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Abstract

Anomaly detection is one of the most fundamental tasks in time series analysis. The proposed
techniques belong generally to one of the following categories: supervised, semi-supervised
or unsupervised. Each of these categories assumes a certain trade-off to achieve a good
accuracy. In this thesis, we propose to study six different outlier detection techniques, each of
them belongs to one of the previous categories. The anomaly detection techniques we study
are: Histogram, Cluster (Gaussian Mixture), One-Class Support Vector Machine, Isolation
Forest and Robust PCA together with an unsupervised variant of Local Indicators of Spatial
Association (LISA). We focus on outliers characterized by significant deviation from other
data points in the context of multiple correlated time series instead of exploring point outliers
or anomalous patterns within isolated time series. Additionally, we extend LISA using the
Dynamic Time Warping to leverage the temporal correlation between time series. All models,
but LISA, are applied in a semi-supervised fashion using only normal data for training in
all experiments. The result of the empirical evaluation pinpoints to the advantages and
disadvantages of each of these techniques.

Finally, we implemented a new online tool, called VADETIS, which allows to i) display
time series, ii) evaluate outlier detection techniques and iii) recommend the best technique for
a specific dataset. Users can also upload their own time series datasets as well as training data
and inject synthetic outliers into time series data.
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1
Introduction

1.1 Motivation

Patterns and points in datasets that do not conform well to a model of normal or expected behavior are
referred as outliers or anomalies. Often, these two terms are used interchangeably. Detection can be
performed on any type of data such as discrete or continuous, univariate or multivariate data. The output is
either a score value that de�nes the con�dence for being an outlier, or a binary label resolving whether a
data instance or point is considered anomalous.

In many applications, data is generated by one or several recording processes. The occurrence of
outliers is a sign of unusual behavior and can provide useful information about anomalous characteristics of
the system. Thus, the proper identi�cation of outliers leads to a deeper understanding of the application and
the data. In order to de�ne normal behavior within a dataset a comprehensive model of normality is derived.
Outliers are recognized as observations which do not �t into such a model as they are characterized by a
signi�cant discrepancy. The de�nition of signi�cance depends, among others, on individual application
speci�c attributes such as type of data, time, domains, seasonality, frequency, trends, noise, etc. Thus, a set
of values may be anomalous in a given context, but an identical pattern could be considered as normal
behavior in a different context. Many ways are possible to de�ne a model of normal behavior. However,
the model is usually formed by an algorithm and the choice of the model is critical for the effectiveness of
detection. In order to increase detection rate and con�dence, the model may be trained using additional
datasets of the same or related domain. The correlation between those datasets can be used to express and
improve the model as datasets with strong correlation among themselves are much likely to experience the
same trends for the evolution of their observations.

In general, anomaly detection is a complex subject and there is no universal solution that �ts best. The
choice of an appropriate model using proper parameters to be applied at the correct time as well as the
de�nition of anomalous behavior in the investigated datasets are essential for accurate detection.

8



CHAPTER 1. INTRODUCTION 9

1.2 Problem De�nition

Detection of anomalies in correlated time series has recently attracted a lot of attention with a wide range of
applications, such as intrusion detection implied by identi�cation of strange access patterns, system health
monitoring, stock exchange, fault detection in operating environments and many more. The importance of
anomaly detection arises from the fact that outliers can lead to misjudgments and wrong interpretations.
As outlier event occurrences may not always lead to a severe impact on a system, a successful detection of
anomalies can help to detect misbehavior. The quality of the data should be ensured before it is considered
for decision making. Detection methods that require model training need classi�ed training data which may
not be available or underlies assumptions that do not hold. In this case, detection methods without training
that perform similar may be bene�cial. Instead of training, detection may be derived from correlations
within the data.

In this work, a solution for outlier detection in time series using correlation-basedLocal Indicators of
Spatial Association(LISA) is implemented, evaluated and compared to other state of the art techniques.
This thesis investigates the detection of anomalies by generalizing the solution proposed inScalable
Anomaly Detection for Smart City Infrastructure Networks[1] using different types of correlations among
time series. The main contributions of this thesis are:

• We implement different anomaly detection algorithms and we evaluate them on various real-
world and synthetic time series data. We empirically study these technique and investigate their
performance.

• We introduce a novel and ef�cient modi�cation of LISA. Instead of the spatial correlation which
is applied on vanilla LISA, the correlation between points of different time series is derived with
Pearson correlation using a moving window of �xed size. In correlated time series, the evolution
of observations is often slightly shifted across different time series. Thus, we propose a variant of
Pearson correlation withDynamic Time Warping(DTW) taking this temporal aspect into account.
This variant changes the pairing of point values grouping those with lowest distance to each other
before Pearson correlation is applied.

• We implement a new online tool called VADETIS (Validator for Anomaly Detection in Time Series).
The tool allows users to upload their own time series datasets as well as training data in order to
perform and evaluate outlier detection. Users can either share their datasets with others or just use
them themselves. Time series can be corrupted by injecting synthetic outliers of different types
before detection is performed. The tool is able to recommend the most suitable technique for
different performance metrics on a speci�c dataset.

1.3 Outline

The structure of this thesis is separated into seven chapters. Chapter 2 provides an overview about
fundamental concepts integrated in the proposed extension of LISA. Chapter 3 describes anomalous
behavior in the context of time series and presents their characteristics and patterns. LISA and other
notable detection techniques are covered as well. In Chapter 4, the novel approach for correlation-
based LISA is described with example computations. Further, an extension for Pearson correlation that
incorporates Dynamic Time Warping is introduced. The performed experiments on real-world and synthetic
data are shown in Chapter 5. The performance of all mentioned algorithms is further analyzed, investigated
and discussed. A web application VADETIS is presented in Chapter 6, outlining the architecture, layout,
implementation and usage of this application. Chapter 7 concludes this thesis and points out to possible
future extensions that could be subject to further improvements.



2
Background

This chapter covers the main concepts used throughout the thesis. We focus on the concepts used for the
extension of the LISA technique.

2.1 Dynamic Time Warping

Univariate time series record the changing value of one attribute continuously or over a time period
ordinarily at �xed intervals. A time seriesX = [ x1; : : : ; xn ] is a temporally ordered sequence ofn
consecutive points in time. The similarity between two time seriesX andY in an-dimensional space is
measured by aligning two sequences and computing a distance between them. The distance value quanti�es
the extent of the similarity between the two time series and can be calculated using distance functions such
as Euclidean distance. Time series might be shifted or be compressed in time which which is not taking
into account by Euclidean distance. Consequently, two time series that share a very similar pattern might
have a high distance according to the Euclidean formula, although they look visually similar [2].

A more �exible method that can arrange the best suitable mapping from elements inX to those in
Y is used in order to compute the distance. A more optimal alignment between two time series can be
obtained using Dynamic Time Warping (DTW). This method allows to �nd the best alignment between
two time series by compressing or expanding in time. The best mapping is determined by the mapping
resulting with the minimum distance that is achievable using a given distance metric. The more similar
two elementsx andy the lower their distanced(x; y) to each other. Figure 2.1 contrasts DTW with the
Euclidean distance mapping. Both time series show the same pattern but shifted slightly on the vertical
and more obvious on the time axis. Black lines indicate which values are matched for a distance function.
Euclidean distance computes a larger distance compared to DTW because DTW matches the time series in
a way that the patterns are aligned by warping the time axis.

To �nd the best mapping for two time seriesX = [ x1; x2; :::; xn ] andY = [ y1; y2; :::; ym ] of different
or equal lengthn respectivelym, a distance matrixD 2 IRn � m is computed [3]. Figure 2.2a illustrates
the distance matrix for seriesX andY with dark elements for low distances and bright elements for
high distances. The optimal path through this matrix has minimal overall distance and de�nes the values
mapping for DTW as each matrix element(i; j ) 2 D represents an alignment between point pair(x i ; yj ).
The warping path is a sequenceW = ( w1; w2; :::; wL ) with wl = ( i l ; j l ) 2 [1 : n] � [1 : m] for l 2 [1 : L ].

10
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(a) Euclidean distance (b) DTW

Figure 2.1: Alignment of two time series for Euclidean distance and DTW. Aligned points are connected
with black lines.

L denotes the pair alignment number withmaxf n; mg � L � n + m � 1. Valid warping paths must
satisfy the following conditions:

(i) Boundary condition: w1 = (1 ; 1) andwL = ( m; n).

(ii) Monotonicity condition: i 1 � i 2 � ::: � i L andj 1 � j 2 � ::: � j L .

(iii) Step size condition: wl � wl +1 2 f (1; 1); (1; 0); (0; 1)g for l 2 [1 : L � 1]

(a) Distance matrix (b) Accumulated distance matrix

Figure 2.2:(a) Distance matrix of two time seriesX andY using the Euclidean distance as local distance
measured and(b) accumulated distance matrix with optimal warping pathW .

The boundary condition (i) speci�es that the �rst elements of time seriesX andY as well as their
last elements are aligned with each other. Therefore, the warping path covers the entire sequences of
X andY . The monotonicity condition (ii) constrains the path as it will not turn back on itself because
a subsequent indexi l +1 or j l +1 either remains unchanged or increases by one. Further, the step size
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condition (iii) enforces that the alignment path does not skip a time index and no duplicates of alignments
exists. Consequently, no element inX as well as inY is omitted by a warping path. The step size
condition (iii) implies monotonicity condition (ii) becausewl = ( i l ; j l ) andwl +1 = ( i l +1 ; j l +1 ) 2
f (i l + 1 ; j l + 1) ; (i l + 1 ; j l ); (i l ; j l + 1) g, theni l � i l +1 andj l � j l +1 .

The warping path distance is calculated from the �rst cell(1; 1) to the last(n; m) with equation 2.1 as
sum of all distances of each index alignment of the path. The DTW distance is the optimal path between
X andY having minimal total distance among all possible paths as equation 2.2 shows.

d(W ) =
LX

i =1

d(wi ) (2.1)

d(wl ) = d(x i l ; yj l )

DTW (X; Y ) = min
8W

f d(W )g (2.2)

Calculating all possible warping paths to determine the optimal path is expensive (i.e., exponential
time complexity withn). The most commonly used technique to calculate DTW distance is the concept of
an accumulated distance matrix (ADM) which can be computed with complexityO(nm). Each element in
ADM, as illustrated in Figure 2.2b, contains the respective value in the distance matrix plus the lowest
preceding accumulated distance. Possible preceding elements for accumulated distance values are de�ned
similar to the step size condition as shown in equation 2.3. This matrix is used to develop a warping
path which follows through the cells with the lowest accumulated distances, thereby minimizing the total
distance difference between the two sequences. The value of the top right cell(n; m) is the DTW distance
of X andY .

DTW (X; Y ) = f (n; m) (2.3)

f (i; j ) = d(x i ; yj ) + min

8
<

:

f (i; j � 1)
f (i � 1; j )
f (i � 1; j � 1)

f (0; 0) = 0

f (i; 0) = 1 for i � 1

f (0; j ) = 1 for j � 1

2.2 Correlation

Correlation describes the degree of similarity and relationships between two variables or time series.
Positive correlation is a relationship between two time series in which both evolve in the same direction
while negative correlation is a relationship in which both evolve in opposite directions to each other. The
Pearson correlation coef�cient, also known asr , measures the strength of the linear correlation between
two time seriesX = [ x1; : : : ; xn ] andY = [ y1; : : : ; yn ] of equal lengthn. It is de�ned as:

r (X; Y ) =
cov(X; Y )

� X � Y
=

nP

i =1
(x i � �x)(yi � �y)

s
nP

i =1
(x i � �x)2

s
nP

i =1
(yi � �y)2

(2.4)
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The value ofr is unde�ned if allx i (and/oryi ) are equal. If not, the value is in range from -1 to 1 and is
interpreted as follows:

• r � 0: If two variables have a correlation value of approximately zero, no correlation is recognizable.
This means the two variables are uncorrelated and that there is no linear correlation between the
variables.

• r > 0: If r is higher than zero, this is called a positive correlation. Higher values ofX correlate with
higher values ofY as well as lower values ofX correlate with lower values ofY . (x i � �x)(yi � �y)
is positive only ifx i andyi lie on the same side of their respective mean values. Therefor the
correlation is positive ifx i andyi tend to be simultaneously greater than, or simultaneously less
than, their respective means.

• r < 0: If r is negative, then higher values ofX correlate with lower values fromY and vice-versa. A
negative correlation value refers to anti-correlation and happens ifx i andyi lie on opposite sides of
their respective mean values. Further, the more signi�cant is either tendency, the larger the absolute
value ofr .

In general, values ofr 2 [0:7; 1] stand for highly correlated variables.



3
Anomaly Detection in Time Series

This chapter de�nes anomalous behavior in univariate time series. It gives an insight into the various
challenges, anomaly types and categories that can occur and presents dissimilar outlier patterns. Further,
we introduce the detection methods which have been used for evaluation. All the techniques, except LISA
which is an unsupervised approach, can be applied in a semi-supervised fashion.

3.1 Challenges

The problem of outlier detection in time series is often formulated as �nding outlier data instances or
points relative to standard or conventional signal which are signi�cantly distinct from the majority of the
data. Statistically speaking, signi�cance means that the statistical properties of the data instance or point
is not in alignment with the rest of the data. Thus, the detection of anomalies is often not unequivocal.
Several factors associated with anomaly detection for time series lead to major challenges [4]:

• Different ways exist to de�ne an anomaly that occurs in a time series. Single observations within
a time series may be anomalous as well as subsequences of consecutive observations. Further, an
entire time series could be anomalous with respect to others which are considered as normal.

• The data may contain noise which might be similar to anomalous behavior. This arises from the fact
that the boundary between normal and anomalous behavior is often not precise.

• It can be dif�cult to de�ne a model of normal behavior of the data that covers the whole normal
behavior.

• The de�nition of normal or anomalous may frequently change as the data keeps evolving. Thus,
normal behavior of the past might not �t into normal behavior in the future.

• The classi�cation of outliers varies for different application domains. A deviation level that signals
abnormality in one domain might be considered within normal behavior in another.

14
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3.2 Types of Anomalies

The classi�cation of an observation as an anomaly depends on its de�nition as well as a given context.
In real-world time series datasets outliers arise as consequence of a temporal or continuous anomalous
behavior of a system. The causes can be human error, sensor failure, strange traf�c patterns as sign of
intrusion, attacks, fraudulent behaviour or simply natural deviations in observations. While there are lots
of anomaly types, the focus of interest is on the most common ones such as unexpected spikes, drops, trend
changes and level shifts. Anomalies in time series data can be classi�ed into four different types [5–7].
Figure 3.1 graphically represents the four types of anomalies and an example how values are affected by
outliers is shown in Table 3.1.

(a) Additive outlier (b) Innovative outlier

(c) Level shift (d) Temporary change

Figure 3.1: Types of Time Series Anomalies

• Additive Outlier : The value of a single observation is affected and anomalous as it is out of range
from the normal data. After the anomaly occurred, the value of the next observation is within normal
behavior. For example, an additive outlier may be the result of a single recording failure of a sensor
due to a voltage spike.

• Innovative Outlier : A trend is induced by a random process that causes an unusual innovation in
time series data affecting not only the level of the observations at the time when the outlier occurs
but also subsequent observations, i.e, due to an unusual increasing growth of network traf�c.
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• Level Shift: The time series experiences a temporal level change of the data. The values of later
observations stay either permanently or temporal on a different level at a similar extent. If activation
of a related subsystem in�uences a main system with a constant amount, this type of anomaly can
be observed.

• Temporary Change: An outlier that initially produces an extreme high or low value, then the size
of the deviation reduces gradually until the effect dies out. Finally, the time series returns to the
initial level. This behavior can also be considered as a sequence of additive outliers. For example, a
voltage spike occurs which leads to an additive outlier with a fade-out effect after the initial spike.

Timestamp Original Value Additive Outlier Innovative Outlier Level Shift Temporary Change
1 6 6 6 6 6
2 2 2 4.48 2 2
3 7 7 9.48 7 7
4 8 10.48 10.48 9 10.48
5 9 9 11.48 11 9.32
6 5 5 7.48 8 8.16
7 7 7 7 10 7

Table 3.1: Example of Outlier Values

When anomaly detection is performed, the output of the detection algorithm can be either a score or a
label [4, 8]:

• Outlier scores: Scoring techniques compute a score value for each data instance that signs to which
extent it can be considered as an anomaly. All data values can be ranked by their score in order of
their tendency of being an outlier. The decision which values are threatened as outliers is based on
either a domain-speci�c threshold de�ning all values above or below as anomalous or by taking the
topn values out from the ranked list.

• Binary labels: This technique uses algorithms that classify each data point with a binary label
marking each point as an outlier or not. Some algorithms return directly a binary label, others
compute a score value �rst and mark based on a threshold value. Binary labeling provides less
information if the score value is not presented as well.

3.3 Anomaly Detection

3.3.1 Categories

Based on the availability of labels for normal data and outliers, anomaly detection techniques can operate
in one of three different modes [4].

Supervised Anomaly Detection Supervised anomaly detection techniques require the knowledge of
both normal and anomaly class. Training datasets in which each data instance is marked as either normal
or anomaly are used to build a predictive model that characterizes anomalous as well as normal patterns.
Afterwards, a classi�er applying the predictive model is performed on the detection datasets. This process
is illustrated in Figure 3.2 where green points represent normal data and red points the anomalies.
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Figure 3.2: Supervised Anomaly Detection

Semi-Supervised Anomaly Detection Unlike supervised techniques, semi-supervised anomaly detec-
tion, as shown in Figure 3.3, requires only the knowledge of normal class whereby training dataset solely
contain normal data without any anomalies. The idea behind this approach is to learn a model of the
normal class and to detect outliers as they deviate from this model.

Figure 3.3: Semi-Supervised Anomaly Detection

Unsupervised Anomaly Detection The unsupervised anomaly detection approach as shown in Fig-
ure 3.4 does not involve training for the creation of a model. Instead, detection can be directly applied
on any unlabeled dataset. Because in many application domains it can be dif�cult or even impossible to
acquire representative datasets with correctly labeled data instances, this approach is widely employed. An
unsupervised anomaly detection algorithm computes scores based on intrinsic properties of the dataset.
Typically, geometrical properties of the data such as distances, densities or clusters between data instances
are used to estimate a pattern of normal or anomalous behavior. However, this approach assumes that
normal data occurs far more frequently in the dataset than outliers. If this assumption does not hold, the
result of recognition is characterized by many false classi�cations.

Figure 3.4: Unsupervised Anomaly Detection

3.3.2 Techniques

Local Indicators for Spatial Association (LISA) The Local Indicators of Spatial Association (LISA) [9]
is a statistical technique that measures the degree of spatial correlation at speci�c locations. It can be
directly applied to the data without additional training. LISA satis�es two requirements:

• The LISA for each observation indicates the extent to which there is signi�cant spatial clustering of
similar values around that observation; and
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• The sum of the LISAs for all observations is proportional to the global indicator of spatial association.

The LISA statistics serve two purposes. They can be interpreted as indicators for local clusters of high
or low values. They can also be used to assess the in�uence of individual locations on the magnitude of
the global statistic which enables to identify outliers. This type of statistics examines the local level of
spatial correlation and classi�es areas where values are extreme and detects localities exhibiting similar
values that do not follow the global trend. Additionally, the LISA value is an indicator of the extent to
which the value of an observation is similar or different from its neighboring observations.

Consider a set ofm univariate time seriesX = f X 1; : : : ; X m g where thep-th time series is
a set ofn temporal valuesvpi ordered with respect to their timestampstpi and de�ned asX p =
f (tp1; vp1); : : : ; (tpn ; vpn )g. Assumezpi = vpi � �v i

� i
, the LISA of a valuevpi is de�ned as:

L (vpi ) = zpi �
k � mX

q=1 ;q6= p

! pqi
� zqi (3.1)

wherek is the number of allv� i values at positioni , �vi is the mean value and� i represents the standard
deviation. The similarity weight between two time seriesX p andX q at indexi is expressed as! pqi

.

Algorithm 1: LISA
Input : f X 1; : : : ; X m g: a set ofm univariate time series whereX p = [ vp1; : : : ; vpn ] is a series

of n temporal ordered valuesvpi ,
p 2 f 1; : : : ; mg: the index of the time series to perform anomaly detection,
� : a threshold that de�nes the decision boundary for outlier scores

Output : L = [ l1; l2; : : : ; ln ]: a series of predictive labelsl i 2 [0; 1] for X p

1 for i = 1 to n do
2 if L (vpi ) < � then
3 l i := 1 ;
4 else
5 l i := 0 ;
6 end
7 L := l i ;
8 end
9 returnL ;

Algorithm 1 shows the pseudocode of detection with LISA classifyingL(vpi ) values below the
threshold� as outliers. The threshold is usually close to zero but can be altered to a more suitable value
which depends on the data. If the threshold value is too low, many outliers are not detected. On the other
hand, if its too high many normal values may be classi�ed as outliers. Further, the LISA values are highly
impacted by the de�nition of weightswpqi

among time series. Thus, the choice of weights is a pivotal step
for detection and there exist different ways to assign weights depending on the research question as well as
the nature of the spatial relation. For each point in a time series, its LISA score indicates the similarity to
the values of correlated time series. It is worth noticing that the higherjL (vpi )j is, the more dissimilar is
vpi compared to itsk correlated time series. For strong negative LISA values it cannot be determined if an
outlier is an anomalous low or high value compared to the values of its correlated time series. The same
problem arises for positive LISA values as it cannot determine if a cluster of high or low values is present.
Table 3.2 describes the possible ranges of LISA values.
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Scenario LISA value Description

High-High L(vpi ) > 0 Locations with high values with similar neighbours, also known as
hot spots or clusters of high values.

Low-Low L(vpi ) > 0 Locations with low values with similar neighbours, also known as
cold spots or clusters of low values.

Low-High L(vpi ) < 0 Locations with low values with high-value neighbours. A potential
outlier occurred.

High-Low L(vpi ) < 0 Locations with high values with low-value neighbours. A potential
outlier occurred.

Not Signi�-
cant

L (vpi ) � 0 Locations with no signi�cant local correlation.

Table 3.2: Signi�cance of LISA values

Histogram The concept of histogram-based outlier detection [10] involves the creation of a histogram
for each feature in the dataset. This statistical technique uses those histograms to model the pattern of
normal data and assumes independence of features, which bene�ts the processing speed for this algorithm
at the cost of less precision. First, normal training data is used to model one histogram for each feature
in the dataset. The height of a bin in a histogram corresponds to the number of observations that fall
within the bins value range. Histograms need to be normalized to ensure equal weighting of features for
the outlier score as well as to achieve a good way to compare histograms of different sample sizes for a
�xed value range. In this context, normalization is done to keep the relative contribution of histogram bins
regardless of their absolute contribution. Probability density function (PDF) has been commonly used to
normalize histograms. This function speci�es how the probability density is distributed over the range of
values that a random variable can take. Therefore, the height of a bin is the value of the PDF at the bin,
such that the total area of a histogram is always normalized to one. At evaluation, the detection algorithm
determines for each feature of a data instance in which bin of its histogram the feature's values fall in. The
combined height of these bins produces a �nal score for each data instance. In case of a low �nal score,
the algorithm assumes that there are few or no normal data values present and scores them as outliers.
Algorithm 2 illustrates how detection with this technique is performed as pseudo code.

The number of bins used to model the histogram as well as the size of the value range which they cover
is essential for the detection performance. If few bins are used each covering a large value range, then
many anomalous values will fall in such frequent bins yielding an increased false negative rate. In the case
where many bins are used where each bin will cover a small value range, then many normal data instances
will fall in empty or rare bins yielding an increased false positive rate. Hence, the optimal size of the bins
to sustain low false positive and false negative rates is fundamental for the performance of histogram based
detection. The square root of the number of data instances has been often proposed to optimally set the
number of bins. Further, the histogram-based technique does not capture any relations between variables.
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The values of a data instance may be frequent on their own, but in combination they might not be.

Algorithm 2: Histogram

Input : X = [ x1; x2; : : : ; xn ]: a training dataset of lengthn containing normal data instances of
k-dimensional valuesx i = ( x i 1 ; : : : ; x i k ),
Y = [ y1; y2; : : : ; ym ]: a validation dataset of lengthm containingk-dimensional values
yi = ( yi 1 ; : : : ; yi k ),
� : a threshold that de�nes the decision boundary for outlier scores

Output : L = [ l1; l2; : : : ; lm ]: a series of predictive labelsl i 2 [0; 1] for Y
1 num bin := round(

p
n);

2 h := train model(num bin; X );
3 for j = 1 to m do
4 sj := combined bin height of all features ofyj by their corresponding histogram inh;
5 if sj < � then
6 l j := 1 ;
7 else
8 l j := 0 ;
9 end

10 L := l j ;
11 end
12 returnL ;

Gaussian Mixture Model (Cluster) Gaussian mixture model (GMM) is a statistical anomaly detection
technique [11]. GMM assumes that all the data instances are generated from a mixture of a �nite number of
Gaussian distributions with unknown parameters. A mixture model is a probabilistic model that expresses
the presence of subpopulations within an overall population. Mixture models in general do not postulate
the knowledge about the speci�c subpopulation to which an individual observation belongs to, allowing
the model to learn the subpopulations automatically. This constitutes a form of unsupervised learning since
subpopulation assignment is not known when similar data instances are grouped together. One can think
of mixture models as generalizing k-means clustering to incorporate information about the covariance
structure of the data as well as the centers of the latent Gaussians [12]. It is expected that normal data
instances lie close to their cluster centroid while outliers are characterized by a signi�cant distance. In order
to perform clustering an expectation–maximization (EM) algorithm �ts data instances into thep Gaussian
mixture components. In case the feature distributions are well approximated by a mixture of Gaussian
distributions, the process of data generation can be greatly captured. When detection is performed, the
probability that a data instance belongs to each of the �tted components is computed. Although this model
assumes that data originates from a mixture of Gaussian distributions which is theoretically suf�cient to
represent any distribution, assuming we have enough centroids, adapting too many clusters will result
in over �tting. In consequence, even anomalies have a high probability under the model distribution. If
anomalies form clusters by themselves, this technique will not be able to detect them. It is better not to
use too many components of the Gaussian mixture and thus not to capture the distributions perfectly. The
pseudo code of anomaly detection using GMM is described in Algorithm 3.

The fact that the number of Gaussian distributions in the mixture model is unknown is a drawback,
since the number of Gaussian distributions to be �tted is a parameter that has to be tuned. The sensitivity
to the starting location of the centroid is an additional disadvantage of this method. Multiple repetitions
might be necessary to achieve acceptable results. However, if full covariance matrix for the Gaussian are
used then each component has its own general covariance matrix and independently adopts any position
and shape, thus correlations between features are also considered and limitations of histogram-based
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techniques are overcome.

Algorithm 3: Gaussian Mixture Model
Input : X = [ x1; x2; : : : ; xn ]: a training dataset of lengthn containing normal data instances of

k-dimensional valuesx i = ( x i 1 ; : : : ; x i k ),
Y = [ y1; y2; : : : ; ym ]: a validation dataset of lengthm containingk-dimensional values
yi = ( yi 1 ; : : : ; yi k ),
p: number of mixture components,
o: number of initializations to perform,
� : a threshold that de�nes the decision boundary for outlier scores

Output : L = [ l1; l2; : : : ; lm ]: a series of predictive labelsl i 2 [0; 1] for Y
1 r := 0 ;
2 while r 6= o do
3 m := train model(p; X );
4 if m has the largest likelihood or lower bound so farthen
5 gmm := m
6 end
7 r := r + 1 ;
8 end
9 for j = 1 to m do

10 sj := the weighted log probabilities for sampleyj in gmm;
11 if sj < � then
12 l j := 1 ;
13 else
14 l j := 0 ;
15 end
16 L := l j ;
17 end
18 returnL ;

One-Class Support Vector Machine Another effective technique to detect outliers is One-Class Sup-
port Vector Machine[13], a variant of SVM. One-Class SVM operates as a classi�er by constructing a
hyperplane in a high dimensional space using training data to separate into two groups of classes. In such
a classi�er, the training data is presumed to belong to only one class, and the goal during training is to
derive a binary function that signs data instance if they belong to the class of normal data or not. The
algorithm separates all data instance in feature spaceF from the origin, then maximizes the distance from
origin to this hyperplane. The result is a function that marks data instances as normal if they are inside the
separating boundary whereas the observations outside the boundary are predicted as outlier as illustrated in
Algorithm 4. Thus, normal data is given with class labelyi = 1 whereas outliers are predicted byyi = � 1
for eachx i . The hyperplane is represented in equation 3.2 and the objective function of the One-Class
SVM classi�er is shown in formula 3.3.

wT � x + b = 0 (3.2)

with w 2 F as normal vector,x as input vector andb 2 R as its displacement.

min
w2 F;� i 2 R;p 2 R

1
2

kwk2 +
1
vl

lX

i

� i � p (3.3)
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subject to:

yi (w � x i ) � p � � i for all i = 1, 2, ...,n

� i � 0 for all i = 1, 2, ...,n

The number of data values is given byl, the origin withp and slack variables with� i . The solution
to the detection problem is provided through parameterv, also known as the margin of the One-Class
SVM. The value ofv is always between(0; 1). It sets an upper bound on the fraction of outliers and it
is also a lower bound of fraction on the number of training examples used as support vectors[14]. In the
semi-supervised application only normal training data is provided to �t the model of the One-Class SVM.
Therefore, parameterv can be used to optimize the false detection rate. Ifv is increased, it is much more
likely to experience an increased false detection rate.

Different types of kernel can be used in this algorithm in order to achieve the decision boundary. Most
popular choices are linear, polynomial, and sigmoid as well as Gaussian Radial Base Function (RBF)
which was mainly used in this thesis. The Gaussian RBF kernel is de�ned as:

K (x; x 0) = exp(�
kx � x0k2

2 � � 2 ) (3.4)

where� 2 R is a kernel parameter andkx � x0k is the dissimilarity measure. Finally, with the kernel
function for the dot-product calculations the decision function is given with equation 3.5.

f (x) = sgn(w � x i � p) (3.5)

f (x) = sgn(
lX

i =1

� i K (x; x i ) � p) (3.6)

Algorithm 4: One-Class SVM
Input : X = [ x1; x2; : : : ; xn ]: a training dataset of lengthn containing normal data instances of

k-dimensional valuesx i = ( x i 1 ; : : : ; x i k ),
Y = [ y1; y2; : : : ; ym ]: a validation dataset of lengthm containingk-dimensional values
yi = ( yi 1 ; : : : ; yi k ),
K : a kernel function,

 : the kernel coef�cient,
v: an upper bound on the fraction of training errors and a lower bound of the fraction of
support vectors,
� : a threshold that de�nes the decision boundary for outlier scores

Output : L = [ l1; l2; : : : ; lm ]: a series of predictive labelsl i 2 [0; 1] for Y
1 svm := train model(K; 
; v; X );
2 for j = 1 to m do
3 sj := signed distance ofyj to the separating hyperplane ofsvm;
4 if sj < � then
5 l j := 1 ;
6 else
7 l j := 0 ;
8 end
9 L := l j ;

10 end
11 returnL ;
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Isolation Forest Isolation forest as introduced in [15] is a tree-based model that provides an ef�cient
way to perform outlier detection in high-dimensional datasets. The main characteristics of this method are
isolation tree, isolation forestandpath length. Given a sample of dataX = f x1; :::; xn g of n instances
from ad-variate distribution, the isolation tree is built by recursively dividingX by random selection of a
feature and a split value between the maximum and minimum values of the selected feature. The recursion
stops if either:

(i) The tree reaches a height limit.

(ii) Only one value is left in the node.

(iii) All data in the node have the same values.

The termisolation forestis used for a group of isolation trees that have been built from the same data.
Further, the path lengthh(x) of a pointx from the root node to the terminating node is equivalent to the
number of splittings required to isolatex. The random partitioning results in shorter paths for outliers
because the fewer observations of outliers result in a smaller number of partitions and observations with
distinguishable deviation values are more likely to be separated in early partitioning. An example of the
partition of a normal value and an outlier is presented in Figure 3.5.

(a) Isolatingx i : A normal point requires twelve ran-
dom partitions to be isolated

(b) Isolatingx0 : Four partitions are required to isolate
an outlier

Figure 3.5: Isolating normal and anomalous values[15]

It is expected that the average value of the path lengthh(x) converges if the number of trees is large
enough. Thus, the average ofh(x) is used as an outlier score, and the smaller the average, the more likely
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valuex is an outlier as illustrated in Algorithm 5.

Algorithm 5: Isolation Forest
Input : X = [ x1; x2; : : : ; xn ]: a training dataset of lengthn containing normal data instances of

k-dimensional valuesx i = ( x i 1 ; : : : ; x i k ),
Y = [ y1; y2; : : : ; ym ]: a validation dataset of lengthm containingk-dimensional values
yi = ( yi 1 ; : : : ; yi k ),
p: number of base estimators in the ensemble,
� : a threshold that de�nes the decision boundary for outlier scores

Output : L = [ l1; l2; : : : ; lm ]: a series of predictive labelsl i 2 [0; 1] for Y
1 isolation forest := train model(p; X );
2 for j = 1 to m do
3 sj := h(yj ) , the mean depth of the leaf that isolatesyj over all trees ofisolation forest ;
4 if sj < � then
5 l j := 1 ;
6 else
7 l j := 0 ;
8 end
9 L := l j ;

10 end
11 returnL ;

Robust PCA Principal Component Analysis (PCA) is a dimensionality reduction technique that com-
putes a compact representation of a multi-dimensional dataset by reducing the number of features to a
lower dimensional subspace� : dim � = n � m. The vectors associated with the largest eigenvalues that
de�ne the hyperplane� are termedprincipal components. The clusterX , a set ofn-dimensional pointsx i

with n > 1, is de�ned as

X = f x i 2 Rn ; i = 1 ; : : : ; N g

with the subspace� de�ned bym linear equations written of the form

Cx = b; C 2 Rm � n ; b 2 Rm

with the rowsc1; : : : ; cm of the matrixC normalized and pairwise orthogonal, then

CC> = I

In this case, the distance betweenx i 2 X and� is equal tokCx i � bk. The basis of the standard PCA
approach is to solve the following optimization problem:

min
b;CC > = I

NX

i =1

kCx i � bk2 (3.7)
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PCA minimizes theL 2 norms and therefore it is highly sensitive to extreme value outliers as their
occurrence can pollute PCA's normal subspace. Because of the squaring of deviations from the outliers, they
dominate the total norm and steer the components. Thus, robustness of PCA to reduce this effect is highly
desirable. In [16], the authors propose a Robust PCA application on Huber's approach using M-estimator
loss. A robust estimate of the centre of the one-dimensional clusterX 1 = f x i 2 R; i = 1 ; : : : ; N g can be
found by sample median which is obtained by the least absolute value method.

Mex = argmin
x

NX

i =1

jx i � xj

For points in order of valuex1 � x2 � � � � � xN with N = 2 l � 1, we getMex = x l which does not
depend on extreme valuesx1 andxN . If the independent variables have identical Gaussian distributions
and contain a small number of outliers the estimate has the following form:

x � = argmin
x

NX

i =1

h(jx i � xj)

TheHuber functiongiven byh(t) is de�ned as follows:

h(t) =

(
t 2

2 for jt j � �
� jt j � � 2

2 for jt j > �

(3.8)

Huber's approach leads to a modi�ed version of the optimization problem from (3.7)

min
b;CC > = I

NX

i =1

h(kCx i � bk) (3.9)

The choice of the value of the threshold� depends on the contamination of the data. The higher the
contamination, the smaller the threshold is to be chosen. The robustness decreases by increasing the�
value. In case it is extremely high, the outcome may be much like as in standard PCA.

In [17], PCA has been used to detect outliers which can be extended to RPCA. The procedure of outlier
detection with RPCA is shown in Algorithm 6. The detection of outliers relies on the reconstruction error
caused by information loss from the reduction. When transforming back from the reduced dimensions, the
original values can only be approximatively recovered. Since outliers are rare and presumably different
than normal data instances, anomalous data instances have higher reconstruction error as they are harder to
model. In other words, pattern that occur the least often are the most anomalous. The reconstruction error
will depend largely on the number of principal components respectively to the number of dimensions in
the subspace. The more principal components are kept, the better RPCA will be at mapping the underlying
structure of the original data. However, there is a trade-off. If too many principal components are kept,
RPCA may reconstruct the original data very well and the reconstruction error will be minimal. On the
other hand, if too few principal components are kept, this method may not be able to reconstruct the data
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to an acceptable extent.

Algorithm 6: Robust PCA
Input : X = [ x1; x2; : : : ; xn ]: a training dataset of lengthn containing normal data instances of

k-dimensional valuesx i = ( x i 1 ; : : : ; x i k ),
Y = [ y1; y2; : : : ; ym ]: a validation dataset of lengthm containingk-dimensional values
yi = ( yi 1 ; : : : ; yi k ),
� : threshold for Huber function,
p: number of principal components,
� : a threshold that de�nes the decision boundary for outlier scores

Output : L = [ l1; l2; : : : ; lm ]: a series of predictive labelsl i 2 [0; 1] for Y
1 h(t) := HuberFunction (�) ;
2 rpca := train model(p; h(t); X );
3 Y 0 := reduceY to dimensionpwith rpca;
4 Y 00:= expandY 0back to dimensionk with rpca;
5 for j = 1 to m do
6 sj := sum of the squared differences between originalyj and reconstructedy00

j ;
7 if sj > � then
8 l j := 1 ;
9 else

10 l j := 0 ;
11 end
12 L := l j ;
13 end
14 returnL ;



4
Correlation-based LISA Anomaly Detection

This chapter introduces an extension of LISA for unsupervised anomaly detection. The extension makes
use of the different types of correlations to represent different relationships across time series.

4.1 Intuition

In the case where multiple univariate time series from the same domain are used, the extent of their
relationship can be expressed using correlation. It is assumed that anomalous behaviour can be derived from
the discrepancy in their correlation. The time series that share a common evolution of their observations are
more highly correlated than others and should therefore be more relevant for the detection. A time series
observation can be anomalous with respect to other values or the mean of that time series, while having a
normal behaviour with respect to other correlated time series. In this case, the deviation observed in this
time series may not be anomalous as it is witnessed globally. Time series which share similar trends as the
used one should be given more importance when outlier detection is performed. In real-world time series
datasets, we usually do not deal with only high or low correlated time series. A wide range of different
correlation values occur as correlation keeps evolving. Time series may experience similar evolution only
occasionally or within limited time periods. Thus, correlation should not be derived globally but instead
over a limited time period of the past using a moving frame. The weights applied on LISA computation
express the strength of the relation between time series at the time frame locations. Therefore, absolute
value of the correlation is used. In contrast to vanilla LISA, the use of correlation coef�cients provides a
bene�t, since neither the locations nor the topology have to be known, and therefore yields a more general
applicable approach.

4.2 Pearson-based LISA

Algorithm 7 describes the pseudo code of correlation-based LISA with Pearson. Unlike vanilla LISA,
weights between time series are derived from correlation within a moving window of sizew. Only the
current values at each time indexi and the �rstw � 1 preceding values fromi are taken into account to

27
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compute the correlation. Thus, the �rstw � 1 LISA values of a time series cannot be calculated because it
is required to have at leastw � 1 preceding values.

Algorithm 7: Pearson-based LISA
Input : X = f X 1; : : : ; X m g: a set ofmunivariate time series whereX p = [ vp1; : : : ; vpn ] is a

series ofn temporal ordered valuesvpi ,
w: the length of the moving window,
p 2 f 1; : : : ; mg: the index of the time series to perform anomaly detection,
� : a threshold that de�nes the decision boundary for outlier scores

Output : L = [ lw ; lw+1 ; : : : ; ln ]: a series of predictive labelsl i 2 [0; 1] for X p

1 for i 2 f w; w + 1 ; : : : ; ng do
2 sum := 0 ;
3 zpi := vpi � �v i

� i
;

4 X 0
p := [ vp( i � w+1) ; : : : ; vpi ];

5 for q = 1 to m ^ q 6= p do
6 X 0

q := [ vq( i � w+1) ; : : : ; vqi ];
7 ! pqi

:= jcorr (X 0
p; X 0

q)j;
8 zqi := vqi � �v i

� i
;

9 sum := sum + ! pqi
� zqi ;

10 end
11 L(vpi ) := zpi � sum;
12 if L (vpi ) < � then
13 l i := 1 ;
14 else
15 l i := 0 ;
16 end
17 L := l i ;
18 end
19 returnL ;

Example 1. Assume we have a setX = f X 1; X 2; X 3g of 3 time series of lengthn = 7 given by
X 1 = [4 ; 2; 2; 5; 9; 8; 3]; X 2 = [10; 5; 4; 2; 6; 8; 9]; X 3 = [6 ; 4; 10; 3; 1; 2; 8]. At positioni = 5 , window
sizew = 4 and time series indexp = 2 , the value forv25 is equal to 6. We compute the LISA valueL(v25)
from positions[i � w + 1 ; : : : ; i ]:

X 0
1 = [ v12; v13; v14; v15] = [2 ; 2; 5; 9]

X 0
2 = [ v22; v23; v24; v25] = [5 ; 4; 2; 6]

X 0
3 = [ v32; v33; v34; v35] = [4 ; 10; 3; 1]

We computez� i values by mean value and standard deviation at indexi = 5 :
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z15 =
v15 � �v5

� 5
=

9 � 5:33
3:3

= 1 :11

z25 =
v25 � �v5

� 5
=

6 � 5:33
3:3

= 0 :2

z35 =
v35 � �v5

� 5
=

1 � 5:33
3:3

= � 1:31

The weights to correlated time seriesX 1 andX 3 are calculated with Pearson over the window frame
of w values. Small values for weightsw215 andw235 mean that no or weak correlation can be observed.

! 215 =

�
�
�
�
cov(X 0

2; X 0
1)

� X 0
2
� X 0

1

�
�
�
� =

�
�
�
�

1:38
1:48� 2:87

�
�
�
� = 0 :32

! 235 =

�
�
�
�
cov(X 0

2; X 0
3)

� X 0
2
� X 0

3

�
�
�
� =

�
�
�
�

� 1:13
1:48� 3:35

�
�
�
� = 0 :23

Finally,

L (v25) = z25 � (z15 � ! 215 + z35 � ! 235 )

= 0 :2 � (1:11� 0:32 + � 1:31� 0:23) = 0:01

The resulting LISA value forv25 does not express an outlier. It is close to 0 and therefore no signi�cant
dissimilarity can be derived for this point to its correlated time series.

4.3 DTW-based LISA

In correlated time series the evolution of observations is often temporally shifted among different time
series. In order to take this temporal aspect into consideration, Dynamic Time Warping can be applied
before Pearson correlation is computed. This variant changes the pairing of point values grouping those
pairs with lowest distance to each other as de�ned by the optimal warping path. The pseudo-code of
DTW-based LISA is described in Algorithm 8.

Example 2. We use the same running example as in Example 1 and we compute weights by applying
Dynamic Time Warping before applying Pearson.

DM (X 0
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3) =

2

6
6
4

2 4 3 5
2 8 1 1
0 6 1 3
1 5 2 4
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With distance matrices for pairings(X 0
2; X 0

1) and(X 0
2; X 0

3) with values ofX 0
1 respectivelyX 0

3 on the
x-axis andX 0

2 on y-axis we can compute the accumulated distance matrices:

Acc DM (X 0
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2
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Algorithm 8: DTW-based LISA
Input : X = f X 1; : : : ; X m g: a set ofmunivariate time series whereX p = [ vp1; : : : ; vpn ] is a

series ofn temporal ordered valuesvpi ,
w: the length of the moving window,
p 2 f 1; : : : ; mg: the index of the time series to perform anomaly detection,
� : a threshold that de�nes the decision boundary for outlier scores

Output : L = [ lw ; lw+1 ; : : : ; ln ]: a series of predictive labelsl i 2 [0; 1] for X p

1 for i 2 f w; w + 1 ; : : : ; ng do
2 sum := 0 ;
3 zpi := vpi � �v i

� i
;

4 X 0
p := [ vp( i � w+1) ; : : : ; vpi ];

5 for q = 1 to m ^ q 6= p do
6 X 0

q := [ vq( i � w+1) ; : : : ; vqi ];
7 WX 0

p X 0
q

:= DTW (X 0
p; X 0

q);
8 for w = ( j; k ) 2 f WX 0

p X 0
q
g do

9 X 00
p := vp( i � w+ k ) ;

10 X 00
q := vq( i � w+ j ) ;

11 end
12 ! 0

pqi
:= jcorr (X 00

p ; X 00
q )j;

13 zqi := vqi � �v i

� i
;

14 sum := sum + ! 0
pqi

� zqi ;
15 end
16 L(vpi ) := zpi � sum;
17 if L (vpi ) < � then
18 l i := 1 ;
19 else
20 l i := 0 ;
21 end
22 L := l i ;
23 end
24 returnL ;
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We conclude that for(X 0
2; X 0

1) an optimal warping path is given with indexes(x; y) by WX 0
2 X 0

1
=

f (1; 1); (1; 2); (2; 3); (3; 4); (4; 4)g. For (X 0
2; X 0

3) the optimal path is no different compared to Pearson
pairings asWX 0

2 X 0
3

= f w1; : : : ; ww g with wi = ( i; i ) 8 i 2 f 1; : : : ; wg. With warping pathWX 0
2 X 0

1
we

compute new pairings forX 0
1 andX 0

2:

X 00
1 = [ v12; v12; v13; v14; v15] = [2 ; 2; 2; 5; 9]

X 00
2 = [ v22; v23; v24; v25; v25] = [5 ; 4; 2; 6; 6]

Whereas! 0
235

= ! 235 , it is worth to note that eachX 00
p has to be computed for each warping path

separately. Thus, the value pairings ofX 00
1 andX 00

2 yield a different weight! 0
215

:

! 0
215

=

�
�
�
�
cov(X 00

2 ; X 00
1 )

� X 00
2

� X 00
1

�
�
�
� =

�
�
�
�

2:8
1:5 � 2:76

�
�
�
� = 0 :68

The weight between time seriesX 1 andX 2 at indexi = 5 for the given window frame is higher as
DTW was able to adjust value pairings leading to an increased correlation. Finally, the resulting LISA
value forv25 has slightly increased as well.

L (v25) = z25 � (z15 � ! 0
215

+ z35 � ! 0
235

)

= 0 :2 � (1:11� 0:68 + � 1:31� 0:23)

= 0 :09



5
Empirical Evaluation

In this chapter, we evaluate anomaly detection techniques using real-world and synthetic datasets. In
order to measure the effectiveness of the techniques, datasets with classi�ed outliers are needed. The
performance of the detection is evaluated using different metrics. In the following experiments, we vary
different dimensions of the data to gain insights into their effects on performance. The following detection
techniques, as previously introduced, are evaluated: LISA (Vanilla, Pearson-based and DTW-based LISA),
Histogram, Gaussian Mixture Model (Cluster), One-Class Support Vector Machine, Isolation Forest, and
Robust PCA.

5.1 Datasets

The �rst dataset we use is provided by Yahoo:S5 - A Labeled Anomaly Detection Dataset[18]. This
dataset is divided into four parts termed A1, A2, A3 and A4. We selected A2 because it provides some
highly correlated time series with point outliers. The A3 and A4 parts contain seasonality and changepoint
information, which we do not intend to investigate, and A1 consists mostly of low correlated time series.
The A2 dataset offers the following desiderata:

• No missing values.

• Time series belong to the same domain.

• Time series have same granularity.

• The data is supervised.

In addition to the Yahoo dataset, we selected two real-world datasets of temperature and humidity data
from various Swiss weather stations. In these two datasets, we inject synthetically created outliers and use
only a small portion of time series to make sure that the sequences are highly correlated. The number of
values per time series is not extensive in A2 dataset. Thus, we selected comparable amounts of data in the
real-world datasets. An overview about the used datasets for evaluation is shown in Table 5.1.

32
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Evaluation Training
ID Source Type Number of TS Values per TS Number of TS Values per TS
Temp1 Idaweb Real-World 14 1000 14 1000
Hum1 Idaweb Real-World 9 1500 9 1500
A2 Yahoo Synthetic 10 710 10 710

Table 5.1: Description of Evaluation and Training Datasets

5.2 Performance Metrics

Accuracy, Precision, Recall,F � -Score The anomaly detection algorithm can be seen as a binary
classi�er. A value is considered either as normal or anomalous. Consequently, there are four possible
outcomes with respect to the actual type of a value and its prediction as illustrated in Table 5.2. The
performance measures are calculated based on the number oftrue positives, true negatives, false positives
andfalse negatives.

Prediction of Model

Normal Anomaly

Truth
Normal TN FP

Anomaly FN TP

Table 5.2: Confusion Matrix

• True Positive (TP): An outlier is correctly classi�ed as an outlier.

• True Negative (TN): A normal value is correctly classi�ed as a normal value.

• False Positives (FP): A normal value is falsely classi�ed as outlier.

• False Negatives (FN): An outlier is falsely classi�ed as a normal value.

Accuracy, Precision, Recall andF� measure are important metrics used to characterize the performance
using TP, TN, FP and FN[19, 20]:

Accuracy=
TP + TN

TP + TN + FP + FN
(5.1)

Accuracy is the proportion of correctly classi�ed results among the total number of cases examined.
Accuracy alone is not a suf�cient metric for evaluation as the occurrence of an anomaly can be very rare.
For example, if a naive classi�er marks each value as normal, an accuracy of nearly one hundred percent
can be achieved in case there are very few anomalies present.

Precision=
TP

TP + FP
(5.2)

Precision refers to exactness of the approach that gives the probability of predicting a true positive from all
positive predictions.

Recall=
TP

TP + FN
(5.3)
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Recall is the proportion of correctly classi�ed outliers based on the overall number of outliers in the dataset.
Therefore, recall refers to sensitivity and is a measure for the completeness of the approach.

F� = (1 + � 2) �
P recision � Recall

(� 2 � P recision) + Recall
(5.4)

The generalF� formula for positive real� is a metric, where� is chosen such that recall is considered
� times as important as precision.F1 is the harmonic mean of precision and recall and weights them
equally. When precision and recall are close the value of this metric is approximately their combined
average. A reliable anomaly detection algorithm will maximize both precision and recall simultaneously.
Thus, moderately good performance on both is favored over outstandingly good performance on one and
terrible performance on the other.

Normalized Mutual Information Normalized Mutual Information (NMI) is a normalization of a com-
mon measure in information theory called Mutual Information (MI). MI considers the amount of informa-
tion that can be extracted from a distribution of one variable with respect to the distribution of a second
variable. Thus, it can be used to evaluate the quality of the detection between ground-truth labels and the
prediction labels obtained by the detection method. NMI scales the results between 0 and 1 whereas 0
indicates that there is no mutual information and 1 for perfect correlation between two variables. NMI
derives from entropy in information theory. For a discrete random variable X, its entropy is de�ned as:

H (X ) = �
X

x 2 X

pX (x) � logpX (x)

wherepX is the marginal probability mass function ofX . Similarly, the joint entropy is de�ned as:

H (X; Y ) = �
X

x 2 X

X

y2 Y

p(X;Y ) (x; y) � logp(X;Y ) (x; y)

wherep(X;Y ) is the joint probability mass function ofX andY . Further, the de�nition of conditional
entropy is given with:

H (Y jX ) = �
X

x 2 X

pX (x) � H (yjx)

= �
X

x 2 X

X

y2 Y

p(X;Y ) (x; y) � logpY jX (yjx)

= �
X

x 2 X

X

y2 Y

p(X;Y ) (x; y) � log
�

p(X;Y ) (x; y)
pX (x)

�

wherepY jX is the probability mass function ofY conditioned onX . Based on these de�nitions, the
mutual informationI (X; Y ) which measures the mutual dependence of variablesX andY is de�ned as:
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I (X; Y ) = H (X ) � H (X jY )

=
X

x 2 X

X

y2 Y

p(X;Y ) (x; y) log
�

p(X;Y ) (x; y)
pX (x) � pY (y)

�

In order to scale the range of mutual information between 0 and 1 to make interpretation more intuitive,
normalized mutual information is proposed as follows:

NMI (X; Y ) =
I (X; Y )

p
H (X ) + H (Y )

(5.5)

Root Mean Square Error Root Mean Square Error (RMSE) is considered a common general-purpose
error metric for models in predicting quantitative data. RMSE is the square root of the mean of the square
of all errors between observations and de�ned as:

RMSE (X; Y ) =

vu
u
t 1

n

nX

i =1

(x i � yi )2 (5.6)

wherex i 2 X are ground-truth values,yi 2 Y are predicted values andn the number of observations
available for analysis.

5.3 Experiment Setup

5.3.1 Scenarios

The presence of several possibly contaminated time series within a dataset allows to infer two different
types of scenarios. In an evaluation dataset either a single time series is contaminated or multiple. Further,
different dimensions of datasets can be scaled to change their complexity and manner such as variation in
time series length, number of time series and amount of anomalous data within the dataset.

5.3.2 Model Training

Histogram, Cluster, SVM, Isolation Forest and RPCA use a selected proportion of normal data instances
in the training dataset for semi-supervised learning. The rest of the normal data as well as outlier instances
will be split by the given proportion to a validation set. No data instances are shared between training and
validation sets. For example, given a dataset of 1000 data instances containing 60 outlier data instances
and a proportion of 0.5, then the training set will contain 470 normal data instances whereas the validation
set contains 235 normal and 30 outlier instances.

The validation set is used to determine the threshold for the decision boundary that maximizes a
performance metric. Outlier scores are normalized to a value range from 0 to 1. Then, performance metrics
are computed for 200 linear distributed threshold candidates within this value range. Because the data is
supervised the performance can be computed for each threshold candidate. Depending on the metric (NMI,
RMSE, Accuracy, F1-Score, Precision or Recall) which is selected to be maximized, the most appropriate
threshold is chosen.



CHAPTER 5. EMPIRICAL EVALUATION 36

Afterwards, the trained model is applied on the evaluation dataset. Data instances with a score below
the threshold will be marked as anomalies for Histogram, Cluster, SVM and Isolation Forest whereas
RPCA marks outliers if they are above the threshold. Contrary to these techniques, LISA does not require
training and is directly applied to the evaluation dataset. It marks points as outliers if their score is below
the threshold.

5.3.3 Parameterization

Several detection techniques offer parameters that can be adjusted to improve performance. In order
to make the results comparable between different scenarios, we use the same settings for the detection
algorithms in each evaluation setup as shown in Table. 5.3.

Technique Parameter Value
LISA (Pearson) Window Size 10

LISA (DTW)
Window Size 10
Distance Function euclidean

RPCA
Delta 1
Number of Components 2
Training Size 0.5

Cluster
Number of Components 3
Number of Inits 3
Training Size 0.5

SVM

Kernel Gaussian RBF

 Scale
v 0.95
Training Size 0.5

Isolation Forest
Number of Estimators 40
Training Size 0.5

Table 5.3: Con�guration of Technique Parameters

5.3.4 Environment

For computation, the built-in lightweight webserver of Django running on an Ubuntu operating system is
used. Algorithms are implemented in Python whereas DTW additionally used Cython generated classes in
order to speed up the path �nding computation. Table 5.4 shows the system speci�cations of the machine
running the experiments.

Operating System Environment Processor RAM
Linux Ubuntu 18.04 Django Webserver hexa-core at 3.33 GHz 12 GB at 1333 MHz

Table 5.4: System Speci�cations
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5.4 Accuracy

5.4.1 Single Contaminated Time Series

We �rst consider the case where only one time series is contaminated. We use the datasets Temp1 and
Hum1 with a single contaminated time series of 50 synthetically generated outliers. The same training
data is used for each experiment with the same amount of outliers in only one time series and the decision
boundary is set on the best F1-score.

Varying sequence number. In this experiment, we incrementally add time series to the training and
evaluation dataset. At each iteration we add the next highest correlated time series available from the
dataset in reference to the contaminated time series. Thus, each evaluation subset contains 50 outliers. An
accurate detection is obtained by a high NMI and F1 score, and a low RMSE. The accuracy scores for
datasets Temp1 and Hum1 are shown in Figure 5.1. The results show that the more accurate techniques
are LISA variants, RPCA and, to a lesser extent, cluster-based Gaussian mixture model. SVM performs
unsteady whereas Histogram and Isolation Forest have stochastic results.
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(d) F1-score on Hum1 dataset
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Figure 5.1: Accuracy with varying sequence number

The results on the Temp1 dataset in Figure 5.1a show that the accuracy of LISA increases with more
time series until reaching 8 or 9 time series where the accuracy starts to deteriorate. On the other hand, a
similar improvement for LISA can be observed in the Hum1 dataset as illustrated in Figure 5.1b, while
it does not reach the same level of valid detection compared to the Temp1 dataset. The results show no
signi�cant difference between Pearson-based and DTW-based LISA. If only few time series are used,
LISA classi�es poorly. Other notable performance can be achieved with RPCA and cluster-based Gaussian
mixture model technique. We note that RPCA cannot detect outliers if only 2 time series are used, as
we use 2 principal components in the setup. Thus, no dimension reduction is performed and therefore
no reconstruction error occurs. Cluster-based technique is able to classify outliers extremely well on the
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Temp1 dataset, as seen in Figure 5.1c, up to 12 used time series before it starts to decrease in a large extent.
In fact, as more complexity to the dataset is added the original assumption that 3 mixture components
may be suf�cient to capture distribution does no longer hold. We observe bad detection performance
for Histogram and Isolation Forest in both datasets. Because the histogram technique does not capture
relationships between variables, it is expected that this drawback is responsible for the observed results.
Even outliers have values in range of normal behaviour whereas they are characterized in relation to
the values of correlated time series. Therefore, Histogram is bad in detecting the occurrence of a set of
values together as anomalous or not. The detection of Isolation Forest is driven by many false positive
classi�cations that lead to poor F1-scores as seen in Figures 5.2c and 5.2d. Isolation Forest separates data
instances with distinguishable attribute values more likely in early partitioning which results in shorter
paths for those resulting in a classi�cation as outlier. Therefore, some regions of normal low values in the
data are falsely classi�ed as outliers as they are not aligned with the rest of the data. SVM performs only
acceptable on the Hum1 dataset if few time series are used. The results in the Temp1 dataset for SVM are
driven by a region of normal low values which SVM misclassi�es because they are outside the learned
separating hyperplane for normal behavior. In this case, the detection could be improved by using another
training dataset that captures this behavior of the data.
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(c) F1-score on Temp1 dataset

10 30 50 70 90 110130150
0

0:2

0:4

0:6

0:8

1

TS length [� 10]

F
1-

S
co

re

(d) F1-score on Hum1 dataset
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Figure 5.2: Accuracy with varying sequence length

Varying sequence length. In this experiment, we used a subset of 8 time series for the Temp1 dataset,
as we have seen in the previous experiment that this amount of data performed quite well for LISA, RPCA
and Cluster. For Hum1 we use the full dataset of 9 time series. The amount of samples to evaluate in the
detection dataset in�uences the performance. We observe different F1-scores as the number of outliers
varies. The contamination rate varies between 0.02 and 0.08 for Temp1 and between 0.02 and 0.04 for
Hum1. Thus, different decision boundaries are set for LISA with changing performance metrics. Further,
we are witnessing altered outlier scores for same data instances at each iteration since score limits change.
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This effect arise as min-max normalization of outlier scores is applied. Figure 5.2 shows the performance
metrics for each evaluated time series length.

The best results are obtained with LISA and RPCA. Similar to the previous example, Histogram and
Isolation Forest do not provide useful results on both datasets. For LISA, RPCA and Cluster techniques
we observe a general accuracy improvement with increasing time series length whereas the scores for
LISA are only in�uenced by the outliers which are present in evaluated subset. This is also the cause for
outstanding F1-score on the shortest length of 100 timestamps in Hum1 dataset, as shown in Figure 5.3d.
We note the unpreferable high RMSE scores for RPCA and Cluster in Figure 5.2e and their low NMI
scores in Figure 5.2b for short lengths. They do not perform well as the amount of data is not suf�cient to
capture the whole behavior that was learnt from the training dataset. As mentioned before, the min-max
normalization causes a different scale for outlier scores as different score limits are witnessed. In fact, the
amount and behavior of training data must be aligned with the detection dataset, which is an optimization
problem. On the other hand, SVM performs better but still not very persuasive for medium lengths in the
Temp1 dataset than in the previous experiment as illustrated in Figure 5.2c. Indeed, the former observed
areas of normal low values are not present in these subsets. The poor performance for short lengths is the
result of inbalance between training and detection parts of the datasets and its impact on the outlier score
normalization. By the same reason, the techniques perform worse on the Hum1 dataset.
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(c) F1-score on Temp1 dataset
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(d) F1-score on Hum1 dataset
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Figure 5.3: Accuracy with varying contamination rate

Varying contamination rate. In this experiment, we use again the subset of 8 time series in the Temp1
dataset and the full dataset of Hum1. We enrich the contaminated time series by injection of additional
outliers. Figure 5.3 illustrates the accuracy for different amounts of outliers. With respect to the F1-scores,
we observe stable or increasing performance overall. The increasing effect results from the fact, that if
the number of outliers which are present in the dataset increases and if the techniques correctly detect
more outliers in similar extent in which they are added, the result is an higher F1-score. On the other
hand, with increasing numbers of outliers we expect a decrease in false positive rate as such data instances
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may become outliers as more anomalous values are injected. It is misleading to assume that the poor
performing SVM, Histogram and Isolation Forest techniques perform better with increasing numbers of
outliers. We have seen in the previous experiments that their detection performance on these datasets is not
good as many false positive classi�cations occur. As more outliers are added their F1-score rises because
more outliers are classi�ed by chance. However, their NMI score is pretty stable at a notably low level.

5.4.2 Multiple Contaminated Time Series

Next, we consider the case of multiple contaminated series. We use the Temp1 and Hum1 datasets with 4
contaminated time series each whereas the A2 dataset contains anomalies in all time series but most of
them located in 4 time series. Each dataset contains 50 outliers. We discard LISA from this experiment as
it is not able to handle more than one contaminated series. We also discard the NMI plots as the trend
is similar to the F1-score. We analyze again the trend of performance metrics for varying number of
time series, length of time series as well as number of outliers. The same training data is used for each
experiment containing a total of 60 outliers in mostly 4 time series. Similar to the previous experiment, we
set the decision boundary based on the best F1-score.
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Figure 5.4: RMSE scores with varying sequence number
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(b) F1-score on Hum1 dataset
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Figure 5.5: F1 scores with varying sequence number

Varying sequence number. In this experiment, we vary the number of time series which are present
in training and evaluation dataset. We add the next highest correlated time series available from the
dataset at each step. The RMSE scores are presented in Figure 5.4 and F1-scores in Figure 5.5. With
increasing number of time series the performance of all techniques tend to decrease in most cases except
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for RPCA and Cluster. Again, Histogram and Isolation Forest perform worst. In Hum1 dataset, we witness
that RPCA and Cluster perform best and stable even for increasing number of time series as shown in
Figure 5.5b. In reference to Figure 5.7c, RPCA only achieves good F1-scores with 4 and 6 time series
for A2 dataset. The unusual intermediate drop on 5 time series is a data driven effect. In this case, the
added time series in�uences the reconstruction error by adding noise to the data which is smoothed out by
adding an additional time series. Thus, we observe that RPCA can be sensitive to the amount of feature
dimensions. Cluster increases rightful detection with incremented numbers of time series and performs
extremely well from 8 time series and up as illustrated in Figure 5.7c. Although it is not known how
the synthetically generated A2 dataset were constructed by Yahoo, this effect may be due to the fact that
the data generation may be derived from or in�uenced by some sort of Gaussian distribution that can be
captured with the Cluster technique.
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Figure 5.6: RMSE scores with varying sequence length

Varying sequence length. In this experiment, we used a subset of 8 time series for Temp1 and for others
the complete dataset. Figure 5.6 illustrates the RMSE scores while Figure 5.7 shows the F1-scores. The
best detection is achieved with RPCA and Cluster. We recapitulate that the number of samples to be
evaluated in the detection dataset in�uences performance as the number of outliers varies and therefore
different scores of performance metrics are observed. The number of samples to be classi�ed further
change the computed outlier scores since normalization of outlier scores is applied to a range from 0 to
1. Therefore we are witnessing different �nal outlier scores for different value limits. The results of this
experiment are driven by these facts.

In A2, we see that only Cluster is able to detect outliers in an acceptable extent and we note the
remarkable low RMSE scores in Figure 5.6c. As in the previous experiment, we can assume that the data
is derived from a Gaussian distribution and can therefore be well captured by this technique. In Temp1, we
achieve best results with RPCA for large lengths as illustrated in Figure 5.7a. The Cluster technique has
mixed performance overall and achieves best results on 500 timestamps similar to SVM. In Hum1, the
drop in performance as witnessed in Figure 5.7b for RPCA, Cluster and SVM is unexpected. However,
with different amounts of samples we achieve different outlier score limits and therefore the effect of
normalization plays a role.
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(a) F1-score on Temp1 dataset
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(b) F1-score on Hum1 dataset
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(c) F1-score on A2 dataset

Figure 5.7: F1 scores with varying sequence length
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Figure 5.8: RMSE scores with varying contamination rate

Varying contamination rate. In this experiment, we use again the subset of 8 time series in the Temp1
dataset and for others the complete dataset. We enrich the 4 time series that contain outliers by injection
of additional outliers and distribute them randomly. In the A2 dataset, we do the same to the 4 most
contaminated time series. Figure 5.8 illustrates the RMSE scores and the F1-scores are shown in Figure 5.9.
In reference to Figure 5.9a, we observe a decrease in F1-scores for incremented amounts of outliers for the
Temp1 dataset. This arises as with more outliers which are present in the dataset the more false negative
detections occur. This is also indicated by the increasing RMSE values as shown in Figure 5.8a. In contrast,
the F1-scores for the Hum1 dataset rise for Histogram, Isolation Forest and SVM as more outliers are
injected as illustrated in Figure 5.9b. In this case, the increase in correctly classi�ed outliers is higher than
the increase in falsely classi�ed detections. For same reasons as noted in the variant of this experiment
with one contaminated time series, we can state that for Histogram and Isolation Forest the increase in
performance is a result of the increased presence of outliers which are much likely classi�ed as outliers
by chance. We note that Cluster still performs stable on a high level in the A2 dataset as seen by the
low RMSE scores in Figure 5.8c and high F1-scores in Figure 5.9c. In A2, we also witness that RPCA
increases performance with incremented amounts of outliers whereas its RMSE score stays low on a stable
level. Thus, detection does indeed perform better for this technique as more outliers are present. As more
outliers are available, RPCA achieves more reconstructed data instances with a remarkable reconstruction
error. Thus, as more extreme values occur the min-max normalization over the reconstruction errors leads
to a more suitable decision boundary.
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(a) F1-score on Temp1 dataset
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(b) F1-score on Hum1 dataset
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Figure 5.9: F1 scores with varying contamination rate

5.5 Ef�ciency

In this experiment, we measure the runtime of each technique by varying the time series length and number.
The runtime measurement includes the time required for model training, determination of the decision
boundary by computing the performance scores for each metric and the classi�cation of each point or data
instance in the evaluation dataset. For each dimension the mean value of 7 runs is taken using the same
training data. It should be noted that the number of anomalies present in the dataset has no in�uence on
runtimes.
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(a) Temp1 dataset (n = 1000).
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(b) Hum1 dataset (n = 1500).

Figure 5.10: Ef�ciency with increasing series length

Figure 5.10 depicts the results of varying lengths of time series (notice the y-axis log scale). The
results show a linear increase of runtime with incremented lengths of time series. For short lengths, LISA
performs faster than training-based techniques. This is expected as training itself requires additional
time to build up the detection model whereas LISA directly performs detection. For large lengths, the
training-based techniques outperform LISA. As soon as the model is built detection is fast as we used
performance optimized libraries. LISA on the other hand calculates each point separately and therefore
observe a linear trend with incremented lengths. It was not expected that vanilla LISA is slower than
Pearson-based LISA because vanilla LISA uses same weights between each pair of time series contrarily
to Pearson-based LISA which requires to compute weights separately for each pair of moving window
frames. However, the effect arise from the time needed for database lookups for locations and as Pearson
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computation uses performance optimized libraries. We note that DTW-based LISA has the highest runtime
overall. In fact, the path�nding algorithm for DTW drives the increase in runtime because it requires
accumulated cost matrices that must be calculated for each pair of moving window frames individually.

In the experiment of Figure 5.11, we measure the runtime with varying number of time series. In
reference to the previous experiment with varying time series lengths, we observe similar pattern of runtime
with increasing complexity whereas the number of time series in�ate runtimes in a lower extent than
increased lengths of time series. This effect arise as �tting a data instance into a model has higher impact
on runtime from a computing perspective than the number of features present in the data instances. Indeed,
for a input ofn data instances withd features, the space complexity isO(n � d) and we witness a linear
time complexity in reference to the amount of data.
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Figure 5.11: Ef�ciency with increasing number of time series



6
VADETIS Tool

As part of this thesis a web application termed VADETIS (Validator for Anomaly Detection in Time Series)
has been implemented. The main features of this application are:

• Display real-world and synthetic time series datasets with marked outliers:

– Search and download datasets.

– Work with raw data as well as normalized data (Z-Score).

– Upload time series datasets as its corresponding training data.

• Perform and evaluate different outlier detection techniques:

– Inject different types of synthetic outliers into real-world datasets.

– Maximize a performance metric for the detection.

– Visualize confusion matrix and performance plots.

• Perform a recommendation for the best technique on a speci�c dataset using different performance
metrics.

VADETIS is a client-server application that is used with a web browser. It is implemented with the
web framework Django, an open source web application framework running in Python programming
language and maintained by the Django Software Foundation. All data associated with the application
such as accounts, settings and datasets are stored in a MySQL database. Datasets are stored as a whole
in a so-called pickled object �eld in order to increase the performance when large datasets are requested.
A pickled object �eld is useful for storing anything in the database when there is not a proper �eld for
the value. This �eld accepts any Python object and it will automatically be converted in the background.
Further, VADETIS provides a REST API for exchange of messages and data between client and server
over HTTP using AJAX requests.

VADETIS consists of three main components: i) display, ii) detection, and iii) recommendation. The
header bar of the page provides the navigation into the different components, to settings, into an internal
account section as well as a site wide search for datasets.

45
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6.1 Display Datasets
This component provides the display of a time series dataset as shown in Figure 6.1. The observations of
the time series are presented as graph in the chart. At the bottom, meta data about the dataset and its time
series is presented such as the owner of the dataset, number of normal and anomalous observations within
dataset and each of its time series, level of contamination, granularity and number of available training
datasets. If spatial information about the recording locations is available, a map with markers for each
time series is added. The associated training datasets are listed with a link to their display page as well.

Figure 6.1: Display Time Series

When clicking on one of the time series label in the chart, the visibility of the graph of the corresponding
time series is toggled. The zoom level can be selected either by clicking on one of the buttons in the upper
left corner of the chart or by choosing a time range directly within the chart. At the bottom of the chart a
navigator for range selection is available. On the top right corner the color legend of anomalies is shown.
Right next to it, a dropdown menu to download the whole dataset as JSON or CSV formatted file or to
change the representation to z-score normalized and raw data is accessible. By default, datasets are loaded
with raw data.

6.2 Anomaly Detection
The anomaly detection component as presented in Figure 6.2 is the main feature of VADETIS. On the
right side, a form to select the detection technique is accessible. The possibilities depend on whether
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