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Abstract

This master thesis describes how to automatically link the structured information in
Web tables to the Knowledge Base. The Web has over 100 million tables which provide
a valuable source of relational data. These tables can be used for Web table search and
Knowledge Base augmentation if we understand them semantically. Lack of a unique
schema for Web tables makes it a challenge to use this useful source of information and
to convert the Web tables into a machine-understandable knowledge. Additionally, lack
of table header for a vast majority of these tables and the ambiguity of the table entities
are considered as a barrier for this task. Web table annotation aims to solve this problem
by presenting additional information for the HTML tables and defining their entities by
the Web Knowledge source embedded in the Knowledge Bases.
Our work presents two unsupervised approaches to tackle this problem. First, we study
the use of Lookup-based methods as a scalable solution and second, we use the word
Embeddings to understand the semantics of the Web table and provide the correspond-
ing row annotations. We show that our proposed method significantly outperforms the
existing Semantic Embedding methods. Moreover, we compare different Node Centrality
measures which can not only be used in Web Table annotations, but also for any graph-
based applications. Finally, we contribute by presenting an updated version of Limaye
Gold Standard with annotations from DBpedia.

Keywords: Web Table Annotation, Semantic Annotation, Data Mining, Entity Disam-
biguation
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1
Introduction

1.1. Motivation

Human beings can learn and understand new concepts by using the data that they have
seen. There is no doubt in the importance of the input information for the process of
understanding. To understand any word, we need the context. Previous knowledge helps
for better understanding.

The same holds for all the sources of information on the Web. We need context to
understand it. In case of text understanding, we have surrounding text as the context.
We can use the keywords in the same paragraph or the whole text to get a general idea.
The machine must take the same steps to understand any text inputs. Extraction of
the contextual keywords gives a general idea. These words are usually around the same
topics.

Apart from the text on the Web, Web Tables are also a valuable source of informa-
tion. In the ideal case, we would have the Web tables, with the correct headers, and many
rows with correct values inside. We could understand and use this useful information but
in real Web Tables, we do not always have the headers, or there are typos or empty cells.
Later in this chapter, we state the problem, and we see why it is difficult to extract the
information from Web tables and what are the challenges to benefit from this structured
data.

2



1.2. Web Table Annotation 3

Tab. 1.1.: Illustration of the ideal Web table

Table 1.1 shows an example of an ideal Web table that contains the header informa-
tion on each column, and the entities have the correct dictation. Also, as we can observe,
the table contains both numeric and textual values. Any combination of numbers, letters,
and symbols are possible. In this table, by looking at the first column, we can get the
general topic of the table. More details are available in the rest of the columns. For
the first row, we have a computer-animated musical fantasy film. To explain the Film
Title column, we use the other attributes of the table as the released date, the producer,
and its gross. By the end, we can decide as a human that this table demonstrates the
animated-films information.

1.2. Web Table Annotation

The Web contains named entities such as people, places, organizations, and products and
they can be ambiguous [11]. In this thesis, we specifically deal with the named entities
in the Web tables, and our goal is to disambiguate the entities and give the annotation.
To annotate each of the entities mentioned in the Web table, we connect them to the
Knowledge Base.

Knowledge Bases (KB) contain rich information about the world’s entities, their
semantic classes, and their mutual relationships. Such kind of notable examples include
DBpedia [16], YAGO [26], Freebase [3] and Probase [6] [23]. Depending on the Knowl-
edge Base, each entity has a specific form of a unique link or ID. In our example, DBpe-
dia defines the entity, Frozen, as http://dbpedia.org/page/Frozen_(2013_film) and
Wikidata defines it as https://www.wikidata.org/wiki/Q386724. In this thesis, we
use Wikidata [33] to annotate entities. The used gold standards contain DBpedia links.
Later in Chapter 4, we provide a mapping file with DBpedia links with their equivalent
links in Wikidata.

http://dbpedia.org/page/Frozen_ (2013_film)
https://www.wikidata.org/wiki/Q386724
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Having these definitions in mind, we define Web Table Annotation as the task of
extracting the rows of Web tables and linking them to semantically rich descriptions of
entities published in Web Knowledge Bases [5].

Without the header row, it is hard for the machine to understand the main topic
of the table. What makes this task even more difficult is the disambiguation of the same
name among its different possible meanings. As an example, in Table 1.1, the entity Fox,
can be annotated as a mammal, http://dbpedia.org/page/Fox, a TV series, http://
dbpedia.org/page/Fox_(TV_series), a family name, http://dbpedia.org/page/Fox_
(surname), etc. In DBpedia, all the possible disambiguations of the entities are accessible
on their disambiguation page. For this example, there exist 89 different disambiguations
at http://dbpedia.org/page/Fox_(disambiguation). To disambiguate an entity in a
row, we can use the information in the other columns. It is also possible to have only one
column in a table. In this case, we may use the other rows of the Web table to decide
about the correct disambiguation.

Tab. 1.2.: Political parties in Denmark from T2D dataset

http://dbpedia.org/page/Fox
http://dbpedia.org/page/Fox_(TV_series)
http://dbpedia.org/page/Fox_(TV_series)
http://dbpedia.org/page/Fox_(surname)
http://dbpedia.org/page/Fox_(surname)
http://dbpedia.org/page/Fox_(disambiguation)
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Tab. 1.3.: Political parties in Sweden from T2D dataset

Tab. 1.4.: Political parties in Ireland from T2D dataset

An entity can have different names. For instance, the bird Green sandpiper, http:
//dbpedia.org/page/Green_sandpiper, is also called Tringa ochropus. Also, an entity’s

http://dbpedia.org/page/Green_sandpiper
http://dbpedia.org/page/Green_sandpiper
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name may change over time [5]. It is a challenge from our early stages of entity disam-
biguation and entity annotation. We search for the entity to get the initial candidates. If
the entity name in the Web table is different from its equivalent page title on Knowledge
Base, we do not have access to the correct initial candidates. If there is a difference
between the entity in the table and the Knowledge Base, we use an edit distance function
such as Levenshtein. Levenshtein edit distance can be useful if there is a typo in the Web
table. In our implementation, we accept the similarity ratio of more than 0.85. If the
entity Green sandpiper was written as Green sandpip, the similarity ratio would be 0.92,
which is more than our acceptance ratio. When we have two different names for one en-
tity, this solution cannot help. For the entities Green sandpiper and Tringa ochropus, the
similarity ratio is 0.27, and we cannot solve this problem with the edit distance function.

On the other hand, different concepts may be expressed using the same words.
Table 1.3, Table 1.2, and Table 1.4 show the HTML tables of political parties in Sweden,
Denmark, and Ireland, respectively. Christian democrats, social democrats, and liberal
party are the three entities that exist in both Table 1.2 and Table 1.3, although they
represent different concepts. Since other columns of these rows are numeric values, we do
not use them for disambiguation. To decide about the correct disambiguation, we should
either have the table caption or use the information stored in the other rows. In Table
1.2, the entity danish people’s party can help us to understand that the table is about
Denmark. The entity Sweden democrats (sd) helps us to understand the topic of Table
1.3. The same problem appears in Table 1.4 for the green party and the socialist party
entities. The entity green party exists in Table 1.3, and the entity socialist party exists
in Table 1.2 too.

1.3. Objectives

In this work we describe the state of the art approaches for Web Table Annotation.
First, we give a review on the most common approaches. Then, inspired by a recent
paper by Efthymiou et al. [5], we introduce a new method to achieve better results.
Before describing our approach, we discuss the modifications that we have made to
adapt the baseline to our approach.

1.4. Thesis Layout

The rest of the thesis is as follows:

Chapter 2 presents the recent works on Web Table Annotation and describes the
common ideas among the existing solutions. We describe the fundamentals to understand
the thesis as well as the state-of-the-art methods.

Chapter 3 covers the proposed methods to disambiguate entities in Web tables. We
describe the lookup-based and semantic embeddings approaches, and their combination
as well. This chapter contains our baseline methods and our proposed approaches.

Chapter 4 contains the benchmark data sets and brief representation of the avail-
able files in each data set. The main purpose of this chapter is to show the results of the
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implemented methods on each of the data sets. At the end, we mention some useful ex-
perimental setup that we exploit for this work which are useful for the efficient execution
of the code.

Chapter 5 concludes the thesis and talks about possible future works.



2
State of the Art

2.1. Introduction

In this chapter, we provide an overview of the existing solutions for Web table annotation.
We compare different techniques in look-up based methods as well as semantic embedding
methods. This chapter covers the background techniques on which we base our own
propositions and improvements.

The first step before annotating a Web table is to understand what is it about and
which entities, columns, or rows, are useful for the annotation task. [1] believes there
is a column in every Web table, which demonstrates the main purpose of that table.
Other papers like [21], [28], and [5] follow the same idea. Venetis et al. [28] specify the
subject column as the subject of the Web table, which contains the set of entities the
table is about, where the other columns represent binary relationships or properties of
those entities. To detect the label column, they labeled a set of tables to train a model.
Both the concept identification for columns and relation identification are based on the
maximum likelihood hypothesis. On the other hand, Efthymiou et al. rely on a heuristic
method [5]. The leftmost column with the maximum number of distinct non-numeric
values is the label column. Although the solution for finding this most important column
can vary, these approaches agree on the importance of such a column.

To annotate a Web table, we can map the rows, columns, or the individual cells to
the Knowledge Base. In the literature, there are several approaches [2, 14, 29], in which
the authors have tried to provide annotations for the web table cells. On the other hand,
other approaches like [5] have connected each row to one of the entities in the Knowledge
Base. In this thesis, we annotate each row by a Wikidata page. In the context of the
Web Lists, the entities have the same type. It is the same scenario as in the Web table
columns. Shen et al. propose a framework to link the entities of the web lists with the
Knowledge Base [24]. Ritze et al. combine rows and columns matching to the entities
and schema of DBpedia [21]. Fan et al. use the table columns to map them to one or
more concepts in the Knowledge Base [7].

Much work on the potential of supervised methods has shown striking results [2,
14, 24, 1]. Also, employing the crowd-sourcing methodologies for difficult tables is an
interesting approach [7], but, we believe that the use of human judgment to help the
annotation reduces the generality of the methods [5]. One of the significant drawbacks

8



2.2. Lookup-based Method 9

of adopting supervised methods is the unscalability of such methods. An alternative
solution could be to leverage the more scalable approaches like unsupervised methods.
Zhang et al. [29] and Efthymiou et al. [5] perform the annotation without any previous
hypotheses about the input data and provide unsupervised solutions. In this thesis, we
do not make any assumptions about the input data.

2.2. Lookup-based Method

2.2.1. Candidate Generation

In the initial stages of annotation, we should have some candidates for each entity of the
table. There exist services like DBpedia lookup service1 to find the possible candidates
for the annotation of each entity. These candidates are refined or enriched based on
the different methodologies presented in each paper. [21] uses DBpedia lookup service
to find related DBpedia URLs for each keyword. It also provides auto-completion of
the keywords if the string is incomplete. [29] uses Freebase for candidate generation
phase. This service is now deprecated. In the context of entity disambiguation in text
documents, [27] uses Surface Forms to prepare a list of unrefined entity candidates from
all the sources. It applies the string normalization approach, like removing suffix and
prefixes for some specific labels, removes time stamps, plural forms, etc. to clean the
input. [31] performs trigram similarity between the index and normalized surface form
for candidate generation.

Apart from the already existing lookup services, several existing works define custom
candidate generation techniques. Efthymiou et al. [5] create their FactBase method over
Wikidata entities. Next, we explain in detail the FactBase Lookup method. To get the
first possible results, [1] looks for each entity in a database from the Knowledge Base with
the format as (value, entity, score).

Wikification is the process of annotating the mentions of concepts in a document
with their corresponding URL of the Wikipedia [13]. In Wikification approaches, a system
generates a ranked set of possible candidates for a given mention by querying Wikipedia
[4, 10, 18]. The standard approach for doing so is to collect all hyperlinks in Wikipedia
and associate each hyperlinked span of text with a distribution over titles of Wikipedia
articles it is observed to link to.

The topical coherence was first used by Cucerzan for disambiguation of entities [19].
A large scale named entity disambiguation system uses the contextual and categorical
information extracted from Wikipedia and the context of the document. To achieve a
surface form for entity matching, the title of the entity page, as well as the reference to
entity page in other Wikipedia articles are used. Milne and Witten [18] improve topical
coherence by normalized Google distance. They use only the unambiguous entities in
the document to get the context. The disambiguation is done simultaneously to keep the
coherence among each disambiguated set. The proposed methods by Han [10, 9] utilize all
words of Wikipedia to learn entity-word association and category hierarchy in Wikipedia
to capture co-occurrence of the entities.

1http://wiki.dbpedia.org/lookup/
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Shen et al. [25] perform the task of entity linking by unifying Wikipedia and Word-
sNet2 Knowledge Bases. To generate the surface form, they use dictionaries of entity
pages, redirect pages, disambiguation pages and hyperlinks in Wikipedia articles and use
their counts to define the link probabilities. [30] is a ranking-based disambiguation system
with the domain-specific evaluation on bio-medical entity disambiguation. Their focus is
on the bio-medical domain to analyze the influence of user data on disambiguation result.
The top three properties that took into consideration are entity context, user data, entity
quantity, and entity heterogeneity.

2.2.2. Columns’ Relations

Even though in most situations having a label column can be enough to annotate a
table, its binary relations with reference columns may appear relevant too. Reference
columns describe the properties of the label column. If there is any relation between
the columns, the same pattern should exist for different rows of the Web table. For
example, Table 2.1 shows a sample table of the countries. Capital, currency, and language
columns are the properties of the column country. For the entity United Kingdom (https:
//www.wikidata.org/wiki/Q145), there is a capital relation (https://www.wikidata.
org/wiki/Property:P36) with the entity London (https://www.wikidata.org/wiki/
Q84). Since the same pattern exists for the other rows of this table, we can extract the
relation capital between the first and second column [5]. [1] states that it is not easy to
find these relations only by the table itself so they are using the surrounding content of
the Web table to extract relations. Surrounding information contains a paragraph before
and after the table as well as its caption. To extract relations, [28] uses a database of
relations, and [1] uses a dictionary of attributes from the Web text and search queries.
Moreover, authors in [22] augment the Knowledge Base by levering a Web text corpus
and natural language patterns associated with relations in the Knowledge Base.

2https://wordnet.princeton.edu/

https://www.wikidata.org/wiki/Q145
https://www.wikidata.org/wiki/Q145
https://www.wikidata.org/wiki/Property:P36
https://www.wikidata.org/wiki/Property:P36
https://www.wikidata.org/wiki/Q84
https://www.wikidata.org/wiki/Q84
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Tab. 2.1.: Table of Countries From T2D dataset

2.2.3. FactBase Lookup

FactBase is a lookup-based method for entity annotation and disambiguation [5]. The
approach is divided into two phases. In the first phase, we iterate over the whole table to
extract the information about the entities of the Web table. This phase only annotates
the unambiguous entities. For each entity of the label column, they extract the top
possible candidates in the Knowledge Base. At the end of this iteration, they choose the
Acceptable types. Acceptable types are the top-5 most frequent types of each column.
They extract the entity description tokens from the Knowledge Base. By the end of the
iteration, they choose the top description token of the table. Binary relations of the
column are the essential concept to extract in this phase.

In the second phase, these relations help to choose the correct annotation. Till
here, many rows can be already annotated. For the rest of the rows, two situations
hold. First, If there are many possible candidates, they perform a Strict search. They
choose the candidates who have the acceptable types, and one of the description tokens
in their entity description. Second, if no candidate exists, they let a bigger Levenshtein
margin distance. For instance, Table 2.2 from T2D dataset shows the companies and
their industry. The entity coca-cola is titled as The Coca-Cola Company (https://www.
wikidata.org/wiki/Q3295867) in Wikidata. If we look for the entity coca-cola, we fail
to find its correct candidate (Q3295867). To solve this problem, we accept the candidates
with more than 0.85 similarity ratio. This solution helps to find the correct candidate,
even if we have typos, nicknames, abbreviations, etc. If we let a bigger Levenshtein
margin distance, candidates should contain one of the extracted binary relations. This
method is referred to as Loose search.

https://www.wikidata.org/wiki/Q3295867
https://www.wikidata.org/wiki/Q3295867


2.3. Embedding methods 12

Tab. 2.2.: Table of Companies From T2D dataset

2.3. Embedding methods

The core hypothesis of linking approach for text disambiguation task is compatible with
Web table annotation task [5]. In text disambiguation, entities are mainly about the
same context. Web tables entities also create the coherent set of concepts. DoSeR is
one of the linking approach for text documents [31, 32] that employs the Semantic Entity
Embeddings on different types of Knowledge Bases, whether RDF-based Knowledge Bases
or entity-annotated Knowledge Bases.

DoSeR [31] starts by index generation. The index contains a label, a semantic
embedding, and a prior for each entity. A prior demonstrates the importance of an entity
within the text. The entities are gathered from different combinations of Knowledge
Bases. Given an input document, the semantic embedding, created on all the entities of a
Knowledge Base, help to calculate the semantic similarity of the entities. Candidates are
achieved either with an exact match to the surface form or trigram similarity. Finally,
by having the semantic embeddings, DoSeR creates a K-partite graph. This complete
directed graph has K disjoint subsets. In the context of web table annotation, each
subset can be considered as each row (or label column entity). The nodes are the already
filtered entity candidates, and edge weights are the normalized cosine similarity of the
Semantic Embeddings of the entities. Also, the obtained prior values helps to connect
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nodes as non-uniformly-distributed random jump values. By applying PageRank with
50 iterations, the node with the highest relevance is the result. The final improvement
is made by removing the 25% of the edges, whose sources and target entities have the
lowest semantic similarity.

There are some other approaches for text entity disambiguation as DBpedia Spot-
light [16], TagMe [8], Wikifier [13], AIDA [12] and WAT [6]. DBpedia Spotlight [16]
annotates the text documents using the DBpedia Lexicalization dataset. It starts by
candidate selection to reduce the space of disambiguation possibilities, and the candidate
whose context has the highest cosine similarity is chosen. Disambiguation is done using
vector space model for DBpedia resources. In DBpedia Spotlight, no semantic coherence
is estimated among the chosen entities.

TagMe is another graph-based global disambiguation method for text documents [8].
The process is based on the disambiguation of the terms by hyperlinks to the Wikipedia
pages. It looks for the Wikipedia anchors in the text, and by having anchors list, TagMe
allocates a Wiki page to the anchors. In the end, by having all the anchors’ pages, using
the in-link graph, it computes the score of the collective agreement among the chosen
pages.

We have discussed the Wikification methods previously. Wikifier[13] is another
Wikification approach which focuses more on statistical methods. Same as TagMe, Wik-
ifier starts by candidate generation, followed by ranking the candidates of the mentions.
After associating the Wikipedia pages to the terms, the learned model refines the can-
didates through the second phase. The difference of this method is a richer analysis of
the text by statistical methods. Another graph-theoric method, AIDA[12] framework
combines three measures: the prior probability of the mentioned entity, the similarity
between the context of a mention and candidate entity, and the graph-based coherence
among candidate entities. WAT [20] is the successor of TagMe, which reimplements
all the components of TagMe for collective entity linking(graph-based) and local entity
disambiguation(vote-based) algorithms.

What we have explained from the global disambiguation techniques for text dis-
ambiguation can be applied to the Web table entity disambiguation as well. [5] believes
this method can be adapted for the Web tables because in Web tables, just like the
text documents, the entities are forming a coherent sets. In Table 2.1, for the entity
United Kingdom, we may have two candidates as the country (https://www.wikidata.
org/wiki/Q145) and the music album (https://www.wikidata.org/wiki/Q7887906).
Since the entities are coherent, the correct disambiguation should be related to the entity
London (https://www.wikidata.org/wiki/Q84), and other country names in the fol-
lowing rows. Among these two candidates, the United Kingdom with the type as country
(https://www.wikidata.org/wiki/Q6256) is chosen by this disambiguation technique.
As in DoSeR, [5] uses Word2Vec to create semantic word vectors. The annotation in this
method is divided into two parts. The first stage, called the off-line stage, provides the
prerequisites for the online stage to find the correct semantic mapping between table rows
and entities in a Knowledge Base. One of these prerequisites is the Surface Form. Surface
form index receives the named entity as an input and provides some possible mappings
to the Knowledge Base. It supplies all the existing entities of the Knowledge Base. Also,
we create a Word2Vec model to compute the Cosine similarity of various pairs of entities.

https://www.wikidata.org/wiki/Q145
https://www.wikidata.org/wiki/Q145
https://www.wikidata.org/wiki/Q7887906
https://www.wikidata.org/wiki/Q84
https://www.wikidata.org/wiki/Q6256
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We first perform a random walk from the entities to their neighbors in the Knowledge
Base and use it as an input corpus for the Word2Vec model.

The online stage needs both created model as well as the surface index form. For
each non-numerical value of the Web table, we search for the candidates, i.e., we look for
the string entity name and get the candidates’ unique IDs or URLs. These candidates
become suitable nodes to create our K-partite graph. Next, the weighted directed edges
connect the candidates of different entities. The candidates coming from the same table
cells are not connected. The final step to form our disambiguation graph is to calculate
the weight of the edges. The weight is the normalized Cosine similarity, measured from
the semantic similarity of two nodes in Word2Vec model. We need a method to find out
the importance of the nodes. Giving the graph to the PageRank algorithm, we find the
most relevant nodes. PageRank algorithm computes the ranking dictionary of the nodes,
and the node with the highest score is our chosen candidate.



3
Method

3.1. Lookup-based Methods

3.1.1. FactBase Method

The basic idea behind lookup-based method that we are presenting in this section is
derived from a paper by Efthymiou et al. [5]. Their method for table annotation is
inspired from existing papers such as TableMiner [29] for sampling phase and T2K [21]
for the candidate generation phase. Also, the relation extraction method is motivated
from another approach by Venetis et al.[28]. Some of these methods are presented for
text disambiguation and they are extended to suit the Web table annotation.

To start the annotation, based on FactBase Lookup, we need to prepare some pre-
requisites. First, we need a lookup service that provides common names for the entity
that we want to annotate. More precisely, we need a lookup service to generate the first
set of candidates. In our case, we use the surface index form generated from Wikidata.
Because of the typos, or different ways of expressing the same concept in the dataset and
the Knowledge Base page, we cannot match some of the table entities to any entity in
our surface form. In this case, we also create the Levenshtein version of the surface form
for the entities that are not found [5]. This file is generated before starting the Web table
annotation.

In the first step, we iterate through the web table. On this first iteration, we
perform a cleaning step which includes removing punctuation symbols and non-textual
columns, and replacing HTML entities with their corresponding characters. For example,
we replace nbsp; with its corresponding value which is a non-breaking space. Then, the
Web table is ready for label column and reference columns detection. Label column,
which contains the main subject of the table, is determined by the column with the most
number of distinct non-numeric values. In case there are multiple columns with the same
number of unique values, we choose the leftmost column as the label column. All the
other columns of the Web table are the reference columns.

Two components are essential in this phase: first, the types of the entities in the
label column, and second, the description tokens of these cells. For each row of the Web
table, we take the label column entity and look for its candidates in the surface form. If
there exists any result from this search, we sort the candidates according to an ascending

15
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order of the identifiers, and we keep the first result as our top result. Now that we have
the top result of each row, we extract the types and the description tokens of this top
result from its corresponding page in Wikidata. In Wikidata, the description tokens are
from the "schema:description" property. Also, the types are mentioned in the property
as "InstanceOf (wdt:P31)".

From now on, we may have three different paths to go through. First and the
most accurate one is when we have only one candidate for an entity. So, the entity
is not ambiguous, and we can annotate the row with this result. We try to find the
relations of this annotated entity with the reference columns. We crawl the annotated
page in Wikidata and look for the reference column value in it. There is a relation
between the label column and a reference column if there is any property that mentions
the reference column value. For example, in Table 2.1, Capital, currency, and language
columns are the properties of the column country. For the entity United Kingdom (https:
//www.wikidata.org/wiki/Q145), there is a capital relation (https://www.wikidata.
org/wiki/Property:P36) with the entity London (https://www.wikidata.org/wiki/
Q84).

The second path is when the entities have more than one candidate. We define the
acceptable type as the most frequent type among all collected types. In our case, we keep
the top five types as acceptable types. Also, from all description tokens, we remove the
stop words. We choose the most frequent tokens as description token of the table. For the
entities with more than one candidate, we perform a more strict search. From the list of
candidates, we accept the candidates with at least one of the acceptable types which also
contains the selected description token. The unambiguous rows are already annotated.
If we have more than one result from our Strict search, we take the first result from the
sorted list of results. Finally, the third path is when there is no result from Strict search.
It implies that we are too strict. To solve this, we perform another search with a lesser
strict criteria called Loose search. In our Loose search function, we accept results with
one of the extracted binary relations.

3.1.2. Majority-Based Method

The lookup-based method explained in the previous section mostly relies on the top
result from the list of Knowledge Base candidates. With this method, we are missing the
significant part of the available information. Although the first result has high importance
for the annotation, it is not always the case that it is the correct one.

We define the majority-based method to get benefit from the other candidates. In
this case, we do not only choose the acceptable types from the top result of each entity
but we also select the types in the other available candidates. In other words, we query
the types of all the entity candidates, we store them and append to the type collection
of all the table. Finally, by majority function, we choose the top n most frequent types
among them. It means we take the other candidates into account that can be our correct
results.

https://www.wikidata.org/wiki/Q145
https://www.wikidata.org/wiki/Q145
https://www.wikidata.org/wiki/Property:P36
https://www.wikidata.org/wiki/Property:P36
https://www.wikidata.org/wiki/Q84
https://www.wikidata.org/wiki/Q84
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3.2. Embedding Methods

The basic idea of all the embedding methods in this section is from our baseline paper [5].
The general idea comes from the global disambiguation techniques mentioned previously
in [31]. The point is in local disambiguation techniques; we do not keep track of the
context in the document. For example, in a sentence as "Sydney cannot be interesting
for the kids.", we do not know whether Sydney is a city in Australia(Q3130), a community
in Canada (Q932261), or an American comedy series(Q3979019) if we are not aware of
the context around our sentence. In global disambiguation techniques, we believe that
the context of the entities is the same. The global disambiguation technique was firstly
proposed for the text document disambiguation. It can also be extended for the Web
Table Annotations since the information in the table is mostly around the same topic.

3.2.1. Baseline Embedding Method

Before beginning the annotation, we need to create two main elements. First, the surface
index form is required to find the primary candidates. [5] creates these possible candidates
by using the common names of each entity. These candidates are the unique pages on
DBpedia. This data is enriched with some of the available properties from the Knowledge
Base. In our case, we are collecting the set of common names from Wikidata pages. To
get our initial candidates, we apply a pre-processing step to our surface form creation.
To be specific, we remove punctuation symbols and transfer all the surface form keys to
lowercase letters. In this stage, stemming and stop word removal is not applied.

Apart from having our surface index form, we create the Levenshtein distance ver-
sion of the surface form separately for each of our datasets. We crawl our Web tables and
look for each entity in the surface index form. If the key does not exist, we calculate the
Levenshtein distance of this key with all the keywords that we have in the surface index
form. If we find any key with the similarity ratio of more than t, we store the not founded
key with the candidate results of its similar key. It helps us to overcome the typos or any
small mismatches in the entity and surface form key.

Next, we need to prepare the word embedding model. As in [5, 31], we use Word2Vec
model presented by Mikolov et al. [17]. The process starts by applying a random walk
on the Wikidata pages and following the RDF relations. Whenever there is a pattern
match between two entities, they are added to the matching group of entities. These
stored trigrams are consumed by Word2Vec to generate our model. The continuous bag
of words (CBOW) is instantiated for the model. The parameter min_count of the model
is the minimum required repetition of a particular word in our corpus. We calculate our
final results based on different min_counts for the words in our generated document.
Different results are presented later in the next chapter for different minimum counts of
words.

In the next step, we can start to annotate the entities using both self-generated
surface form and the Word2Vec model. We iterate the Web table and collect the entities.
At this stage, we do not consider any numerical value, except if they appear with string
characters. As an example, we keep the entity alex rodriguez (172) which appeared in our
T2D dataset. There are also a considerable amount of columns with repetitive prefix or
suffix. In other words, the prefixes or the suffixes of all the entities in these columns are
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the same. These columns mostly do not have any value to help our annotation and can
sometimes bring problems for detecting the correct label column. As an example, entities
followed by their units like 401.00 mio m3z or 100 m. These measures are repeated in
the whole column, and we need to remove them in the pre-processing phase. Moreover,
we only consider the entities with more than 3 characters and as a result, an entity like
CHF presenting the currency of money, Swiss Franc, is not taken into account.

We search each of the collected entities into our surface index form or in Levenshtein
version of the surface form to have the possible candidates for the annotation. For each
entity, we have a set of candidates V. In case of Wikidata, we omit all the candidate results
with the property Instance Of (P31), Wikimedia disambiguation page, or Wikimedia
category. The elements inside the set V, are used as the nodes of the disambiguation
graph. The disambiguation graph is the union of all these candidates for the entities
throughout our table. For example, if we have two entities, e1 and e2, we search each
of them in our SF, and we have such a result, e1 = (id1, id2) and e2 = (id3, id4, id5).
These ids are the nodes of the disambiguation graph. Each entity candidate is connected
to all the candidates of the other entity. In here, there are edges from id1 to id3, id4, and
id5. These connections are the direct weighted edges. We calculate the weights by the
Normalized Cosine similarity obtained from their vector representations in our Word2Vec
model.

weight(v1, v2) =
cos(emb(v1), emb(v2))∑
k cos(emb(v1), emb(k))

(3.1)
Finally, we apply the PageRank algorithm to graph G to compute the most im-

portant node among all of the candidates of a specific entity. We can decide whether
to choose the highest-ranked vertices or the set of top results of each mention. In the
baseline method, the highest-ranked node is used, but in our methods, we use the top
results from the ranked results of the PageRank.

3.2.2. Looping Method

The approach in section 3.3.1 is to create our disambiguation graph, with all the can-
didates of the entities. It means that there exist entities with only one candidate from
the Surface Form, which is mostly their correct annotation and also entities with several
candidates, which we should disambiguate. In the Looping method, we build an initial
graph with the already annotated entities. Throughout the iterations, we gradually add
ambiguous entities. We believe this method performs better because we strongly focus
on the coherency of the nodes.

We collect the candidates, as described in section 3.3.1. Next, we create the initial
looping graph with the entities with only one candidate. At each round, we add one
ambiguous nodes’ candidates to the Looping graph. An example of such a scenario is
presented in Figure 3.1.
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Fig. 3.1.: Looping graph with candidate names

Figure 3.1 shows the looping graph of the countries and their capitals. As mentioned,
in each iteration of the Looping algorithm, we take the already annotated entities as well
as one ambiguous entity. The nodes of the graph are the candidates of the annotated
nodes, as well as all possible candidates of one ambiguous node. In this graph, except
United Kingdom, all the nodes are already annotated. For United Kingdom entity, we
have two candidates, a country (Q145) and a music album (Q7887906). To calculate
the weights of the graph, we use Equation 3.1. We perform PageRank algorithm on this
directed graph to generate the sorted list of candidates. The higher score from PageRank
shows the stronger relationship of this node with other nodes of the graph. Figure 3.2 is
a more realistic representation of this example. Here, we replace the entity names with
their equivalent Wikidata identifiers. For each pair of nodes, we compute the weight of
the edge by Equation 3.1. The node’s score is the value assigned to it by PageRank. In
the end, the candidate with the highest score is the annotation. In this example, the score
for node Q145 is 0.11065, and the score of node Q7887906 is 0.10388. The node with
type country has a better score compared to the node with type music album and has
a stronger relationship. So, we can consider the country (Q145) as annotation of United
Kingdom. We apply the same process for each ambiguous entity in a different iteration.
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Fig. 3.2.: An example of weighted Looping graph

For the next round, United Kingdom (Q145) is already annotated and therefore, it
exists in the base graph. We add the candidates of the other ambiguous entities to the
looping graph. We continue and annotate one entity in each loop to cover all the entities
of the table.

A problem that may occur while building the looping graphs is that the graphs can
become huge. Creation of multiple graphs for each table, performing PageRank on each
round, as well as annotating calculations add huge complexity to the algorithm. To solve
this problem, we propose a solution to take only two columns at a time. We always take
the label column, as it is the node for which we need to give the annotation, as well as
one reference column at each round. By the end of the annotation, for each reference
column, we have a separate dictionary of the results. When we decide about the final
results, three situations may happen. Consider we have label column presenting by LC,
first reference column as RF1 and second reference column as RF2. The three columns
have the textual entities. The first situation is when the annotation from (LC, RF1)
agrees with (LC, RF2) annotation on final result value. It can be either they have the
same values, or they cannot provide any annotation. If both annotations are the same, we
can be sure that our annotation is correct. The other situation, is when only one of the
runs among (LC, RF1) and (LC, RF2) returns the annotation result, and the other one
cannot annotate. We choose the only annotation result that we have. Finally, there exists
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a situation where both (LC, RF1) and (LC, RF2) are annotating the entity, but these
annotations are not the same. In this case, we choose the annotation provided by the
leftmost reference column. This method provides a much faster algorithm in comparison
to taking all the columns at the same time.

3.2.3. Centrality Measures

So far, all semantic embedding methods used PageRank to sort the nodes of the graph by
their importance. Apart from PageRank, there are other possible solutions to measure
the influence of a node in a network. In this section, we apply the same methodology as
explained in Looping with different centrality measures. Instead of using the PageRank,
we try to see how EigenVector and Katz centrality can result in better precision, recall,
and F1, and also how they affect the run time over T2D and Limaye gold standard tables.

3.3. Hybrid

We have currently two principal categories of methods. In each case, the approach can
target a certain amount of the entities which are not necessarily the same. The purpose of
the Hybrid methods is to use both lookup-based and semantic embedding based methods
to annotate more entities and as a result, achieve better recall, precision, and F1.

3.3.1. Hybrid I

In the first iteration, Hybrid I chooses one of our lookup-based methods. If it annotates,
whether correct or wrong, we keep the annotation. In any case, where the lookup-based
method is not providing an answer, we use the entity annotation from the semantic
embedding method. To start, we show the Hybrid I result over our baseline methods, to
have a fair comparison with the improved version of the Hybrid I.

3.3.2. Hybrid II

The Hybrid II stands on the same concept as in Hybrid I, except, Hybrid II starts with
a semantic embedding approach and enriches the results with a lookup-based method.
We show the results of the Hybrid II with baseline methods and compare them to the
proposed methods of this thesis.

3.3.3. Hybrid Refinement of Looping

We make some further refinements in our proposed looping method by type checking. As
explained in section 3.3.2, in each loop, we create a graph of all candidates for the entities
of the Web table. This graph is used as an input of the PageRank algorithm to generate
a ranked list of nodes. While adding a new node to the looping graph, we may have the
same ranking output for multiple candidates. To choose the most related one, we look for
the top 3 types of nodes in our existing looping graph. Also, we find the top 3 types of
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candidates with the same rank. Our chosen result is the candidate with the most similar
type to the looping graph type.



4
Evaluation and Results

In this chapter, we present the benchmark datasets and our experimental results on two of
these datasets. In datasets section, we explain the details of each gold standard, the table
files, and entity files. Also, we present a refined version of one of the gold standards as
well as the evaluation of different methods over these gold standards. Finally, we provide
a fair comparison of our baseline method, our proposed methods, and the insight behind
the results.

4.1. Datasets

Before we start to evaluate our methods on Web tables, we give an overview of the three
datasets. For each of them, we have table files as well as table annotation files. The table
annotations files, called entity files, are used as a gold standard to verify our results. We
create table files and entity files in both CSV and JSON format.

4.1.1. The T2D Dataset

The gold standard presented in [21], contains HTML tables that cannot be matched with
DBpedia, added by matchable Web tables. The authors keep a reasonable ratio for each
group. The topics of the table collection are from sport, politics, history, geography,
etc. T2D gold standard is divided into two categories of entity-level and schema-level
annotations. Since we do not match the table columns to the Knowledge Base properties,
we do not use schema-level annotations. We have the entity-level annotations for 233
tables in the T2D data set. As noted, we have only one annotation per row. There are
26124 rows, annotated by DBpedia unique pages. 2523 rows could not be matched to
DBpedia. All the annotations are labeled manually by the authors of [5].

Table 4.1 demonstrates an example of a table file from T2D dataset in CSV format.
As we can see, we have a combination of numeric and textual entities. In column map,
the number of characters is not enough to decide about the entity. The annotation file
gives us the mapping for the label column, which is peak in this case.

23
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Tab. 4.1.: An example of T2D CSV table file

Table 4.2 presents an example of a CSV entity file of the T2D dataset. The first
column shows a mapping of the entity to the corresponding DBpedia page. The second
column is the annotated entity from the table row. Finally, the third column contains
the index of the row.

Tab. 4.2.: An example of T2D CSV entity file
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4.1.2. Limaye

The Limaye dataset [14] contains two groups of Web tables. The first group, which is
called Wiki_Manual, contains 36 tables, collected from the texts in Wikipedia. The
provided annotation is not only for the entities but also for the column relations and the
type. This dataset is used to fetch the second group of the Web tables, mentioned as
Web_Manual. Web_Manual presents 371 Web tables, which are noisier in comparison
to Wiki_Manual.

Wiki_Manual contains an average of 37 rows per table, with a total of 1691 entities.
The other gold standard, Web_Manual has 35 rows per table on average, and in total,
the number of entities in these 371 tables is 35. The manual annotation maps the entities
to Wikipedia pages. Moreover, [2] published the refined version of this dataset. We call
both Wiki_Manual and Web_Manual together as Limaye gold standard, and we use the
corrected version that contains 296 Web tables in total. Out of 8,670 rows in this version
of Limaye, we can map 5,278 rows to the Knowledge Base. This dataset has the least
value of structuredness, and as we see in Table 4.3, there are several empty rows and
columns in the Web table.

Tab. 4.3.: An example of Limaye CSV table file

Table 4.3 presents a sample Web table from Limaye dataset. This table does not
have any header information. Empty column and row, and wrong or noisy entity texts
can bring problems for the annotation of such a table.
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Tab. 4.4.: An example of Limaye entity file

Table 4.4 demonstrates the annotation of the Web table in Table 4.3. Although the
Web table has 28 rows, the annotation is available only for 5 rows. Again, like T2D, the
first column is the annotation link, the second column provides the annotated entity, and
the third column holds the row index. In our methods, we use only one cell from each
row and map it to the Knowledge Base. It means that we keep only the label column
annotation. The entity annotation contains DBpedia links, which is not the same as the
original version of the Limaye.

4.1.3. Wikipedia

Our largest dataset with 485,096 HTML tables is Wikipedia. The Wikipedia gold stan-
dard is created by [5], which replaces the hyperlinks of Wikipedia with the corresponding
links in DBpedia. In the Limaye gold standard, there is more than one annotation avail-
able per row. For sake of uniformity, we only keep the annotation of the label column.
For this dataset, the authors provide only one mapping for each row. The Web tables are
gathered from Wikipedia pages. The number of annotated rows, in this case, is 4,453,329
out of 7,437,606 total number of rows. This dataset is noisier than Limaye or T2D. Table
4.5 shows a Web table sample from Wikipedia dataset.
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Tab. 4.5.: An example of Wikipedia table file

Finally, Table 4.6 presents a sample of the annotation file from Wikipedia gold
standard with DBpedia annotations.
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Tab. 4.6.: An example of Wikipedia entity file

4.1.4. Refined version of Limaye

In this thesis, we initially used the refined version of Limaye gold standard by Bhaga-
vatula et al. [2]. The annotation links of this gold standard were changed to DBpedia
by Efthymiou et al. [5]. For a significant amount of tables, the final identifiers from
our algorithm were correct, but the reported result of the implementation was different
than the manual calculation of the metrics. We checked the annotations in the gold
standard, and we found several missing values as well as multiple wrong annotations.
As a result, several correct annotations were not counted as True Positive because we
did not have their equivalent value in the gold standard. For incorrect annotations of
the gold standard, our correct annotations were counted as False Positive. To solve this
problem, we manually checked all the Label Column entities in the Web tables. We
further checked the refined annotations by the Reference Column entities. For example,
Table 4.7 shows the entities from a Limaye Web table. The gold standard does not pro-
vide any annotation for the entity Black and White. To annotate, we first look for it in
http://dbpedia.org/page/Black_and_white_(disambiguation). There exist 31 pos-
sible annotations in this disambiguation page. From unambiguous rows of the table and
also the provided annotations in the gold standard for the other rows, we infer the type
of the columns. In this case, the second column shows a list of books. Out of 31 values,
there exist two related links as http://dbpedia.org/page/Black_and_White_(book)
and http://dbpedia.org/page/Black_and_White_(novel). We look for the Reference
Column value David Macaulay and choose the link http://dbpedia.org/page/Black_
and_White_(book) as the correct annotation. In this table, out of 68 rows in total, there
were two wrong annotation and 21 rows without any annotation.

The whole process of annotation was performed manually. It took 20 working days
to check the entire gold standard. Apart from using the DBPedia disambiguation pages,
we used the DBPedia SPARQL endpoint 1 to query the entities. In the DBPedia version

1https://dbpedia.org/sparql

http://dbpedia.org/page/Black_and_white_(disambiguation)
http://dbpedia.org/page/Black_and_White_(book)
http://dbpedia.org/page/Black_and_White_(novel)
http://dbpedia.org/page/Black_and_White_(book)
http://dbpedia.org/page/Black_and_White_(book)
https://dbpedia.org/sparql
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of the gold standard by Efthymiou et al., the wrong or missing links mostly appear
when there exist punctuation symbols in the link. We provide a new version of this gold
standard with correct annotations.

Tab. 4.7.: A Sample Table from Limaye Gold Standard with Missing Annotations Links

4.2. Mappings

For all experiments, we use two gold standards with DBpedia and Wikipedia annotations.
These datasets are publicly available from Efthymiou et al. [5]2 and Bhagavatula et al.
[2]3. Each dataset is provided in different formats such as XML, JSON, or CSV. We aim
to keep the table and entity files for each dataset in both JSON and CSV format. So, we
have generated the missing file formats.

In the annotation files, different Knowledge Bases are used. Our approaches link
each row of a Web table to the unique pages of Wikidata. In this case, we have generated
SPARQL scripts to generate mapping files. We crawl each dataset separately and store
the existing annotation link with its equivalent link in Wikidata. By the end, we have the
Wikidata links of annotation results, and we use the mapping files to map each result to
its equivalent DBpedia link. As a result, we can compare our results to the gold standard
and calculate precision and recall.

2http://www.cs.toronto.edu/õktie/webtables/
3http://websail-fe.cs.northwestern.edu/TabEL/
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4.3. Experimental Set up

In each method, we require some additional information about the entities. As an ex-
ample, in the case of lookup-based methods, we need to find the entity types and the
description tokens. To extract the relations between different columns, we should know
if a particular property exists in the current entity page or not. For all these tasks,
we should execute a SPARQL query on Wikidata SPARQL endpoint. Since we need to
send several queries, we cannot use the Wikidata API. To solve this problem, we use
wikidata-query-rdf 4. We download the whole dump of Wikidata and run our queries
locally.

4.4. Results

In this section, we show the results of the annotation methods over Limaye and T2D
datasets and present the Precision, Recall, and F1-Measure. The metrics calculation
is computed in a micro-averaged manner. It means for each table, we calculate true
positive, false positive, and false negative annotations. To calculate the metrics of the
whole dataset, we sum up the results of all tables. We treat the whole dataset as one
Web Table. In these experiments, a result is true positive, when we have the same link as
provided in the gold standard. The False Positive occurs when our annotation does not
match with the DBpedia link in the gold standard, and finally, the result is false negative
if we could not provide any annotation.

4.4.1. Lookup-based Method Results

In this section, we present the lookup-based method results over Limaye and T2D datasets.
Moreover, we do different tests to see the effect of different parameter tunings. We decide
about the parameters through a trial and error manner.

As mentioned in Chapter 3, in our first step, we take the baseline algorithm of Fact-
Base [5]. The results presented in their approach is based on annotation with DBpedia.
We have implemented their algorithm using Wikidata.

T2D Limaye
Method Pr Re F1 Pr Re F1
FactBase 0.8784 0.7814 0.827 0.788 0.834 0.81
Majority-3 0.897 0.72 0.799 0.82 0.82 0.82
Majority-5 0.886 0.738 0.805 - - -

Tab. 4.8.: Results of lookup-based approaches over T2D and Limaye gold standards

In Table 4.8, FactBase has better results on T2D. FactBase uses all the columns
to find the relations and annotates the rows in loose search based on these relations.
Because of the better structuredness on T2D, we achieve better results on this dataset
in comparison to Limaye. Moreover, in FactBase, we annotate a significant number of

4https://github.com/wikimedia/wikidata-query-rdf/blob/master/docs/getting-started.md
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rows when they have only one candidate from the surface form. With high certainty, the
annotated rows during the initialization phase are correct. So, they are essential to achieve
high precision and also crucial for our next phases; because we choose our acceptable
types based on these values. In Limaye dataset, we have more difficulties in finding such
candidates. There are many entities that we cannot get their initial candidates, because
the entity in the table is different from the entity title in the Knowledge Base page, and
as a result, it is different than the key in the Surface Form. Although we handle dictation
problems with Levenshtein distance, some keys are still not accessible. These situations
happen more in Limaye dataset than T2D. It is also another reason that we achieve better
result over T2D. Later in this chapter, we see the same hypothesis stands for the semantic
embedding methods during the initialization phase.

We repeat the experiment of the lookup-based method with the majority method.
Table 4.8 shows the result with two different parameters of Majority-3 or Majority-5. In
each Majority-n method, we use the top n types of the table. In this proposed method,
on both Limaye and T2D datasets, we obtain a higher precision value. Higher precision
and lower recall prove that the majority-based method is very strict in choosing the
annotations. With the same reason, the majority-3 is a more fine-grained method than
majority-5 and as a result, has higher precision and lower recall.

4.4.2. Embedding-based Method Results

In this section, we report the results of semantic embedding method as well as our pro-
posed Looping method. Then, we provide a comparison between different ranking meth-
ods on our graphs.

T2D Limaye
Method Pr Re F1 Pr Re F1 Desc

Baseline Embedding 0.62 0.895 0.734 0.75 0.92 0.83 M1, LCol
Baseline Embedding 0.733 0.747 0.74 - - - M5, LCol
Baseline Embedding 0.62 0.70 0.66 0.76 0.82 0.79 M1, AllCol

Looping 0.86 0.82 0.84 0.82 0.87 0.85 PageRank, NoLev

Tab. 4.9.: Results of semantic embedding approaches over T2D and Limaye gold
standards

We have trained our word embedding models with different parameter tuning. Al-
though we do not have an automatic parameter tuning to build our Word2Vec model,
we have tried Min_Count of 1 and 5. Over the T2D dataset, on M5, which shows the
model with Min_Count of 5, we see around 15% lower Recall. It is logical because we
keep the keywords that appear at least 5 times in our training corpus. It is not the case
for many entities, and consequently, if a specific keyword does not exist in our model, we
skip it, and we cannot give any annotation for that keyword. So, in the end, there are
more entities in the Web table that do not have any annotations.

Considering the same model with the same parameters, we can use either label
column entities to build our graph or all columns with non-numeric entries. If we use
only label column entities in T2D dataset, we have around 7% drop of the F-measure. As
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we have explained in the label column detection section, and the pre-processing phase,
we are not always able to drop useless columns if the entity contains a mixture of string
and numerical values. In case of a Movie table, in an optimistic situation, the useless
column may contain an entity like season 7 which is at least a related entity. In the worst
case, it can be a serial number of a movie, which is the combination of text and numbers.
Such an entity does not provide any valuable information and reduces the coherency of
the nodes in the graph. We may also end up in a worse result if the reference column
contains a short description sentence. As we do not have any specific entity in our surface
form for this sentence, we try to find it with the Levenshtein distance, and we may end
up with an unrelated entity, and wrong results.

In Limaye dataset, we have tried only the models with Min_Count of one. For the
same reason as in T2D dataset, we have 4% improvement of F-measure using only the
label column entities.

In Table 4.9, we compare the looping method with the baseline method. Both results
use PageRank as a ranking algorithm. For T2D dataset, this method has a significantly
better precision of 24% and around 18% better F-measure. In the looping method, we
create the initial graph with mostly correct entities and disambiguate other entities one by
one. This more fine-grained method leads to lower recall. Results of the looping method
over Limaye gold standard is 5% better in terms of F-measure and has 6% improvement
of precision.

In Table 4.9, by NoLev, we mean we do not use the nodes found by Levenshtein in
our initial graph even if they have only one possible candidate. More detailed result is
shown in Table 4.10. We create the initial graph with the nodes solved by Levenshtein,
as well as the initial graph without them. If we use Levenshtein for the first graph, the
precision drops significantly. It means there exist at least some wrong results among the
Levenshtein results.

Method Pr Re F1
Looping with initial Levenshtein 0.67 0.86 0.7

Looping without initial Levenshtein 0.84 0.80 0.82

Tab. 4.10.: Looping with vs. without Levenshtein in the initial graph

So far, the results for both baseline embedding method and the looping method were
based on PageRank. To find the best ranking method in terms of runtime and precision,
we run our proposed method, looping, with three different centrality measurements. Table
4.11 presents the results of the looping with PageRank, EigenVector, and Katz centrality.

T2D Limaye
Method Pr Re F1 RT Pr Re F1 RT
PageRank 0.8653 0.8166 0.8403 12.1h 0.8223 0.870 0.8455 7.28h
EigenVector 0.8658 0.8173 0.8403 11.25h 0.822 0.8736 0.8468 7.41h

Katz 0.8662 0.8233 0.8423 117.2h 0.8227 0.872 0.8466 7.79h

Tab. 4.11.: Results of Looping approach with different centrality functions over T2D and
Limaye gold standards
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In Table 4.11, although changing the PageRank to either Katz centrality or Eigen-
Vector results in a better F1-measure, our two datasets do not agree on the best choice.
In terms of F1-measure, Katz centrality performs better on T2D dataset while over Li-
maye dataset, EigenVector is the winner. In terms of precision, both datasets agree that
Katz provides the best result. Over Limaye dataset, changing the ranking algorithm does
not significantly affect the runtime. Over T2D dataset, the fastest method is EigenVector
while over Limaye, PageRank is faster. Katz has the longest runtime over both gold stan-
dards. On the other hand, there was a significant difference in runtime of Katz centrality
in comparison to the two other methods over T2D gold standard. Unexpectedly, even
with the long waiting time and multiple iterations, we failed to achieve convergence on a
considerable number of tables.

As the final additional point, it worth mentioning that the combination of looping
with type checking helped us to improve the in F-measure of looping method around 5%
and 3% for T2D dataset and Limaye dataset respectively.

4.4.3. Hybrids

In this section, we report the results from the combination of the lookup-based methods
with the semantic embedding methods. Since each method targets a different set of nodes,
the combination of them should result in a better recall or a better precision.

Hybrid I

Hybrid I methods choose one of the lookup-based methods in the first stage. It can be
either FactBase lookup or Majority-Based lookup method. We use different parameters
and choose the methods with the best-reported results in the previous sections.

T2D Limaye
Method Pr Re F1 Pr Re F1 Desc

FactBase + Embedding 0.86 0.82 0.84 0.788 0.87 0.824 PageRank
Majority + Looping 0.87 0.82 0.843 0.80 0.85 0.824 Maj3, PageRank
FactBase + Looping 0.858 0.838 0.848 0.788 0.868 0.827 EigenVector
FactBase + Looping 0.857 0.838 0.847 0.785 0.867 0.824 Katz

Tab. 4.12.: Results of Hybrid I approaches on T2D and Limaye gold standards

In Table 4.12, the baseline Hybrid I has the lowest F1. For all the methods, the
difference is not significant in terms of F-measure. The reason is the first method is the
main phase for deciding the results. As FactBase is mostly the first method, and also
because our Majority-3 method was not performing better than FactBase, the F1 values
of all the Hybrid I methods are close on both datasets. Because Majority-3 method was
more fine-grained, the best precision is achieved by the combination of majority base and
looping.
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Hybrid II

The reversed order of hybrid I is hybrid II method. For the first stage, we choose one
of the semantic embedding methods, and we enrich the results by lookup-based methods
during the second phase. We choose the methods with the best-reported results for each
stage.

T2D Limaye
Method Pr Re F1 Pre Re F1 Desc

Embedding + FactBase 0.67 0.78 0.72 0.77 0.86 0.82 PageRank
Looping + Majority 0.84 0.81 0.826 0.78 0.85 0.813 Maj3, PageRank
Looping + FactBase 0.854 0.837 0.846 0.823 0.87 0.847 EigenVector
Looping + FactBase 0.85 0.84 0.845 0.822 0.872 0.847 Katz

Tab. 4.13.: Results of Hybrid II approaches over T2D and Limaye gold standards

The results in Table 4.13 show that there is a remarkable improvement in F1 values
in hybrid II compared to the baseline Hybrid II. As in hybrid I, still the best methods
come from the combinations of looping and Fact base. Also, the results of F1 from
Katz and EigenVector centrality measures are performing better than our best-achieved
results. Table 4.13 shows that having the looping in the first phase and augmenting it with
FactBase in the second phase can improve the whole algorithm. It is because FactBase
has correct answers for the entities where Looping could not provide any results. The
most striking point in Table 4.13 is that our looping method ranked by Katz combined
with the FactBase is the best result we have achieved from all of the methods explained
through out this thesis. The accord of two datasets confirms this conclusion.

4.4.4. Analysis

In this section, we want to study the factors that stopped us from a further improvement
of the results. For all of our methods, one of the necessary steps is to extract the label
column. There are two situations where we cannot detect the correct column. First,
when it is not possible by our heuristic method to choose the right column. For example,
there are two columns with the same number of distinct values, and typically, we choose
the leftmost, while the correct label column is the second column. These situations are
when it is even hard for a human to recognize the label column without any additional
information. If there is a table caption or we have the headers, then a human can
understand the main column while our algorithm cannot because we do not use any
additional information of the table to get the label column. Second, when we have a
mixture of numbers and texts in each cell, and we give value to the entities that are
not valuable in reality. If the number of distinct values in these columns are more than
the number of distinct values in our real label column, we choose the wrong column as
Label Column. In this case, even if we annotate this entity correctly, it is not the correct
annotation of the row. For this reason, we have the wrong annotation for all rows of the
table.
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The second problem during the annotation was missing the correct entity in the
initial candidates. When we decide to annotate a table cell, we first get the unrefined
set of candidates from our surface form. Apart from the incorrect results caused by
accepting Levenshtein distance, some entities do not have any result, which we consider
as FN. In the worst case, we search for an entity in surface index form, and we get a
set of candidates, but the correct entity does not exist in this result set. This problem
needs a careful refinement in our surface index form. There are also some Wikimedia
Disambiguation Pages which have the same title as the entity that we are looking for,
but they do not contain any useful information, and as a result, they are not our correct
annotation.

As an example of the third possible scenario, consider a table with a list of movie
names which are also novel names. The Wikidata IDs of these entities are so close to
each other. For example entity Q2875 describes the film Gone with the Wind and entity
Q2870 is the novel with the same name. In this case, correct type detection of a table
becomes so tricky since, for most of the rows, both movie and novel exists among the
candidates. Since we sort the candidates according to an ascending order of the Wikidata
identifiers, we choose the smaller ID, and it becomes our acceptable type. In this case,
the acceptable type is novel. One possible solution is to show the top n results to the
user, so that, we are sure that the correct result exists among them and the incorrect
results are still related.

Another common scenario is the different versions of one entity. For example, in
the table with the name of the games, there can be different releases of the same game.
As an example, the entity Q24589167 defines the video game called God of War. This
entity is the release of 2018 with the specific name as A New Beginning which is not
mentioned in the main title. The entity Q817369 is also with the title God of War, but
this time without any additional name. The entities Q2252689, Q1129452, Q573779,
Q2298167, and Q573768, correspond to all different versions of the God of War series.
Finally, entity Q5576061 defines the whole collection of this game. In this example, our
algorithm typically chooses the name of the whole collection as the annotation result. It
is because first, it is hard to distinguish between these different versions as they have the
same title and same types and also, the collection name has a more strong relation and
bigger similarity value with the other games in the table. Again, the solution we propose
is as same as the previous problem and to show the top n related results.



5
Conclusion and Future Work

In this thesis, we present the complementary methods for Web table annotation and dis-
ambiguation. We tackle the problem by two appraoches; first, the Lookup-based method
which uses the types and relations in the Web table to choose the result, and second,
the word embedding method that creates the weighted edges in the graph and uses the
similarity of the entities to find the most related nodes using the context of the Web ta-
ble. The semantic embedding method is similar to the text disambiguation techniques in
which, we believe the words in a paragraph are mostly around the same context. Finally,
we get the best results by the combinations of these two methods as the building blocks.
We call these two-phase methods as Hybrid methods. Moreover, we show three different
datasets and gold standards used to calculate the efficiency of our methods. Also, we
provide a refined version of one of the gold standards annotated by DBpedia.

Based on the baseline lookup-based method, called FactBase [5], we propose the
Majority-based method, which is a more fine-grained approach and provided better pre-
cision. Still, in terms of F-measure, FactBase outperforms our Majority-based method.
For the semantic embedding methods, we propose a method called Looping by which
we achieve a remarkably better F-measure in comparison to the state-of-the-art. This
method uses iterative graph generation. We start with an unrefined set of candidates
and build our initial graph with the unambiguous entities. For the rest of the entities,
we annotate one entity in each iteration. Also, we compare several ranking methods in
terms of precision of annotation results as well as runtime.

For future work, we plan to improve our surface index form, the way we achieve the
initial candidates from the surface form and focus on the solution of getting the candidates
even if the Web table text looks different than the key in the surface form. Also, we believe
there is a high potential in embedding methods to achieve better annotation results. It
is beneficial to refine the label column detection method. It is important to choose the
correct label column otherwise the accuracy of the model could drop drastically.
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Common Acronyms

KB Knowledge Base
SF Surace Form
SFI Surface Form Index
GS Gold Standard
CSV Comma Separated Values
JSON JavaScript Object Notation
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