
Web Table Annotation Using Knowledge Base

Master Thesis

Yasamin Eslahi
July 2019

Thesis supervisors:

Prof. Dr. Philippe Cudré-Mauroux
Akansha Bhardwaj
and Paolo Rosso

Acknowledgements

I want to thank all the people that helped me, my supervisor, Prof. Dr. Cudré-Mauroux
for his support. My special thanks to Akansha Bhardwaj and Paolo Rosso for their advice
and understanding throughout all stages of the work. Thank you for everything.

i

Abstract

This master thesis describes how to automatically link the structured information in
Web tables to the Knowledge Base. The Web has over 100 million tables which provide
a valuable source of relational data. These tables can be used for Web table search and
Knowledge Base augmentation if we understand them semantically. Lack of a unique
schema for Web tables makes it a challenge to use this useful source of information and
to convert the Web tables into a machine-understandable knowledge. Additionally, lack
of table header for a vast majority of these tables and the ambiguity of the table entities
are considered as a barrier for this task. Web table annotation aims to solve this problem
by presenting additional information for the HTML tables and defining their entities by
the Web Knowledge source embedded in the Knowledge Bases.
Our work presents two unsupervised approaches to tackle this problem. First, we study
the use of Lookup-based methods as a scalable solution and second, we use the word
Embeddings to understand the semantics of the Web table and provide the correspond-
ing row annotations. We show that our proposed method significantly outperforms the
existing Semantic Embedding methods. Moreover, we compare different Node Centrality
measures which can not only be used in Web Table annotations, but also for any graph-
based applications. Finally, we contribute by presenting an updated version of Limaye
Gold Standard with annotations from DBpedia.

Keywords: Web Table Annotation, Semantic Annotation, Data Mining, Entity Disam-
biguation

ii

Table of Contents

1. Introduction 2

1.1. Motivation . 2

1.2. Web Table Annotation . 3

1.3. Objectives . 6

1.4. Thesis Layout . 6

2. State of the Art 8

2.1. Introduction . 8

2.2. Lookup-based Method . 9

2.2.1. Candidate Generation . 9

2.2.2. Columns' Relations . 10

2.2.3. FactBase Lookup . 11

2.3. Embedding methods . 12

3. Method 15

3.1. Lookup-based Methods . 15

3.1.1. FactBase Method . 15

3.1.2. Majority-Based Method . 16

3.2. Embedding Methods . 17

3.2.1. Baseline Embedding Method . 17

3.2.2. Looping Method . 18

3.2.3. Centrality Measures . 21

3.3. Hybrid . 21

3.3.1. Hybrid I . 21

3.3.2. Hybrid II . 21

3.3.3. Hybrid Re�nement of Looping . 21

4. Evaluation and Results 23

4.1. Datasets . 23

4.1.1. The T2D Dataset . 23

iii

Table of Contents iv

4.1.2. Limaye . 25

4.1.3. Wikipedia . 26

4.1.4. Re�ned version of Limaye . 28

4.2. Mappings . 29

4.3. Experimental Set up . 30

4.4. Results . 30

4.4.1. Lookup-based Method Results . 30

4.4.2. Embedding-based Method Results 31

4.4.3. Hybrids . 33

4.4.4. Analysis . 34

5. Conclusion and Future Work 36

A. Common Acronyms 37

B. License of the Documentation 38

List of Figures

3.1. Looping graph with candidate names . 19

3.2. An example of weighted Looping graph 20

v

List of Tables

1.1. Illustration of the ideal Web table . 3

1.2. Political parties in Denmark from T2D dataset 4

1.3. Political parties in Sweden from T2D dataset 5

1.4. Political parties in Ireland from T2D dataset 5

2.1. Table of Countries From T2D dataset . 11

2.2. Table of Companies From T2D dataset 12

4.1. An example of T2D CSV table �le . 24

4.2. An example of T2D CSV entity �le . 24

4.3. An example of Limaye CSV table �le . 25

4.4. An example of Limaye entity �le . 26

4.5. An example of Wikipedia table �le . 27

4.6. An example of Wikipedia entity �le . 28

4.7. A Sample Table from Limaye Gold Standard with Missing Annotations Links 29

4.8. Results of lookup-based approaches over T2D and Limaye gold standards 30

4.9. Results of semantic embedding approaches over T2D and Limaye gold stan-

dards . 31

4.10. Looping with vs. without Levenshtein in the initial graph 32

4.11. Results of Looping approach with di�erent centrality functions over T2D

and Limaye gold standards . 32

4.12. Results of Hybrid I approaches on T2D and Limaye gold standards . . . 33

4.13. Results of Hybrid II approaches over T2D and Limaye gold standards . . 34

vi

Listings

1

1
Introduction

1.1. Motivation

Human beings can learn and understand new concepts by using the data that they have
seen. There is no doubt in the importance of the input information for the process of
understanding. To understand any word, we need the context. Previous knowledge helps
for better understanding.

The same holds for all the sources of information on the Web. We need context to
understand it. In case of text understanding, we have surrounding text as the context.
We can use the keywords in the same paragraph or the whole text to get a general idea.
The machine must take the same steps to understand any text inputs. Extraction of
the contextual keywords gives a general idea. These words are usually around the same
topics.

Apart from the text on the Web, Web Tables are also a valuable source of informa-
tion. In the ideal case, we would have the Web tables, with the correct headers, and many
rows with correct values inside. We could understand and use this useful information but
in real Web Tables, we do not always have the headers, or there are typos or empty cells.
Later in this chapter, we state the problem, and we see why it is di�cult to extract the
information from Web tables and what are the challenges to bene�t from this structured
data.

2

1.2. Web Table Annotation 3

Tab. 1.1.: Illustration of the ideal Web table

Table 1.1 shows an example of an ideal Web table that contains the header informa-
tion on each column, and the entities have the correct dictation. Also, as we can observe,
the table contains both numeric and textual values. Any combination of numbers, letters,
and symbols are possible. In this table, by looking at the �rst column, we can get the
general topic of the table. More details are available in the rest of the columns. For
the �rst row, we have a computer-animated musical fantasy �lm. To explain theFilm
Title column, we use the other attributes of the table as the released date, the producer,
and its gross. By the end, we can decide as a human that this table demonstrates the
animated-�lms information.

1.2. Web Table Annotation

The Web contains named entities such as people, places, organizations, and products and
they can be ambiguous [11]. In this thesis, we speci�cally deal with the named entities
in the Web tables, and our goal is to disambiguate the entities and give the annotation.
To annotate each of the entities mentioned in the Web table, we connect them to the
Knowledge Base.

Knowledge Bases (KB) contain rich information about the world's entities, their
semantic classes, and their mutual relationships. Such kind of notable examples include
DBpedia [16], YAGO [26], Freebase [3] and Probase [6] [23]. Depending on the Knowl-
edge Base, each entity has a speci�c form of a unique link or ID. In our example, DBpe-
dia de�nes the entity, Frozen, as http://dbpedia.org/page/Frozen_(2013_film) and
Wikidata de�nes it as https://www.wikidata.org/wiki/Q386724 . In this thesis, we
use Wikidata [33] to annotate entities. The used gold standards contain DBpedia links.
Later in Chapter 4, we provide a mapping �le with DBpedia links with their equivalent
links in Wikidata.

1.2. Web Table Annotation 4

Having these de�nitions in mind, we de�ne Web Table Annotation as the task of
extracting the rows of Web tables and linking them to semantically rich descriptions of
entities published in Web Knowledge Bases [5].

Without the header row, it is hard for the machine to understand the main topic
of the table. What makes this task even more di�cult is the disambiguation of the same
name among its di�erent possible meanings. As an example, in Table 1.1, the entityFox,
can be annotated as a mammal,http://dbpedia.org/page/Fox , a TV series,http://
dbpedia.org/page/Fox_(TV_series) , a family name,http://dbpedia.org/page/Fox_
(surname), etc. In DBpedia, all the possible disambiguations of the entities are accessible
on their disambiguation page. For this example, there exist 89 di�erent disambiguations
at http://dbpedia.org/page/Fox_(disambiguation) . To disambiguate an entity in a
row, we can use the information in the other columns. It is also possible to have only one
column in a table. In this case, we may use the other rows of the Web table to decide
about the correct disambiguation.

Tab. 1.2.: Political parties in Denmark from T2D dataset

1.2. Web Table Annotation 5

Tab. 1.3.: Political parties in Sweden from T2D dataset

Tab. 1.4.: Political parties in Ireland from T2D dataset

An entity can have di�erent names. For instance, the birdGreen sandpiper, http:
//dbpedia.org/page/Green_sandpiper , is also calledTringa ochropus. Also, an entity's

1.3. Objectives 6

name may change over time [5]. It is a challenge from our early stages of entity disam-
biguation and entity annotation. We search for the entity to get the initial candidates. If
the entity name in the Web table is di�erent from its equivalent page title on Knowledge
Base, we do not have access to the correct initial candidates. If there is a di�erence
between the entity in the table and the Knowledge Base, we use an edit distance function
such as Levenshtein. Levenshtein edit distance can be useful if there is a typo in the Web
table. In our implementation, we accept the similarity ratio of more than 0.85. If the
entity Green sandpiperwas written asGreen sandpip, the similarity ratio would be 0.92,
which is more than our acceptance ratio. When we have two di�erent names for one en-
tity, this solution cannot help. For the entities Green sandpiperand Tringa ochropus, the
similarity ratio is 0.27, and we cannot solve this problem with the edit distance function.

On the other hand, di�erent concepts may be expressed using the same words.
Table 1.3, Table 1.2, and Table 1.4 show the HTML tables of political parties in Sweden,
Denmark, and Ireland, respectively. Christian democrats, social democrats, and liberal
party are the three entities that exist in both Table 1.2 and Table 1.3, although they
represent di�erent concepts. Since other columns of these rows are numeric values, we do
not use them for disambiguation. To decide about the correct disambiguation, we should
either have the table caption or use the information stored in the other rows. In Table
1.2, the entity danish people's partycan help us to understand that the table is about
Denmark. The entity Sweden democrats (sd)helps us to understand the topic of Table
1.3. The same problem appears in Table 1.4 for thegreen party and the socialist party
entities. The entity green party exists in Table 1.3, and the entitysocialist party exists
in Table 1.2 too.

1.3. Objectives

In this work we describe the state of the art approaches for Web Table Annotation.
First, we give a review on the most common approaches. Then, inspired by a recent
paper by Efthymiou et al. [5], we introduce a new method to achieve better results.
Before describing our approach, we discuss the modi�cations that we have made to
adapt the baseline to our approach.

1.4. Thesis Layout

The rest of the thesis is as follows:

Chapter 2 presents the recent works on Web Table Annotation and describes the
common ideas among the existing solutions. We describe the fundamentals to understand
the thesis as well as the state-of-the-art methods.

Chapter 3 covers the proposed methods to disambiguate entities in Web tables. We
describe the lookup-based and semantic embeddings approaches, and their combination
as well. This chapter contains our baseline methods and our proposed approaches.

Chapter 4 contains the benchmark data sets and brief representation of the avail-
able �les in each data set. The main purpose of this chapter is to show the results of the

1.4. Thesis Layout 7

implemented methods on each of the data sets. At the end, we mention some useful ex-
perimental setup that we exploit for this work which are useful for the e�cient execution
of the code.

Chapter 5 concludes the thesis and talks about possible future works.

2
State of the Art

2.1. Introduction

In this chapter, we provide an overview of the existing solutions forWeb table annotation.
We compare di�erent techniques in look-up based methods as well as semantic embedding
methods. This chapter covers the background techniques on which we base our own
propositions and improvements.

The �rst step before annotating a Web table is to understand what is it about and
which entities, columns, or rows, are useful for the annotation task. [1] believes there
is a column in every Web table, which demonstrates the main purpose of that table.
Other papers like [21], [28], and [5] follow the same idea. Venetis et al. [28] specify the
subject columnas the subject of the Web table, which contains the set of entities the
table is about, where the other columns represent binary relationships or properties of
those entities. To detect the label column, they labeled a set of tables to train a model.
Both the concept identi�cation for columns and relation identi�cation are based on the
maximum likelihood hypothesis. On the other hand, Efthymiou et al. rely on a heuristic
method [5]. The leftmost column with the maximum number of distinct non-numeric
values is the label column. Although the solution for �nding this most important column
can vary, these approaches agree on the importance of such a column.

To annotate a Web table, we can map the rows, columns, or the individual cells to
the Knowledge Base. In the literature, there are several approaches [2, 14, 29], in which
the authors have tried to provide annotations for the web table cells. On the other hand,
other approaches like [5] have connected each row to one of the entities in the Knowledge
Base. In this thesis, we annotate each row by a Wikidata page. In the context of the
Web Lists, the entities have the same type. It is the same scenario as in the Web table
columns. Shen et al. propose a framework to link the entities of the web lists with the
Knowledge Base [24]. Ritze et al. combine rows and columns matching to the entities
and schema of DBpedia [21]. Fan et al. use the table columns to map them to one or
more concepts in the Knowledge Base [7].

Much work on the potential of supervised methods has shown striking results [2,
14, 24, 1]. Also, employing the crowd-sourcing methodologies for di�cult tables is an
interesting approach [7], but, we believe that the use of human judgment to help the
annotation reduces the generality of the methods [5]. One of the signi�cant drawbacks

8

2.2. Lookup-based Method 9

of adopting supervised methods is the unscalability of such methods. An alternative
solution could be to leverage the more scalable approaches like unsupervised methods.
Zhang et al. [29] and Efthymiou et al. [5] perform the annotation without any previous
hypotheses about the input data and provide unsupervised solutions. In this thesis, we
do not make any assumptions about the input data.

2.2. Lookup-based Method

2.2.1. Candidate Generation

In the initial stages of annotation, we should have some candidates for each entity of the
table. There exist services like DBpedia lookup service1 to �nd the possible candidates
for the annotation of each entity. These candidates are re�ned or enriched based on
the di�erent methodologies presented in each paper. [21] uses DBpedia lookup service
to �nd related DBpedia URLs for each keyword. It also provides auto-completion of
the keywords if the string is incomplete. [29] uses Freebase for candidate generation
phase. This service is now deprecated. In the context of entity disambiguation in text
documents, [27] usesSurface Formsto prepare a list of unre�ned entity candidates from
all the sources. It applies the string normalization approach, like removing su�x and
pre�xes for some speci�c labels, removes time stamps, plural forms, etc. to clean the
input. [31] performs trigram similarity between the index and normalized surface form
for candidate generation.

Apart from the already existing lookup services, several existing works de�ne custom
candidate generation techniques. Efthymiou et al. [5] create their FactBase method over
Wikidata entities. Next, we explain in detail the FactBase Lookup method. To get the
�rst possible results, [1] looks for each entity in a database from the Knowledge Base with
the format as (value, entity, score).

Wiki�cation is the process of annotating the mentions of concepts in a document
with their corresponding URL of the Wikipedia [13]. In Wiki�cation approaches, a system
generates a ranked set of possible candidates for a given mention by querying Wikipedia
[4, 10, 18]. The standard approach for doing so is to collect all hyperlinks in Wikipedia
and associate each hyperlinked span of text with a distribution over titles of Wikipedia
articles it is observed to link to.

The topical coherence was �rst used by Cucerzan for disambiguation of entities [19].
A large scale named entity disambiguation system uses the contextual and categorical
information extracted from Wikipedia and the context of the document. To achieve a
surface form for entity matching, the title of the entity page, as well as the reference to
entity page in other Wikipedia articles are used. Milne and Witten [18] improve topical
coherence by normalized Google distance. They use only the unambiguous entities in
the document to get the context. The disambiguation is done simultaneously to keep the
coherence among each disambiguated set. The proposed methods by Han [10, 9] utilize all
words of Wikipedia to learn entity-word association and category hierarchy in Wikipedia
to capture co-occurrence of the entities.

1http://wiki.dbpedia.org/lookup/

2.2. Lookup-based Method 10

Shen et al. [25] perform the task of entity linking by unifying Wikipedia and Word-
sNet2 Knowledge Bases. To generate the surface form, they use dictionaries of entity
pages, redirect pages, disambiguation pages and hyperlinks in Wikipedia articles and use
their counts to de�ne the link probabilities. [30] is a ranking-based disambiguation system
with the domain-speci�c evaluation on bio-medical entity disambiguation. Their focus is
on the bio-medical domain to analyze the in�uence of user data on disambiguation result.
The top three properties that took into consideration are entity context, user data, entity
quantity, and entity heterogeneity.

2.2.2. Columns' Relations

Even though in most situations having a label column can be enough to annotate a
table, its binary relations with reference columns may appear relevant too. Reference
columns describe the properties of the label column. If there is any relation between
the columns, the same pattern should exist for di�erent rows of the Web table. For
example, Table 2.1 shows a sample table of the countries.Capital, currency, and language
columns are the properties of the columncountry. For the entity United Kingdom (https:
//www.wikidata.org/wiki/Q145), there is a capital relation (https://www.wikidata.
org/wiki/Property:P36) with the entity London (https://www.wikidata.org/wiki/
Q84). Since the same pattern exists for the other rows of this table, we can extract the
relation capital between the �rst and second column [5]. [1] states that it is not easy to
�nd these relations only by the table itself so they are using the surrounding content of
the Web table to extract relations. Surrounding information contains a paragraph before
and after the table as well as its caption. To extract relations, [28] uses a database of
relations, and [1] uses a dictionary of attributes from the Web text and search queries.
Moreover, authors in [22] augment the Knowledge Base by levering a Web text corpus
and natural language patterns associated with relations in the Knowledge Base.

2https://wordnet.princeton.edu/

2.2. Lookup-based Method 11

Tab. 2.1.: Table of Countries From T2D dataset

2.2.3. FactBase Lookup

FactBase is a lookup-based method for entity annotation and disambiguation [5]. The
approach is divided into two phases. In the �rst phase, we iterate over the whole table to
extract the information about the entities of the Web table. This phase only annotates
the unambiguous entities. For each entity of the label column, they extract the top
possible candidates in the Knowledge Base. At the end of this iteration, they choose the
Acceptable types. Acceptable types are the top-5 most frequent types of each column.
They extract the entity description tokens from the Knowledge Base. By the end of the
iteration, they choose the top description token of the table. Binary relations of the
column are the essential concept to extract in this phase.

In the second phase, these relations help to choose the correct annotation. Till
here, many rows can be already annotated. For the rest of the rows, two situations
hold. First, If there are many possible candidates, they perform aStrict search. They
choose the candidates who have the acceptable types, and one of the description tokens
in their entity description. Second, if no candidate exists, they let a bigger Levenshtein
margin distance. For instance, Table 2.2 from T2D dataset shows the companies and
their industry. The entity coca-colais titled as The Coca-Cola Company(https://www.
wikidata.org/wiki/Q3295867) in Wikidata. If we look for the entity coca-cola, we fail
to �nd its correct candidate (Q3295867). To solve this problem, we accept the candidates
with more than 0.85 similarity ratio. This solution helps to �nd the correct candidate,
even if we have typos, nicknames, abbreviations, etc. If we let a bigger Levenshtein
margin distance, candidates should contain one of the extracted binary relations. This
method is referred to asLoose search.

2.3. Embedding methods 12

Tab. 2.2.: Table of Companies From T2D dataset

2.3. Embedding methods

The core hypothesis of linking approach for text disambiguation task is compatible with
Web table annotation task [5]. In text disambiguation, entities are mainly about the
same context. Web tables entities also create the coherent set of concepts. DoSeR is
one of the linking approach for text documents [31, 32] that employs the Semantic Entity
Embeddings on di�erent types of Knowledge Bases, whether RDF-based Knowledge Bases
or entity-annotated Knowledge Bases.

DoSeR [31] starts by index generation. The index contains a label, asemantic
embedding, and aprior for each entity. A prior demonstrates the importance of an entity
within the text. The entities are gathered from di�erent combinations of Knowledge
Bases. Given an input document, the semantic embedding, created on all the entities of a
Knowledge Base, help to calculate the semantic similarity of the entities. Candidates are
achieved either with an exact match to the surface form or trigram similarity. Finally,
by having the semantic embeddings, DoSeR creates a K-partite graph. This complete
directed graph has K disjoint subsets. In the context of web table annotation, each
subset can be considered as each row (or label column entity). The nodes are the already
�ltered entity candidates, and edge weights are the normalized cosine similarity of the
Semantic Embeddings of the entities. Also, the obtained prior values helps to connect

2.3. Embedding methods 13

nodes as non-uniformly-distributed random jump values. By applying PageRank with
50 iterations, the node with the highest relevance is the result. The �nal improvement
is made by removing the 25% of the edges, whose sources and target entities have the
lowest semantic similarity.

There are some other approaches for text entity disambiguation as DBpedia Spot-
light [16], TagMe [8], Wiki�er [13], AIDA [12] and WAT [6]. DBpedia Spotlight [16]
annotates the text documents using the DBpedia Lexicalization dataset. It starts by
candidate selection to reduce the space of disambiguation possibilities, and the candidate
whose context has the highest cosine similarity is chosen. Disambiguation is done using
vector space model for DBpedia resources. In DBpedia Spotlight, no semantic coherence
is estimated among the chosen entities.

TagMe is another graph-based global disambiguation method for text documents [8].
The process is based on the disambiguation of the terms by hyperlinks to the Wikipedia
pages. It looks for the Wikipedia anchors in the text, and by having anchors list, TagMe
allocates a Wiki page to the anchors. In the end, by having all the anchors' pages, using
the in-link graph, it computes the score of the collective agreement among the chosen
pages.

We have discussed the Wiki�cation methods previously. Wiki�er[13] is another
Wiki�cation approach which focuses more on statistical methods. Same as TagMe, Wik-
i�er starts by candidate generation, followed by ranking the candidates of the mentions.
After associating the Wikipedia pages to the terms, the learned model re�nes the can-
didates through the second phase. The di�erence of this method is a richer analysis of
the text by statistical methods. Another graph-theoric method, AIDA[12] framework
combines three measures: the prior probability of the mentioned entity, the similarity
between the context of a mention and candidate entity, and the graph-based coherence
among candidate entities. WAT [20] is the successor of TagMe, which reimplements
all the components of TagMe for collective entity linking(graph-based) and local entity
disambiguation(vote-based) algorithms.

What we have explained from the global disambiguation techniques for text dis-
ambiguation can be applied to the Web table entity disambiguation as well. [5] believes
this method can be adapted for the Web tables because in Web tables, just like the
text documents, the entities are forming a coherent sets. In Table 2.1, for the entity
United Kingdom, we may have two candidates as the country (https://www.wikidata.
org/wiki/Q145) and the music album (https://www.wikidata.org/wiki/Q7887906).
Since the entities are coherent, the correct disambiguation should be related to the entity
London (https://www.wikidata.org/wiki/Q84), and other country names in the fol-
lowing rows. Among these two candidates, the United Kingdom with the type as country
(https://www.wikidata.org/wiki/Q6256) is chosen by this disambiguation technique.
As in DoSeR, [5] uses Word2Vec to create semantic word vectors. The annotation in this
method is divided into two parts. The �rst stage, called the o�-line stage, provides the
prerequisites for the online stage to �nd the correct semantic mapping between table rows
and entities in a Knowledge Base. One of these prerequisites is the Surface Form. Surface
form index receives the named entity as an input and provides some possible mappings
to the Knowledge Base. It supplies all the existing entities of the Knowledge Base. Also,
we create a Word2Vec model to compute the Cosine similarity of various pairs of entities.

2.3. Embedding methods 14

We �rst perform a random walk from the entities to their neighbors in the Knowledge
Base and use it as an input corpus for the Word2Vec model.

The online stage needs both created model as well as the surface index form. For
each non-numerical value of the Web table, we search for the candidates, i.e., we look for
the string entity name and get the candidates' unique IDs or URLs. These candidates
become suitable nodes to create our K-partite graph. Next, the weighted directed edges
connect the candidates of di�erent entities. The candidates coming from the same table
cells are not connected. The �nal step to form our disambiguation graph is to calculate
the weight of the edges. The weight is the normalized Cosine similarity, measured from
the semantic similarity of two nodes in Word2Vec model. We need a method to �nd out
the importance of the nodes. Giving the graph to the PageRank algorithm, we �nd the
most relevant nodes. PageRank algorithm computes the ranking dictionary of the nodes,
and the node with the highest score is our chosen candidate.

3
Method

3.1. Lookup-based Methods

3.1.1. FactBase Method

The basic idea behind lookup-based method that we are presenting in this section is
derived from a paper by Efthymiou et al. [5]. Their method for table annotation is
inspired from existing papers such as TableMiner [29] for sampling phase and T2K [21]
for the candidate generation phase. Also, the relation extraction method is motivated
from another approach by Venetis et al.[28]. Some of these methods are presented for
text disambiguation and they are extended to suit the Web table annotation.

To start the annotation, based on FactBase Lookup, we need to prepare some pre-
requisites. First, we need a lookup service that provides common names for the entity
that we want to annotate. More precisely, we need a lookup service to generate the �rst
set of candidates. In our case, we use the surface index form generated from Wikidata.
Because of the typos, or di�erent ways of expressing the same concept in the dataset and
the Knowledge Base page, we cannot match some of the table entities to any entity in
our surface form. In this case, we also create the Levenshtein version of the surface form
for the entities that are not found [5]. This �le is generated before starting the Web table
annotation.

In the �rst step, we iterate through the web table. On this �rst iteration, we
perform a cleaning step which includes removing punctuation symbols and non-textual
columns, and replacing HTML entities with their corresponding characters. For example,
we replacenbsp; with its corresponding value which is a non-breaking space. Then, the
Web table is ready for label column and reference columns detection. Label column,
which contains the main subject of the table, is determined by the column with the most
number of distinct non-numeric values. In case there are multiple columns with the same
number of unique values, we choose the leftmost column as the label column. All the
other columns of the Web table are the reference columns.

Two components are essential in this phase: �rst, the types of the entities in the
label column, and second, the description tokens of these cells. For each row of the Web
table, we take the label column entity and look for its candidates in the surface form. If
there exists any result from this search, we sort the candidates according to an ascending

15

3.1. Lookup-based Methods 16

order of the identi�ers, and we keep the �rst result as our top result. Now that we have
the top result of each row, we extract the types and the description tokens of this top
result from its corresponding page in Wikidata. In Wikidata, the description tokens are
from the "schema:description" property. Also, the types are mentioned in the property
as "InstanceOf (wdt:P31)".

From now on, we may have three di�erent paths to go through. First and the
most accurate one is when we have only one candidate for an entity. So, the entity
is not ambiguous, and we can annotate the row with this result. We try to �nd the
relations of this annotated entity with the reference columns. We crawl the annotated
page in Wikidata and look for the reference column value in it. There is a relation
between the label column and a reference column if there is any property that mentions
the reference column value. For example, in Table 2.1,Capital, currency, and language
columns are the properties of the columncountry. For the entity United Kingdom (https:
//www.wikidata.org/wiki/Q145), there is a capital relation (https://www.wikidata.
org/wiki/Property:P36) with the entity London (https://www.wikidata.org/wiki/
Q84).

The second path is when the entities have more than one candidate. We de�ne the
acceptable type as the most frequent type among all collected types. In our case, we keep
the top �ve types as acceptable types. Also, from all description tokens, we remove the
stop words. We choose the most frequent tokens as description token of the table. For the
entities with more than one candidate, we perform a more strict search. From the list of
candidates, we accept the candidates with at least one of the acceptable types which also
contains the selected description token. The unambiguous rows are already annotated.
If we have more than one result from our Strict search, we take the �rst result from the
sorted list of results. Finally, the third path is when there is no result from Strict search.
It implies that we are too strict. To solve this, we perform another search with a lesser
strict criteria called Loose search. In our Loose search function, we accept results with
one of the extracted binary relations.

3.1.2. Majority-Based Method

The lookup-based method explained in the previous section mostly relies on the top
result from the list of Knowledge Base candidates. With this method, we are missing the
signi�cant part of the available information. Although the �rst result has high importance
for the annotation, it is not always the case that it is the correct one.

We de�ne the majority-based method to get bene�t from the other candidates. In
this case, we do not only choose the acceptable types from the top result of each entity
but we also select the types in the other available candidates. In other words, we query
the types of all the entity candidates, we store them and append to the type collection
of all the table. Finally, by majority function, we choose the top n most frequent types
among them. It means we take the other candidates into account that can be our correct
results.

3.2. Embedding Methods 17

3.2. Embedding Methods

The basic idea of all the embedding methods in this section is from our baseline paper [5].
The general idea comes from the global disambiguation techniques mentioned previously
in [31]. The point is in local disambiguation techniques; we do not keep track of the
context in the document. For example, in a sentence as "Sydney cannot be interesting
for the kids.", we do not know whether Sydney is a city in Australia(Q3130), a community
in Canada (Q932261), or an American comedy series(Q3979019) if we are not aware of
the context around our sentence. In global disambiguation techniques, we believe that
the context of the entities is the same. The global disambiguation technique was �rstly
proposed for the text document disambiguation. It can also be extended for the Web
Table Annotations since the information in the table is mostly around the same topic.

3.2.1. Baseline Embedding Method

Before beginning the annotation, we need to create two main elements. First, the surface
index form is required to �nd the primary candidates. [5] creates these possible candidates
by using the common names of each entity. These candidates are the unique pages on
DBpedia. This data is enriched with some of the available properties from the Knowledge
Base. In our case, we are collecting the set of common names from Wikidata pages. To
get our initial candidates, we apply a pre-processing step to our surface form creation.
To be speci�c, we remove punctuation symbols and transfer all the surface form keys to
lowercase letters. In this stage, stemming and stop word removal is not applied.

Apart from having our surface index form, we create the Levenshtein distance ver-
sion of the surface form separately for each of our datasets. We crawl our Web tables and
look for each entity in the surface index form. If the key does not exist, we calculate the
Levenshtein distance of this key with all the keywords that we have in the surface index
form. If we �nd any key with the similarity ratio of more than t, we store the not founded
key with the candidate results of its similar key. It helps us to overcome the typos or any
small mismatches in the entity and surface form key.

Next, we need to prepare the word embedding model. As in [5, 31], we use Word2Vec
model presented by Mikolov et al. [17]. The process starts by applying a random walk
on the Wikidata pages and following the RDF relations. Whenever there is a pattern
match between two entities, they are added to the matching group of entities. These
stored trigrams are consumed by Word2Vec to generate our model. The continuous bag
of words (CBOW) is instantiated for the model. The parametermin_count of the model
is the minimum required repetition of a particular word in our corpus. We calculate our
�nal results based on di�erent min_counts for the words in our generated document.
Di�erent results are presented later in the next chapter for di�erent minimum counts of
words.

In the next step, we can start to annotate the entities using both self-generated
surface form and the Word2Vec model. We iterate the Web table and collect the entities.
At this stage, we do not consider any numerical value, except if they appear with string
characters. As an example, we keep the entityalex rodriguez (172)which appeared in our
T2D dataset. There are also a considerable amount of columns with repetitive pre�x or
su�x. In other words, the pre�xes or the su�xes of all the entities in these columns are

3.2. Embedding Methods 18

the same. These columns mostly do not have any value to help our annotation and can
sometimes bring problems for detecting the correct label column. As an example, entities
followed by their units like 401.00 mio m3zor 100 m. These measures are repeated in
the whole column, and we need to remove them in the pre-processing phase. Moreover,
we only consider the entities with more than 3 characters and as a result, an entity like
CHF presenting the currency of money,Swiss Franc, is not taken into account.

We search each of the collected entities into our surface index form or in Levenshtein
version of the surface form to have the possible candidates for the annotation. For each
entity, we have a set of candidates V. In case of Wikidata, we omit all the candidate results
with the property Instance Of (P31), Wikimedia disambiguation page, or Wikimedia
category. The elements inside the set V, are used as the nodes of the disambiguation
graph. The disambiguation graph is the union of all these candidates for the entities
throughout our table. For example, if we have two entities, e1 and e2, we search each
of them in our SF, and we have such a result, e1 = (id1, id2) and e2 = (id3, id4, id5).
These ids are the nodes of the disambiguation graph. Each entity candidate is connected
to all the candidates of the other entity. In here, there are edges from id1 to id3, id4, and
id5. These connections are the direct weighted edges. We calculate the weights by the
Normalized Cosine similarity obtained from their vector representations in our Word2Vec
model.

weight(v1; v2) =
cos(emb(v1); emb(v2))

P
k cos(emb(v1); emb(k))

(3.1)

Finally, we apply the PageRank algorithm to graph G to compute the most im-
portant node among all of the candidates of a speci�c entity. We can decide whether
to choose the highest-ranked vertices or the set of top results of each mention. In the
baseline method, the highest-ranked node is used, but in our methods, we use the top
results from the ranked results of the PageRank.

3.2.2. Looping Method

The approach in section 3.3.1 is to create our disambiguation graph, with all the can-
didates of the entities. It means that there exist entities with only one candidate from
the Surface Form, which is mostly their correct annotation and also entities with several
candidates, which we should disambiguate. In the Looping method, we build an initial
graph with the already annotated entities. Throughout the iterations, we gradually add
ambiguous entities. We believe this method performs better because we strongly focus
on the coherency of the nodes.

We collect the candidates, as described in section 3.3.1. Next, we create the initial
looping graph with the entities with only one candidate. At each round, we add one
ambiguous nodes' candidates to the Looping graph. An example of such a scenario is
presented in Figure 3.1.

	Introduction
	Motivation
	Web Table Annotation
	Objectives
	Thesis Layout

	State of the Art
	Introduction
	Lookup-based Method
	Candidate Generation
	Columns' Relations
	FactBase Lookup

	Embedding methods

	Method
	Lookup-based Methods
	FactBase Method
	Majority-Based Method

	Embedding Methods
	Baseline Embedding Method
	Looping Method
	Centrality Measures

	Hybrid
	Hybrid I
	Hybrid II
	Hybrid Refinement of Looping

	Evaluation and Results
	Datasets
	The T2D Dataset
	Limaye
	Wikipedia
	Refined version of Limaye

	Mappings
	Experimental Set up
	Results
	Lookup-based Method Results
	Embedding-based Method Results
	Hybrids
	Analysis

	Conclusion and Future Work
	Common Acronyms
	License of the Documentation

