying data volume of corpus dataset

For the amazon fashion review dataset, we observe that the NMI score for all the algorithms except ncrp
increases with the number of reviews. This is because more accurate contexts of target words are available
that enables better learning. Moreover, Taxogen outperforms the other algorithms because of its adaptive
clustering and local embedding features. Since the volume of data in amazon review dataset is significantly
high, it helps training the neural network based local embedding process very well within Taxogen. The
local embedding what is used by Taxogen helps to discriminate the clusters while moving down to more
granular level. Otherwise, more we go down to the hierarchy of taxonomy, the other algorithms that do not
use local embedding and do clustering based on fixed global values, could not identify proper clustering
boundary leading to sub-optimal results. We also observe that the ncrp based algorithm is performing
sub-optimally. We believe that, ncrp based algorithm heavily depends on the probability distribution of
different words within the corpus. It lacks the capability to learn semantic meaning of the target word
which word2vec can do very well incorporating the context based learning. In addition to these, we notice
that, sometime, the NMI score might suddenly reduce as we increase the data volume. We believe that,
due to randomness of the selected data, contexts of words within the data become poor that overall reduces
the NMI score.

For the BBC news article dataset, we observe similar trends like NMI scores of amazon fashion reviews
data. Here, Taxogen outperforms the other algorithms. The performance is increasing as we are increasing
the number of news articles. Taxogen’s superior ability to learn latent taxonomy in this case is due to
local embedding and adaptive clustering features. Also we believe that the BBC news article contains well
written contents. It has rich set of context words for each target word which enable the algorithms to learn
the semantic meaning easily. As expected, ncrp based algorithm does not perform well. This explains our
justification that ncrp based probabilistic model is not able to learn the semantic meaning only based on
the probability distribution of words within the corpus.

For the DBLP dataset as well, we see performance increase of algorithms along with the increase
of data volume. Here, also, the Taxogen outperforms other algorithms when running on full volume of
data. Here, in DBLP, we use the titles of papers from different research groups. Therefore, the context
words are heavily coherent for every target word we are interested in. The ncrp based algorithm performs
sub-optimally here due to poor semantic understanding of the data. The probability distribution of words
within corpus is not able to encode meaning of the data properly.

F1 Score analysis In this section we show the F1-scores (Micro & Macro) averaged over all the levels
based on all three datasets. The F1-macro score is plotted in Figure 3.17 and the F1-micro score is in
Figure 3.18.
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Figure 3.17: F1-scores(macro) for different algorithms on varying data volume of different dataset

We observe in Figure 3.17 that the F1-macro scores of all the five algorithms calculated on the three
datasets are consistent with our averaged NMI scores. Here also, as we increase the volume of data, the
scores are increasing slowly. For all the datasets Taxogen outperforms the other algorithms. The reason
that Taxogen is performing significantly well for all the datasets is due to better semantic learning by local
embedding and adaptive clustering. The ncrp based algorithm performs sub-optimally. Our justification for
this is same as before, where we argue that, ncrp based probabilistic model lacks to capture the semantic
meaning based on the probability distribution of words within the corpus.
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Figure 3.18: F1-scores(micro) for different algorithms on varying data volume of different dataset

We observe similar trend in Figure 3.18 for F1 micro scores of all the five algorithms as we have
seen earlier in Figure 3.17 and in Figure 3.16. Here also, as we increase the volume of data, the scores
are increasing slowly. Taxogen outperforms among other algorithms for all the datasets. The ncrp based
algorithm performs sub-optimally here due to the same reason that we have argued for NMI score.

3.5.3 Qualitative Results
In this Section, we show the taxonomies created by Taxogen algorithm for the three datasets. Each node
is split uniformly here. The left part of Figure 3.19 shows the full taxonomy created by Taxogen for
amazon fashion review dataset where the number of clusters for each 1st level as 3 and for 2nd level as 4.
Taxogen splits the root topic into 3 subtopics: ’cardigan sweater’, ’ankle sock’ & ’purse’. These subtopics
represents the major product categories that are found in the dataset.
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(a) Taxonomy on amazon fashion review
data

(b) One of the second level nodes ex-
panded

Figure 3.19: Taxonomy created by Taxogen on Amazon Fashion Review dataset with one of the second
level nodes expanded.

On the right part of Figure 3.19, the second level node ’purse’ is expanded where the fine grained topics
consist of semantically coherent data. For example, the node ’purse’ contains ’tote bag’, ’watch band’,
’necklace’, ’checkbook holder’, ’wig cap’. This strongly agrees with our fashion product category
relationship.

(a) Taxonomy created by Taxogen on
BBC dataset

(b) One of the second level nodes ex-
panded

Figure 3.20: Taxonomy created by Taxogen on BBC news article dataset with second level node expanded.

Similarly, in Figure 3.20 (a), we show the taxonomy created by Taxogen for BBC news article dataset.
Here each parent topic is split uniformly. The cluster value for each level is used as 2. The root level
is split into two subtopics: ’opinon poll’, ’portable player’. This splits the subtopics into two broader
categories, where one of them represents business, politics & sports related articles, and other one is related
to technology & entertainment. These clustering truly represents the nature of the BBC news article dataset
where we take articles from business, entertainment, technology, politics, sports. Furthermore, as we can
see in Figure 3.20 (b), where ’portable’ node under ’portable player’ node is expanded. We can see here
that, Taxogen makes the taxonomy of news article categories from BBC news article data where categories
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are identified at appropriate levels.

(a) Taxonomy created by Taxogen on
DBLP dataset

(b) One of the second level nodes ex-
panded

Figure 3.21: Taxonomy created by Taxogen on DBLP dataset with second level node expanded.

Finally, in Figure 3.21(a), we show the taxonomy created by Taxogen for DBLP citation titles dataset.
Here each topic is split uniformly as well. The cluster value 2 is used for splitting the 1st level node. Each
node in 2nd level is split using cluster value 3. The root level is split into two subtopics: ’image annotation’
and ’computer network’. This clustering of words from different titles broadly segregate the data where
in one part, it clubs words from computer vision, bio-informatics and natural language processing.
Whereas in other part, all the words from architecture, network and security. This greatly represents
the true relationship among different titles which were hidden in the citation network data. Finally, in
Figure 3.21(b), the further split of one of the 2nd level node ’cyphertext attack’ which is under the node
’computer network’ is highlighted. As we can see, the algorithm successfully collected all the relevant
words which are solely related to computer security. We can conclude from this qualitative analysis that,
Taxogen algorithm can successfully extract taxonomy that is hidden in textual data.



4
Enriching Taxonomy

In this thesis, we only study the insertion of a new concept node in a taxonomy whenever new data from the
same domain of knowledge is available. We use the transfer learning1 technique to get word embeddings
from new data. In addition, we use similarity scores to identify the correct parent node in the existing
taxonomy in order to add the new word. In the following section, we describe in detail our novel approach
’TaxoTL’ algorithm.

4.1 TaxoTL
To implement the logic to modify a taxonomy, first we save the trained model from existing algorithm
(e.g. Taxogen). Next, we instantiate a new blank word2vec model based on the new data. After this,
we load the word embeddings from the trained model to the new blank model. Then, we train this new
model. Once the training is done, we use cosine similarity between the each new word’s embedding
and each embedding of the nodes from existing taxonomy. Based on similarity scores, we add the new
word in the existing taxonomy where score is best by traversing the taxonomy tree. The basic algorithm
uses word2vec[15] to find the word embedding from the new data. TaxoTL is defined in Algorithm 4.

1See also https://en.wikipedia.org/wiki/Transfer_learning

29

https://en.wikipedia.org/wiki/Transfer_learning
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Algorithm 4: TaxoTL
Input: New corpus Dnew ; new topic Cnew; existing taxonomy T ; existing trained model M
Output: New taxonomy Tnew

1 Ml ← LoadModel(M)
2 Ml.Retrain(Dnew)
3 for (each word wi ∈ Cnew) do
4 wvec ← GetV ector(Ml, wi)
5 similarity score← []
6 for (each node n ∈ T ) do
7 wn ← V ectorLookup(T, n)
8 similarity score[n]← CosineSimilarity(wn,wvec)
9 similarity score sorted← Sorted(similarity score)

10 if (wn is first index in similarity score sorted) then
11 Tnew ← T.addnode(wn, wi)

12 Return Tnew

Algorithm 4 takes as inputs new corpus data Dnew, new topic names Cnew, existing trained model M
and existing taxonomy T . At the beginning of the algorithm, it first loads the existing model M into Ml

using LoadModel(.) function. Next, the algorithm retrains the loaded model Ml using new corpus data
Dnew. Now, the algorithm iterates for each word w available in Cnew and get the corresponding word
embedding wvec from Ml using the GetV ector(.) function. After this, for each word, it iterates again for
all nodes in the existing taxonomy T and gets the vector of each node using V ectorLookup(.) . Then the
algorithm calculates the cosine similarity using CosineSimilarity(.) between the word embeddings of
each word from Cnew and every node embeddings from T . Then add the new word to that node of T for
which the cosine similarity value is highest i.e. 1. These two iterative processes eventually modify the
existing taxonomy T by adding new words from Cnew and return Tnew.

Example 4 (TaxoTL Algorithm). Let’s assume that we have an existing taxonomy given in Figure 4.2. In
addition, we have a new data set from the same domain of knowledge, i.e. from ”Database Management
System”. After the prepossessing, we retrain the already saved trained model with this new data. Then we
apply the concept of ”Transfer Learning” to extract the learned representation of new words or topics as
available from the new data set. Eventually, these embeddings are used to enrich the existing taxonomy by
means of similarity measures.

Step 1 At first, we load the already trained model that was saved. Then, we retrain this loaded model
on the new dataset. The process is depicted in Figure 4.1. The existing taxonomy that needs to be
enriched is also available at the beginning. In this example the same is seen in the Figure 4.2.
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Figure 4.1: Retraining the existing model. First the model is loaded from disk into memory. Then the
loaded model is retrained based on the new dataset.
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Figure 4.2: Existing Taxonomy to be enriched by TaxoTL

Step 2 Let’s say that we have a new term in new dataset as ’query’. We extract the embedding of this term
from the retrained model. The value is [-9.0,-0.2, 1, -3, 0.4, -0.15, 1, 2].

Step 3 Now, we extract each of every node of the existing taxonomy by visiting the taxonomy tree using
tree traversal algorithm.

Step 4 Now, in this step, we measure the cosine similarity between the embedding of ’query’ and each of
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the node’s embedding that we collected from the existing taxonomy. We use this similarity score
to find the node of the taxonomy to which the term ’query’ is most similar i.e. where the score is
maximum. Here, the similarity scores w.r.t every the branch nodes (assuming existing leaves do not
have any children) is calculated and available in Table 4.1.

Node Name Cosine Similarity
Artificial Intelligence -0.029525469369307444

Robotics -0.0307924300118451
Speech 0.121751157196299
NLP -0.20548227674242

Computer Vision 0.0384822663647254
System 0.9616400471365544

Architecture 0.917039797156302
Network 0.9332197571660438
Database 0.9818993128302635

Table 4.1: Cosine similarity scores between node of taxonomy and new term embedding

Step 5 Finally, we’ve added the term ’query’ as a child node under the node ’Database’ of the taxonomy
found in previous step based on similarity score. This is shown in Figure 4.3.
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Figure 4.3: Existing Taxonomy enriched with new word. The new keyword added in the taxonomy is
highlighted in red colour.
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4.2 Evaluation & Results
In this section, we describe experiment results of the TaxoTL algorithm. First, we describe the datasets we
used, the evaluated algorithms and the parameter settings for the experiment. Then, we analyse in detail
the experimental results.2

4.2.1 Experimental Setup
Datasets For all our experiments, we use three real world datasets. We use these different datasets in
order measure the generalization performance of our TaxoTL algorithm. These different datasets also help
to measure the performance in unbiased way leading to accurate insight.

1. Women’s E-Commerce Clothing Reviews[10]: Women’s Clothing E-Commerce dataset revolving
around the reviews written by customers. It has 26797 customer reviews for women clothing. We
take 20000 reviews from it for our experiment.

2. DBLB Network: This contains approximately 4800 citations. In this dataset, titles of computer
science papers from the areas of information retrieval, computer vision, robotics, security & network,
and machine learning.

3. News Article: This is a reusable publicly-available dataset for “media bias” studies. The content of
this dataset is publish date, title, subtitle and text for 3824 news articles. We take 200 news articles
from these dataset.

Evaluated Algorithms In this experiment, we compare the performance of TaxoTL against Taxogen
and Taxogen nole. The choice of Taxogen is motivated by the fact that this algorithm outperforms the rest
of algorithms for the generation of taxonomy.

4.2.2 Accuracy Results
We conduct our test on the three datasets where we use Taxogen to run fully on each dataset (existing
and new data). We use TaxoTL algorithm on the Taxogen’s model as well as Taxogen nole model. We
calculate average Normalized Mutual Information (NMI) score for each of these cases and plot the same
in Figure 4.4. In each dataset, we consistently increase the volume of new data and then we run each of
the above cases where training is happening from scratch for Taxogen full run. Whereas, TaxoTL first
loads the already trained model (from Taxogen or Taxogen nole) that is initially saved on the disk. After
that, it retrains the model using only the new dataset. Our novel approach TaxoTL makes use of ’Transfer
Learning’. Due to the lack of new data volume, the algorithms (e.g. Taxogen) can not train the model
efficiently only based on the new data. Hence, we always have to run Taxogen on full dataset that includes
original old dataset as well as new data. On the other hand, our transfer learning based TaxoTL helps in
such scenarios where it uses only new data for training the model in order to get the word embeddings.
Moreover, for each dataset, the data belongs to same domain of knowledge from where the already trained
model is being used. This homogeneity in data is helping our TaxoTL algorithm to train the model easily
and efficiently.

2The code is available at: https://github.com/milibiswas/taxonomy-enrichment

https://github.com/milibiswas/taxonomy-enrichment
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Figure 4.4: NMI scores for different algorithm on varying data volume of corpus data

In Figure 4.4, we observe that TaxoTL and and Taxogen full run have similar performance in all datasets
except fashion review. In Figure 4.4(a), we see the lower performance of TaxoTL on Taxogen model.
Since, Taxogen uses local embedding process, therefore, it generates multiple models each associated
with local embedding. These multiple models are saved on disk. Our TaxoTL sequentially loads these
multiple models that contain overlapping words each having different embeddings. In this loading process,
some of the correct embeddings of these overlapping words are overwritten by embeddings from wrong
model. This leads to poor performance by TaxoTL. However, we also see that, TaxoTL on Taxogen nole
model performs similar to Taxogen full run. We believe that, TaxoTL on Taxogen nole has no overlapping
models because Taxogen nole does not have any local embeddings. It only uses one global embedding.

For news article and DBLP datasets, we see that TaxoTL on Taxogen model performs better compared
to what we have seen for fashion data. This is due to the fact that, the number of overlapping words in
different local embedding models saved on disk are less or none. Therefore, we see better scores for these
datasets.

4.2.3 Efficiency Results
In this section, we compare the runtime and memory consumption of TaxoTL against Taxogen. Here,
first we save Taxogen models setting input data volume as 10%, 50% and 100% for all the three datasets.
Then we use these models while training TaxoTL and capture the running time and memory consumption
as 10%, 50% and 100% input data volume. We also capture the runtime and memory consumption of
Taxogen by running the algorithm with previously saved 10%, 50% and 100% data and adding each with
new additional data. We give details of the results below. In addition, we also measure the runtime of
TaxoTL and Taxogen algorithms while fixing the full original data volume of each datasets to 100% and
then we increase the new additional data volume. Figure 4.6 depicts the results.

Runtime analysis We measure the runtime of TaxoTL and Taxogen algorithms on all the three datasets
in order to compare the efficiency of the algorithms. We plot the results for varying input data volume in
Figure 4.5.
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Figure 4.5: Runtime of different algorithms with varying volume of input data
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Figure 4.6: Runtime of different algorithms with varying volume of input data

Figure 4.5 shows that the runtime of TaxoTL increases almost linearly with the data size while the
runtime of Taxogen increases almost exponentially. We notice that the runtime difference between TaxoTL
and Taxogen increases significantly with the the data size. We see in fashion review for 1M reviews data,
TaxoTL is 50× faster than Taxogen where TaxoTL takes 112 seconds whereas Taxogen takes 5484 seconds.
We also notice that in DBLP for 48K titles as well as in BBC news articles for 2K articles, TaxoTL is
approximately 10× faster than Taxogen. In news article for 2K articles, TaxoTL takes 20 seconds and
Taxogen takes 229 seconds. In DBLP for 48K titles, TaxoTL takes 17 seconds and Taxogen takes 165
seconds. Since the data volume of fashion review dataset is significantly higher than news article and
DBLP dataset volume, therefore the run time of Taxogen is much higher for fashion review data.

Figure 4.6 shows that, if we use the full original dataset, the runtime increases almost linearly for both
Taxogen and TaxoTL. We also notice that, the difference in runtime between the Taxogen and TaxoTL
remains significantly high. We argue that, in Figure 4.6, as the increase of new data volume is not very
significant compared to full data volume, therefore, we see linear pattern in runtime increase along with
data volume increments. For fashion review data, we use 1 million reviews and then increase the new data
volume by 10%. We see that TaxoTL is almost 50× faster than Taxogen. Since the new dataset size is
very less compared to the original data volume, therefore, increasing in new data size does not impact the
runtime of Taxogen as well as TaxoTL and we get constant runtime gap between the algorithms. We also
see similar pattern for DBLP and news article where TaxoTL is almost 10× faster than Taxogen. We see in
fashion review for 20k reviews, TaxoTL takes 123 seconds whereas Taxogen takes 5495 seconds. We also
notice that in DBLP for 4.8K titles, TaxoTL takes 22 seconds and Taxogen takes 173 seconds. In news
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article for 200 articles, TaxoTL takes 20 seconds and Taxogen takes 241 seconds.
We can justify that, our algorithm TaxoTL is taking less time than the Taxogen because TaxoTL uses

only new incremental data while training the model.

Memory consumption analysis We also measure the memory consumption of TaxoTL and Taxogen
algorithms on all the three datasets. We run every algorithm with relevant input data volume and capture
the memory usage of each algorithm. We then average the memory consumption over the time of the
algorithms and plot the data in Figure4.7. We measure physical memory, shared memory and virtual
memory consumption.
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Figure 4.7: Memory consumption of different algorithms with varying volume of input data

The resuts show that the memory consumption of TaxoTL is increasing almost linearly along with the
data size. However, the memory consumption of Taxogen is increasing almost exponentially as we increase
the volume of input data. We also notice that the difference in memory consumption between TaxoTL and
Taxogen increases exponentially as the data volume increases. This result shows that our TaxoTL is very
memory efficient compared to Taxogen algorithm. Taxogen processes complete data that encompasses
original full as well as new additional data which requires sufficient amount of large memory. Whereas, our
TaxoTL only needs to load the trained embeddings from saved model to initialize the word2vec model’s
projection layer and then retrain model using the new data only. This requires significant less memory
because the new data size is smaller than the full data size and the train embeddings size also is very less
compared to whole corpus data as it only contains embeddings of words and contexts.

4.2.4 Qualitative Results
In this Section, we show the taxonomies modified by TaxoTL using all three new datasets. In Figure 4.8(a),
the full taxonomy for new fashion review data is shown. This is created by running TaxoTL based on the
model saved from Taxogen algorithm. Moreover, here, we take taxonomy to be enriched from the Taxogen
algrothm. Here, the TaxoTL adds new words e.g. ’culotte’, ’trouser’, ’tutu’,’blouse’ etc. by learning
the corresponding embeddings. Here, this learning is greatly improved due to our ’Transfer Learning’
approach. In Figure4.8(b), we expand the third level node ’scrub pant’ which represents the all the pant
and short category. We can see that all the new pant related keywords are added under this ’scrub pant’
node. This is highlighted in the Figure 4.8(b)
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(a) Taxonomy created by TaxoTL (b) A 2nd level node of TaxoTL

Figure 4.8: Modified taxonomy by TaxoTL algorithm along with one second level node expanded for
fashion review data.

(a) Taxonomy modified by TaxoTL (b) A 2nd level node of TaxoTL

Figure 4.9: Modified taxonomy by TaxoTL algorithm along with one second level node expanded for news
article data.

In Figure 4.9, we show the modified taxonomy created by TaxoTL for new news article dataset. Here,
the algorithm adds new keywords e.g. ’hollywood’, ’singer’, ’producer’, ’television’ etc. under ’actress’
node because these new words are are related to technology and entertainment group. On similar note,
TaxoTL adds new words from new DBLP tiltes in the corresponding existing taxonomy. In Figure 4.10 the
newly added words e.g. ’attack’, ’encryption’, ’authentication’, ’homomorphic’, ’multiparty computation’,
’ciphertext’ etc. under the node ’ciphertext attack’. These new words are from computer security group
that the algorithm correctly adds in the taxonomy.
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(a) Taxonomy modified by TaxoTL (b) A 2nd level node of TaxoTL is shown.

Figure 4.10: Modified taxonomy by TaxoTL along with one second level node expanded for DBLP data.



5
Conclusion and Future Work

In this thesis, we study algorithms capable of learning taxonomy from a text corpus. We see two main
categories of algorithms where one makes use of word2vec (skip-gram) that is essentially a neural network
model, and the others are using the nCRP probabilistic framework as a prior distribution while building
the tree-like taxonomy from the corpus. Our experimental results show that word2vec based algorithm
generally performs well because it heavily relies on the context of the target words, whereas, the nCRP
based model performs sub-optimal as it is based on a probabilistic model that seeks the probability
distribution of words in textual data. In most of the cases, nCRP based algorithm is not able to encode
the context while learning the embeddings of the target words from the text corpus data. Additionally,
we propose a novel approach TaxoTL that uses transfer learning in order to learn embeddings of new
words for enriching the existing taxonomy when a new textual dataset is available from the same domain
of knowledge. Our measured NMI scores show that our novel approach based on the transfer learning
technique can enrich the taxonomy by identifying the correct concept nodes using the similarity score
among different learned word embeddings. This score also shows that our TaxoTL algorithm’s accuracy is
almost similar to Taxogen. Moreover, our TaxoTL has superior efficiency in terms of running time as well
as memory consumption. We observe that TaxoTL is more than 50× faster than Taxogen when running on
Fashion review data and 10× faster on DBLP & news article datasets.

Finally, we observe that there are areas where we still need to do further research. For example, it
would be of interest to work on an automatic cluster detection algorithm. This will enable many taxonomy
generation algorithms that can generate the hidden taxonomy from corpus automatically without any need
of manually given information about the number of clusters in each level from outside. Secondly, it would
be useful to work on cases where we can extract a sub-taxonomy from a new dataset and then merge that
sub-taxonomy with the original taxonomy. There are different proposed algorithms available which claim
to work for streaming data instead of batch mode for the skip-gram model.
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