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Abstract

Jiyoung Lee

P-Hydra: Bridging Transfer Learning And Multitask Learning

Applying deep learning algorithm to cancer detection is an alternative choice
for diagnosing cancer. As the importance of detecting cancer in early stage in-
creases, deep learning applications for medical imaging have gained great attention
in the research field. Deep convolutional neural networks (CNN), in particular, are
widely used in image classification tasks. Due to insufficient amount of medical
data, special learning techniques have to be applied. Transfer learning and mul-
titask learning are two popular deep learning algorithms to address this problem.
This work focuses on improving cancer detection algorithms by proposing a new
learning method called P-Hydra. After introducing fundamentals of deep learning,
transfer learning and multitask learning are thoroughly studied as these are essen-
tial concepts to understand the proposed method. The suggested model makes use
of three different datasets of body parts (prostate, brain, and lung) to make a gen-
eralized feature extractor, so that it can be used in multiple medical imaging appli-
cations. In addition to the generalized feature extractor, a decision maker for each
dataset is created. This experiment showed that training the individual tasks to-
gether in parallel improve the performance of a model. The AUC of each model
(prostate, brain, and lung) after generalization are 62, 87, and 60 respectively. After
specialization, the AUC achieved on the test set are 54, 84, and 60.

Keywords: Machine learning (ML), Convolutional Neural Network (CNN),
Multitask Learning, Machine Learning (ML), Cancer Detection, Deep Learning (DL)
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Chapter 1

Introduction

1.1 Overview

Diagnosing cancer in an early phase is one of the most important factors to in-
crease the survival rate of patients. According to the World Health Organization
(WHO) [1], "when cancer care is delayed or inaccessible, there is a lower chance of
survival, greater problems associated with treatment, and higher costs of care. Early
diagnosis improves cancer outcomes by providing care at the earliest possible stage
and is therefore an important public health strategy in all settings."

Skilled radiologists are needed to correctly diagnose cancer. However, the lack
of radiologists is a serious problem in many countries. The Clinical Radiology UK
Workforce Census Report in 2018 [2] shows that the number of radiologists from
the UK’s National Health Service cannot adequately respond to the high demand of
their services, which already resulted in delayed cancer diagnoses and inadequate
emergency diagnostic as well as interventional services. [3] Several strategies have
been discussed to overcome this issue. One of the most prominent ones is a diagnosis
system based on artificial intelligence.

This paper focuses on the detection of prostate, lung, and brain cancer using
deep neural networks and the importance of the medical imaging application of
deep learning. It introduces a new algorithm called "P-Hydra" for cancer detection
which could improve transfer learning and multitask learning.

There are various types of a cancer screening test. For prostate cancer, Digital rec-
tal examination (DRE), Prostate-specific antigen (PSA) test and Magnetic resonance
imaging (MRI) are frequently used. For lung cancer, Low-dose helical or spiral com-
puted tomography (CT or CAT) scan is most commonly used. As for brain cancer,
MRI is used to detect whether there is a tumor or not. In a recent study by Wallis
et al [4], it is shown that MRI-based testing has better performance than PSA alone.
This also proves that Computer-Aided Diagnosis using medical images like MRI
can play a major role in detecting cancer. Computer-Aided Diagnosis systems, as
the name suggests, work as an assistant for radiologists.

With the advent of deep learning and its applications in medical imaging, better
algorithms for cancer detection are being studied. As Yoo et al [5] stated, "In medical
imaging field, computer-aided detection and diagnosis (CAD), which is a combina-
tion of imaging feature engineering and machine learning classification, has shown
potential in assisting radiologists for accurate diagnosis, decreasing the diagnosis
time and the cost of diagnosis".

Chapter 2 explains all the basics to understand this paper. The concept of deep
learning and neural network, including the detailed explanations, are discussed.
Medical information concerning cancer and its data format are presented as well.
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Thereafter, datasets that are used in this work are thoroughly described with its pre-
processing step. Lastly, related work regarding cancer detection that uses a CNN
model is introduced.

In Chapter 3, one of the deep learning models, transfer learning, is discussed.
Particular focus is given to the new transfer learning technique by Clement et al [6].

Multitask learning is then presented and covered more thoroughly by looking
at how it occurs as well as its mechanisms. It is important to understand what the
aspects these two learning methods share and how it differs from each other.

A new algorithm , P-Hydra, that aims to improve cancer detection is introduced
in Chapter 5. Both the similarities and differences between our approach and trans-
fer learning and multitask learning are discussed.

Lastly, we check the algorithm’s validity by applying it on a medical dataset and
by reviewing the experimental results of the model.

1.2 Contributions

• A novel algorithm crossing transfer learning and multitask learning.

• A feature extractor that generalizes across different medical image applica-
tions.

• State-of-the-art results on three medical applications for autonomous cancer
detection.
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Chapter 2

Fundamentals

This chapter gives an overview of the essential concepts of deep learning which
will help the reader understand this work. Medical data types, dataset description
are presented as well with the pre-processing step. It begins by explaining what
a neural network is. Then, the essential parts of deep learning, such as cost func-
tion, optimization, and regularization are discussed. Lastly, related work of medical
imaging application using CNN (Convolutional neural networks) on prostate, brain,
and lung are presented.

2.1 Deep Learning

Deep learning is nowadays one of the most popular research topics in machine learn-
ing. It refers to training very complex neural network models. Various deep learning
applications are used in numerous fields. There are many types of deep learning net-
works such as Convolutional Neural Network (CNN), Recurrent Neural Network
(RNN), and Long Short Term Memory Network (LSTM). In this work, we choose
CNN because it is suitable for image processing.

2.1.1 Neural Networks

Neural networks originated from the idea of how human brain works. Neurons
in the brain are connected by synapses. When they get a stimulus from outside, the
stimulus is passed through the axon in the form of electric signals. With this process,
neurons pass information to other neurons that are connected to one another. In ma-
chine learning, a neuron, or a perceptron is a function that takes in a weighted sum
of the outputs of neurons in the previous layer and gives the results of an activation
function.

oi = σ(Σ(Wai + b)) (2.1)

Figure 2.1 illustrates a simple neural network with a sigmoid activation function
σ. Inputs a in the first layer (input layer) are computed with their corresponding
weights w and biases b. Depending on the activation function, the result is in a
certain range (i.e. between 0 and 1 in case of a sigmoid activation function ). In the
output (last) layer, we get the result of an activation function of as output o. Equation
2.1 shows the non-linear function of how each output of the simple neural network
(Figure 2.1) is calculated. If it is a classification problem, we get the prediction as a
class. Training the neural network means finding out the optimal weights and biases
for the network.
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FIGURE 2.1: A simple neural network. The graph model on the left
represents 3 input neurons connected to each activation function neu-
ron. A non-linear computation of weighted sum appears on the right

side.

2.1.2 Activation Function

After the weighted sum of all inputs (see equation 2.1) from each neuron of the pre-
vious layer is done, the result is calculated by a non-linear function which is called
an activation function. Nwankpa et al [7] claim that activation functions are needed
to convert the linear input signals and models into non-linear output signals. This
assists the learning of high order polynomials greater than one degree for deeper
networks. In figure 3.1, sigma is the activation function. Here are three frequently
used activation functions.

• Sigmoid activation function

The formula of the sigmoid activation function is:

σ(x) =
1

1 + e−x (2.2)

The output result of a sigmoid activation function is in a range between 0 and
1. Although it is a very popular activation function, it has several drawbacks.
First, when you have inputs that are too large or too small, the gradients will
be zero, since these two regions have a constant value, making the slope flat.
The zero gradient causes a saturation problem. If the gradient is zero, the net-
work becomes hard to learn and performs poorly. Secondly, because it is not
zero centered, the gradient can only be updated in one direction, which results
in poor performance.

• ReLU activation function

The formula of the ReLU (Rectified Linear Unit) activation function is:

ReLU(x) = max(0, x) (2.3)
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FIGURE 2.2: Sigmoid activation function. The graph’s output is be-
tween 0 and 1. When the input is too small or too big, the derivative

becomes 0 since the slope is flat.

A ReLU Activation function is very popular, especially when it comes to deep
learning models. It is also not zero centered, however, unlike the sigmoid ac-
tivation function, it does not have a saturation problem in the positive region,
since the slope is not flat. It is also faster to compute than the sigmoid func-
tion since its form is much simpler. The disadvantage of ReLU is that, for the
negative inputs, the gradient will still always be zero. Thus, it is unlikely for
ReLU to be activated from that state, which means it does not update since the
gradient is stuck in the flat region.

• ELU activation function

The formula of ELU (Exponential Linear Unit) activation function is:

ELU(x) =

{
x x ≥ 0
α(ex − 1) x < 0

(2.4)

An ELU activation function is similar to the ReLU activation function as shown
in figure 3.3, and figure 3.4, except for the inputs that are x < 0. The negative
region still has the saturation problem, however, its output is closer to zero-
mean (mean of the activation output is zero). According to experiments by
Clevert et al [8], the ELU activation function could generalize the model better
than the ReLU activation function with accelerated learning speed. When hav-
ing very small gradients (in the negative region), less information is passed to
the next layer. The work argues that this makes the ELU activation function
more robust to noise. In this work, we use this activation function.

2.1.3 Cost Function

After we get the predictions, the neural network needs to be evaluated by comparing
the real labels and the predictions. To construct the error gradient, a cost function
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FIGURE 2.3: ReLU activation function. The negative input value will
always be zero as shown in the graph. The positive region follows a

f (x) = x graph.

is needed. It measures the error (loss) between the actual value and the predicted
value. The cost function averages the sum of losses from the loss function. Cross
entropy loss function is usually used for classification problems. There are two types
of cross entropy loss function: the binary cross entropy loss and the categorical cross
entropy loss. The binary cross entropy loss is used when the number of classes is 2.
The latter is used when the number of classes more than 2. The binary cross entropy
loss function is:

Lossp(y) = −
1
N

N

∑
i=1

yi · log(p(yi) + (1− yi) · log(1− p(yi)) (2.5)

N is the number of inputs. y refers to an actual label and p(y) refers to a predicted
value. The equation computes the difference between the actual value and the pre-
dicted one. The categorical cross entropy loss for the multi class classification is:

Lossp(y) = −
Nc

∑
i=1

N

∑
j=1

(yij · log(p(yij))) (2.6)

NC means the number of classes. As mentioned above, learning refers to finding
out the optimal weights and biases. The goal of learning is thus to find the optimal
parameters that minimize the cost function.

2.1.4 Optimization

How can we minimize the losses of a cost function? It is done by using optimization
algorithms. Optimization makes it possible for the model to reduce the losses in an
efficient way. Depending on optimizers, different ways to change weights or learn-
ing rates are applied. Gradient descent is one of the optimization algorithms that is
useful to get a local minimum of a function. Let us assume that you are in the mid-
dle of a mountain and you are trying to reach the lowest part of the mountain. You
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FIGURE 2.4: ELU activation function. It has a negative output when
the input is less than 0. It still has a flat region when the input is too
small. When the input is positive, the output value is equal to the

input.

can either go uphill or downhill and you can choose how much you want to walk
per one step. To decide these things, gradient descent is needed. We take downhill
steps on the error (cost) slope, which we can know by the negative gradient. Then,
we repeat the procedure until the weights reach the lowest point of the graph.

FIGURE 2.5: Gradient descent. The leftmost dot represents initial
weights. As training proceeds, the weights take steps towards the
bottom. The red dot in the bottom is the point where the weights is at

its minimum cost.

2.1.5 Backpropagation

Backpropagation is an algorithm to efficiently minimize the cost of the weights in a
neural network. In order to correctly classify the label, we want the probability of
the target class to increase. When the output ranges between 0 and 1, an index of
the maximum value is selected as a predicted label. As you can see in figure 3.1, the
input a which contains initial information propagate through the hidden neurons at
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each layer and finally produce the predicted label. This is called forward propaga-
tion. Through this feedforward propagation process, the cost is generated. [9] We
use the following notation to compute the gradient.

• The error: E(w) = ΣL( fw(x), y) for point (x,y)

• Loss function: L

• Activation function: σ

• The error gradient: ∇wE(w)

• The expanded error: E(w) = ΣL(σ(w(l) · σ(w(l−1) · σ(...W(1) · x...))), y)

• The weight matrix for layer k: w(k)

• Gradient descent for layer k: δ(k) = ∂E
∂u(k)

• E = L(v(l), y) and v(l) = σ(u(l)) for k = l (i.e last layer), u is the last layers

First, it starts with calculating the error by summing all the losses. Then, the gradient
of the error function is obtainable with the help of the chain rule:

dy
dx

=
dy
du
· du

dx
(2.7)

The chain rule enables a very complex expression of gradients to be calculated in
simpler way. From this process, the backpropagation algorithm is yielded. Let us
assume that the loss function is squared loss

L(v(l), y) =
||v(l) − y||2

2
(2.8)

then, we can obtain the derivative

δ(l) =
∂L(σ(u(l), y)

∂u(l)
=

∂L(v(l), y)
∂v(l)

· ∂v(l)

∂u(l)
= (v(l) − y) · (1− σ(u(l)) · σ(u(l)) (2.9)

We need the target class y, the network output v(l), and the sum of the weighted
input u(l) to compute equation 2.2. Any loss function L and activation function σ
can be applied to this computation. What we are interested in is the gradient of the
error

∂E

∂W(l)
i,j

(2.10)

Let us assume that k = l. The gradient is

∂E

∂W(l)
i,j

=
∂E

∂ui(l)
· ∂ui(l)

∂Wi,j(l)
= δ

(l)
i · v

(l−1)
j (2.11)

From equation 2.3, v(l−1)
j is induced. Now, let us look at the layers k < l, then the

gradient is
∂E

∂W(k)
i,j

(2.12)
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Then, we can apply the same principle.

∂E

∂W(k)
i,j

=
∂E

∂ui(k)
· ∂ui(k)

∂Wi,j(k)
= δ

(k)
i · v

(k−1)
j (2.13)

Equation 2.4 needs the layer inputs v(k−1) and the backpropagated error δ(k) We can
get the error δ(k) through the error δ(k+1)

δ(k) =
∂E

∂u(k)
=

∂E
∂u(k+1)

· ∂u(k+1)

∂v(k)
· ∂v(k)

∂u(k)
= δ(k+1) ·W(k+1) · σ′(u(k)) (2.14)

We get the ’k’th error through ’k+1’th error, so the computation flows from end
to front of the network. That is why this algorithm is called backpropagation.

2.1.6 Regularization

Even if the model performs well on the training data, we want a model that is gen-
eralized, which is the model that can predict well even on the unseen data. In other
words, we are trying to avoid the overfitting problem. Overfitting happens when the
model remembers every detail and noise of the certain (training) data, thus fails to
make a good prediction on the new data. There are several regularization methods
to avoid this problem, such as data augmentation, early stopping, and dropout.

• Data Augmentation

One of the ways to fix overfitting is to train on more data. Realistically speak-
ing, obtaining more data might not be possible in some cases. However, with
the help of data augmentation, we can generate artificial data. Artificially gen-
erated data can be added to a training set, helping the model improve its per-
formance. Datasets can be augmented by applying transformation such as flip-
ping, rotation, cropping, shearing, and changing the contrast.

• Early Stopping

It stops training when the validation loss gets higher than the training loss or
the target metric (i.e. accuracy, AUC, etc.) does not improve. It assumes that if
the validation loss does not improve, there is nothing to run. One can also stop
training by setting the limited epoch predicting that overfitting will happen
after the certain epoch.

• Dropout

The term “dropout” refers to dropping out units (hidden and visible) in a neu-
ral network. These units are selected randomly and become invisible during
the training phase. As illustrated in Figure 2.6 some neurons are cancelled out
when dropout is applied. With the use of dropout, the model becomes more
robust, resulting in a more generalized one. [10] Dropout probability decides
how many neurons to deactivate. This parameter value is set between 0 and 1.
Dropout of 1 means making all the elements zero, whereas dropout of 0 means
applying no dropout at all.
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FIGURE 2.6: Dropout network. When applying dropout, neurons are
randomly deactivated (dropped) by dropout probability. Neurons
that are removed from the network are marked with red X. Dropout

improves the network’s performance by reducing overfitting.

2.1.7 Confusion Matrix

In order to verify the effectiveness of the trained models, we need evaluation metrics.
For the classification problem, these metrics can be calculated from the confusion
matrix.

Actual
Positive

TP
(True Positive)

FP
(False Positive)

FN
(False Negative)

TN
(True Negative)

Actual
Negative

Predicted
Positive

Predicted
Negative

FIGURE 2.7: Confusion matrix of a binary classification problem. It is
a 2 x 2 matrix that shows 4 possible results as well as t he 4 combina-

tions with its corresponding class (positive or negative).

• True Positive (TP): When the actual label belongs to the positive class and the
predicted class is also positive.

• False Positive (FP): When the actual label belongs to the negative class but the
predicted class is positive.

• False Negative (FN): When the actual label belongs to the positive class but the
predicted class is positive.

• True Negative (TN): When the actual label belongs to the negative class and
the predicted class is also negative.
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2.1.8 Evaluation Metrics

• Accuracy

Accuracy measures the number of correctly classified outputs out of all the
outputs.

Accuracy =
TP + TN

TP + FP + FN + TN
(2.15)

It is an effective way to evaluate the algorithm when the class of data is well
balanced. If the data is class-imbalanced, accuracy alone cannot tell if the
model performs well or not. Let us imagine a "Yes" or "No" classification task
and the dataset of 9 samples from the label "Yes" and 1 sample from the "No"
label. There is a model that classifies all the instances as "Yes" and we want to
evaluate this model. The true positive will be 9 and the true negative will be 0,
thus accuracy is 90%. However, this model is not a good model because it can
never classify "No" labeled samples correctly. This is why it is recommended
to use other measures such as precision and recall along with accuracy.

• Recall

Recall measures a ratio of the correctly classified positive class to all the actu-
ally positive data samples.

Recall =
TP

TP + FN
(2.16)

This metric is suitable for health-related tasks such as cancer detection. Since it
is better to classify a healthy person as a cancer patient than to classify a cancer
patient as a healthy person and thus miss the diagnosis.

• Precision

Precision measures a ratio of the correctly classified positive class to all the
outputs that are classified as positive.

Precision =
TP

TP + FP
(2.17)

This metric is used when a task favors false negative over false positive which
is the opposite case of the recall metric. In other words, it is useful for a task
when the occurrence of false positives is not tolerable. For instance, the al-
gorithm needs to classify whether the product is in high quality or not for a
shop owner. If a bad quality product is classified as good (false positive), the
customer will complain and the reputation will go down (high cost).

• F1-score

F1-score or F-measure is the harmonic mean of precision and recall. [11]

F1− score =
2× recall × precision

recall + precision
(2.18)

F1-score measures how balanced the precision and recall are. Thus, it can be
used as a complementary metric to accuracy especially when the data is not
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evenly distributed. When an F1-score is high, (the possible maximum value is
1 and the possible minimum value is 0), it indicates good precision and recall.

• Specificity

Specificity measures a ratio of the correctly classified negative class to all the
outputs that are actually negative.

Speci f icity =
TN

TN + FP
(2.19)

It is recommended to use this metric when the occurrence of false positives
has a high cost and true negatives are needed. For instance, a polygraph test
should not have false positives. Instead, it should detect true negatives well.
In disease detection problems, specificity is useful for ruling in unhealthy pa-
tients. When the specificity is high and the patient has positive results then
this patient is most likely to have a disease.

• ROC-AUC Score

The ROC (Receiver Operator Characteristic) -AUC (Area Under ROC Curve)
Score measures how well the model can distinguish between classes. [12] In
cancer detection problem, high AUC means that the model can distinguish
better between patients with cancer and healthy patients.

2.2 Convolutional Neural Networks

Convolutional Neural Networks(CNN) is one of the most widely used deep learning
networks. It has shown excellent performance in the pattern recognition fields such
as image processing, and voice recognition.

A CNN architecture consists of an input layer, output layer, and several hid-
den layers. In the basic CNN’s hidden layers consist of convolutional layers, pool-
ing layers, fully connected layers, batch normalization layer and activation layers
(such as ReLU and ELU). A convolution layer is a layer that contains filters that
convolve the input and extract features. A pooling layer is a layer that performs
pooling and it usually is located between two consecutive convolutional layers. Af-
ter going through pooling layers, the dimension of the network is reduced. A fully
connected layer performs the final classification and is positioned before the output
of the network. Batch normalization layer standardize outputs of the previous layer
by applying normalization. Figure 2.7 presents a CNN architecture that is used in
this work.

Convolutional layers detect patterns such as edges, shapes, and corners in im-
ages. This detection process is done by filters. A filter can be seen as a n× n matrix.
To decide how the filter convolves the input image, we need stride and padding:
stride is the number of steps that the filter is going to take, while padding is the
extra pixels that are added in the surrounding of an input.

The filter moves around the input. First, it moves from the left to the right then
when it reaches to the right-most column it goes down till it reaches the bottom-
right. The convolution calculation is done by element-wise dot product. Both stride
and padding determine the size of the output. Figure 2.8 represents an example of a
basic convolution calculation. The filter is 3× 3 with stride 1 and padding 0.

Different padding sizes determine the output size as you can see in figure 2.9. All
three cases use a stride of 1. When the padding is valid, it does not add any padding
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Input

Batch Norm
ELU

Dropout

ELU
Dropout

Softmax

Conv Layer 1 Conv Layer 2 FC Layer 1 FC Layer 2 OutputConv Layer 3

Batch Norm
ELU

Dropout

Batch Norm
ELU

Dropout

FIGURE 2.8: A CNN architecture example. Input goes through three
Conv Layers (convolutional layer) and afterwards to 2 FC Layers
(fully connected layer). Between each Conv Layer and after the last
Conv Layer (Conv Layer 3), batch normalization (batch norm), ELU

activation function and dropout are applied.

to the input image. As a result, the output size becomes smaller than the input size.
When the padding is the same, the padding of 1 is added to the input image. The
output size is as same as the input size. The last case occurs when the padding is
full. The padding of 2 is added to the input and the output size is bigger than the
input size.

Max Pooling is one of the pooling forms. As the filter convolves the input, it
calculates the maximum value. As a result, the output has a smaller dimension than
the original input. Figure 2.11 illustrates a max pooling with 2 x 2 filter with stride
of 2. The filter convolves the input in the following order (left to right):[

3 5
0 7

] [
1 0
9 3

] [
11 3
2 5

] [
2 7
9 4

]
Then the maximum value of each section is selected, resulting the 2 x 2 output:[

7 9
11 9

]
As max pooling reduces the number of parameters, it can ease the over-

fitting problem and have less computational cost. [13]

2.3 Medical Data

"Medical imaging is one of the most valuable sources of diagnostic information
but is dependent on human interpretation and subject to increasing resource chal-
lenges." [14] According to the study conducted by Liu et al [15], it is shown that
the deep learning algorithms can reach the equivalent performance to health-care
professionals (radiologists) although there is still a limitation of integrating these al-
gorithms to the real-world practices. Liu et al claim that deep learning algorithms
for medical imaging perform as good as, or even better than, the health-care pro-
fessions. This gives validity to invest and study more on improving algorithms for
medical imaging. Medical imaging deep learning can be used to make AI-based
medical equipment and this could be a cooperative tool for health-care professions.

2.3.1 Cancer

According to WHO [16], "cancer is a generic term for a large group of diseases that
can affect any part of the body. Other terms used are malignant tumors and neo-
plasms." Tumors develop when cells that reproduce too rapidly are accumulated.
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* =
Convolution

Filter

0*0 + 0*0 + 0*0 +
-1*1 + -1*1 + -1*1 +
0*-1 + 0*-1 + 1*-1 

= -4

Output

0 0 0 0 0

-1 -1 -1 0 0

0 0 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0

1 1 1

-1 -1 -1

-4 -4 -4

1 2 3

0 0 0

Input

FIGURE 2.9: A basic convolution calculation. The 5 x 5 input matrix
is calculated with a 3 x 3 convolution filter. The example of the con-
volution calculation is presented above. The result of the convolution

calculation is 3 x 3 output matrix which is shown on the right.

With the help of medical imaging, cancerous tumors can be detected autonomously.
The main types of tumor are:

• Benign: When the cells are not cancerous.

• Premalignant: When abnormal cells that could be cancerous are found.

• Malignant: When the cells are cancerous.

2.3.2 Data Types

There are many medical imaging types. In cancer detection, MRI, CT scans, and
mammograms are most widely used.

• MRI

Magnetic Resonance Imaging generates three-dimensional images of body parts
using magnetic fields. Depending on MRI sequences, images can have differ-
ent appearances. T2 weighted, PD (Proton Density weighted), DWI (Diffu-
sion weighted images), ADC (Apparent diffusion coefficient), DCE (Dynamic
contrast enhanced) and K-trans are examples of MRI sequences. [17] The se-
quences that are used in this work are T2 weighted, DWI, and ADC grayscale
images. When describing the shade of MRI images, the word "signal intensity"
is used. High, intermediate, and low signal intensity refer to white, gray, and
black shade respectively. In T2 weighted and DWI images, tumors have high
signal intensity whereas they have low signal intensity in ADC images.

• CT scans

A computed tomography scan produces three-dimensional medical images us-
ing X-rays from different angles. It is a combination of X-ray images that are
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FIGURE 2.10: Different types of padding and consequent output size.
Each convolution process is shown. In the case of "valid" no padding
is applied, making the output smaller than the input. For "same",
padding of 1 is applied and the input is surrounded by one extra
pixel. The output size is the same as the input size. For "full" type,
padding of 2 is added to the input. After convolution, output size

becomes larger than the input size.

taken from different angles of a body. Figure 2.15 shows an example of a lung
CT scan image.

2.3.3 DICOM

The DSP and DSL are in DICOM file format with .dcm extension. DICOM (Digital
Imaging and Communications in Medicine) is a standard medical imaging format. It
is widely used to store and exchange medical images such as MRI, CT scans. DICOM
files contain tags from which you can access to important information about the
patient. With the patient’s information, we can connect the image to each patient.

2.3.4 Manipulating DICOM images

DICOM files have to be in a consistent representation before being converted to other
formats for the physicians to detect anomalies accurately. To this end, pixel data is
normalized, using the following tags:

• Instance Number: The order of the images.

• Pixel Data: The values of the pixels.
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3 5 1 0

0 7 9 3

11 3 2 7

2 5 9 4

7 9

11 9

Max
Pooling

OutputInput

FIGURE 2.11: Max pooling with 2 x 2 filter, stride of 2. The left matrix
represents the input before the max pooling. The right matrix shows

the result of the max pooling.

T2-Weighted ADC DWI

FIGURE 2.12: Different sequences of a prostate MRI image. Tumors
have white shade in T2-Weighted images and ADC images. In DWI

images, tumors have black shade.

• Samples per Pixel: the number of channels for each pixel

• Bits Stored: The number of bits stored for each pixel sample

Hounsfield correction and a linear transformation are applied to convert pixel data
to the correct numpy arrays. The former is a measure of radio-density, calibrated
to distilled water and free air. [18] First, the pixel values go through the Hounsfield
Units (HU) correction:

HU = m · P + b (2.20)

The equation involves using the rescale slope m and rescale intercept b. P refers to
the pixel value. After HU correction, a linear transformation is then applied.

if (P ≤ c− 0.5− w− 1
2

), then y = ymin (2.21)

else if (P > c− 0.5 +
w− 1

2
), then y = ymax (2.22)
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else y = (
P− (c− 0.5)

w− 1
) + 0.5) ∗ (ymax − ymin) + ymin (2.23)

"where c is the window center, w window width, P the pixel input value, y the
pixel output value, ymin the minimal value of the output range, ymax the maximal
value of the output range." [6] These equations make sure that the pixel values are
distributed correctly within the range between 0 (the minimum output value) to 255
(the maximum output value)

2.4 Dataset Description

The DSP (ProstateX Challenge Dataset) consists of multi-sequence MRI images. The
DSB (Kaggle Brain Dataset) is in single-sequence MRI format. The DSL (Lung CT
Challenge dataset) contains CT scans. Since the DSB and the DSL do not have multi-
sequence exams, extracting single channel images from the DSP was necessary. The
DSP and DSL are converted from DICOM to Numpy arrays. The DSB is converted
from JPG to Numpy arrays. Each of the datasets are resized to the same dimension
and normalized for a consistency purpose. Before re-scaling the images, cropping or
manual removal of unclear images are applied respectively. Different augmentation
factors are applied to each dataset, depending on how imbalanced the dataset is. All
the detailed steps are explained below.

• DSP: ProstateX Challenge Dataset

The DSP consists of 25314 training patients, 2276 validation patients, and 329
test patients. The original prostate dataset is available in the official prosta-
teX challenge website [19]. The original prostateX challenge dataset were aug-
mented and processed. To make it consistent with other datasets, single chan-
nel images have to be extracted from the multi-sequence images. DWI images
are chosen due to their resemblance to CT scans. All the DICOM files are con-
verted to NumPy arrays and the size of DWI images are scaled to fit that of
the T2-weighted images, since the DWI image sizes are not consistent. After
aligning the images, they are resized to 65x65px using a bicubic interpolation
after cropping the images to 130x130px. With these dimensions, most of the
lesions with a small margin of a border around them can be covered, which
made the detection process easier. Then, z-score normalization (see equation
2.1) is applied across the entire images.

The original dataset has a class imbalance problem as the ratio of the false and
true class was 3 to 1. To solve this class imbalance problem, two approaches are
proposed. The first one is downsampling the size of the data which belongs
to the class of a bigger size. The other one is augmenting each class using
different augmentation factor. The authors choose the latter, since the amount
of the available dataset is quite small. The true class dataset is augmented by
the factor of 60 which is bigger than that of the false class dataset’s to make the
dataset proportional.

Figure 2.13 illustrates MRI images with different sequences of the DSP. Tumors
usually appear white in T2-weighted images and DWI images. In ADC im-
ages, they are shown in black. DWI images are selected, since it has the same
tumor color as CT scans. T2-weighted images are only used to ensure the same
alignment and size of the other images.
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FIGURE 2.13: Example of the DSP. An MRI image with different se-
quences, T2-weighted (T2), DWI, and ADC, are presented. In T2 and
DWI images, cancerous nodules are shown as white, whereas they

appear as black in an ADC image.

• DSB: Kaggle Brain Dataset

The brain dataset consists of 36000 images for training, 4800 images for vali-
dation, and 242 images for test. The brain MRI images are publicly accessible
from Kaggle [20]. The dataset consists of single-sequence MRI images. Low
quality images and images with disturbing objects are manually removed.
Since it is only given with the clinical significance, a ground truth CSV file
have to be created from scratch. First, they unified the file names and formats
which is "[yes|no]index.jpg". A few PNG files in the dataset are converted to
JPG files. In the CSV file, columns "PatientID", "Nodule Center Position", "fid",
and "Diagnosis were added.

– PatientID: The filename without extension

– Nodule Center Position: The pixel coordinates of the lesion

– fid: Finding ID

– Diagnosis: Clinical significance (True or False)

The tumor sizes in the dataset are inconsistent. The patch size which could fit
the large tumors is selected. Then, the images are resized to 65x65px using a
bicubic interpolation. After converting the images to JPG format and resizing
them, the images are exported as NumPy array for normalization purposes.
The z-score normalization is applied (equation 2.1). The classes of the brain
dataset are more or less balanced, so they are augmented by the same factor
(200x). They do not include test patients of brain dataset since their target
dataset is the prostate one.

According to Clement et al’s experiment [6], cropping the lesions with more
borders and margins are suitable for single-sequence images. On the other
hand, for multi-sequence images, cropping the images to fit more or less per-
fectly help the detection process better.
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Yes No

FIGURE 2.14: Example of DSB. The left picture shows a brain MRI
image with a malignant tumor in it. The tumor is shown as white
shade on the left side of the image. The right picture is a brain MRI

image that does not contain a cancerous tumor.

Figure 2.14 shows an example of the DSB. The left one is a healthy patient’s
brain image and the right one is a brain image with a cancerous tumor. In this
example, tumor shows up as white on the middle left side of the image.

• DSL: Lung CT Challenge Dataset

The DSL is publicly available from SPIE-AAPM Lung CT Challenge website [21].
Two CT scan sub-datasets (calibration set and test set) are merged due to the
lack of data. Like the brain dataset, two CSV files (Testset.csv and Calibra-
tionSet.csv) are made from the two originally provided CSV files to better han-
dle the information. Since the labels of the dataset are not binary, they have to
be divided into positive and negative.

– Positive: "malignant", "Primary lung cancer"

– Negative: "benign", "Benign nodule"

Two images with the label called "Suspicious malignant nodule" are removed
since the diagnosis is unclear. All the images in the lung dataset have the same
resolution of 512x512px, which makes aligning the images as DSP unneces-
sary. However, the size of tumors varies greatly and the boundary of tumors
is ambiguous. The patch size is therefore set according to the size of the large
tumor. Images with excessively large tumor sizes are considered as outliers
and removed. The images are cropped to 85x85px and then, finally resized to
65x65px using a bicubic interpolation. Finally, DICOM files are converted to
NumPy arrays. Like the brain dataset, the same augmentation factor (240x) is
applied since the lung dataset is roughly balanced. It consists of 14120 images
for training, 2640 images for validation, and 77 images for test.

Figure 2.15 illustrates a CT scan image of a cancerous tumor in it. Black, gray
and white parts are observed in the image. Tumor are usually shown as white
in CT scan images.
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FIGURE 2.15: Example of DSL. The image shows a lung CT scan im-
age that has a cancerous tumor. Usually, a normal brain appears as

black. Nodules are shown as white spots.

2.5 Related Work

• Prostate

According to the World Cancer Research Fund International [22], Prostate can-
cer is the second most common cancer worldwide, and the fifth most common
cause of cancer death among men in 2018. Early detection can increase the
survival rate of prostate cancer patients.

Yoo et al [5] proposed a pipeline that uses ResNet as their base architecture.
The proposed pipeline consists in 3 stages. First, 5 CNNs models give proba-
bilities of each class (cancer and non-cancer) for each DWI slice. Then, the fea-
ture selector selects key features from the first-order statistical features which
were extracted from the outputs of the first stage. Finally, a Random Forest
classifier classifies patients into two classes using the features from the previ-
ous stage. The dataset consists of 427 patients in DWI images and was divided
into a training set (64%), a validation set (11%), and test set (25%). The DWI
images with 6 channels (ADC, b0, b100, b400, b1000, and b1600) were used as
input, and each image was resized by 144 x 144 pixels and cropped by 66 x
66 pixels so that the images include the prostate region. Z-score normalization
was applied to all of the data which is

Pi_normalized =
Pi −mean

std
(2.24)

Pi represents the pixels of a slice and std means standard deviation of the slices.
The proposed CNNs model consists of convolutional layers with 7 x 7 filter, 3
x 3 max pooling layer, 2 ResNet Blocks, an average pooling layer, and a fully
connected layer. In the first ResNet Block, 3-layer bottleneck blocks which are
composed of CNN layers with filter sizes 64, 64, and 256 are stacked 4 times. In
the second ResNet Block, 3-layer bottleneck blocks which consist of CNN lay-
ers with filter sizes 128, 128, and 512 are stacked 9 times. They chose Stochastic
Gradient Descent (SGD) as the optimizer and binary cross entropy as the loss
function because of the class-imbalanced dataset. In slice-level performance,
their best CNNs among 5 individually trained CNNs models achieved AUC
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of 0.87 in 95% confidence interval. In patient-level performance from the last
stage’s result with the Random Forest classifier, their best AUC was 0.84 in
95% confidence interval.

• Brain

According to Farmanfarma [23], brain cancer is one of the most common can-
cers in the world and the incidence of brain cancer is increasing. It is reported
that the mortality rate is about 3.4 per 100,000 people in the world.

Saxena et al [24] compared three pre-trained CNN models (VGG-16, Inception-
V3 and ResNet-50) using transfer learning. They used the Kaggle brain dataset
and the dataset was split into 183 training sets, 50 validation sets, and 20 test
sets. The entire dataset was normalized and augmented. To make the data
suitable for the pre-trained model, the images were resized as 224 x 224 x 3
dimensions. Among all the three CNN models, VGG-16 and ResNet-50 could
achieve high AUC of 0.9 and 0.95 respectively.

• Lung

According to American Lung Association [25], five-year survival rate of lung
cancer is only 18.6 %, however, when detected in an early stage with the help
of low-dose CT screening, the mortality can be reduced by 14 % to 20 %. This
emphasizes that detecting lung cancer at an early-stage is a key to the survival
of a patient.

Cengil et al [26] used the SPIE-AAPM Lung CT Challenge dataset and pro-
posed a three-dimensional CNN network. The network consists of 7 layers (In-
put layer, five three-dimensional CNN layers and fully connected layer). The
input layer takes a four-dimensional tensor where an additional dimension
"depth" is added to the height, width, and channel parameters. They chose
accuracy for their evaluation metric and achieved 0.7 of accuracy.





23

Chapter 3

Transfer Learning

This chapter is devoted to transfer learning and a related work "Prostate Cancer
Classification: A Transfer Learning Approach to Integrate Information From Diverse
Body Parts" by Clement et al [6]. A brief explanation of the training process of the
work is presented. A concept of transfer learning is introduced and, later in Chapter
4, it is compared with multitask learning.

3.1 Transfer Learning

Transfer Learning is a learning technique where the model is developed for one task
and is applied to a similar, but different tasks.

Task A

Model A

Predictions

Task A

Model B

Predictions

Knowledge

FIGURE 3.1: Transfer learning process. The left column shows a tra-
ditional machine learning where task A is trained with the model A.
The right column represents a transfer learning where the knowledge

gained from training task A is passed on to the model B.

Figure 3.1 illustrates the transfer learning process. Knowledge gained by training
a model A (usually on a large dataset) can be transferred to task B so that the task B
can take advantage of the pre-trained model A’s ability to detect common features.
For example, the model trained to classify animals can be applied to another model
whose goal is to classify a specific animal.

This learning method is useful when:

• The different datasets share similar features.

• There is not enough data to train.
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There are some major advantages in using transfer learning. It gives an impor-
tant benefit when it comes to the initial training. It can give a good start because the
model has already learned common low-level features. Another advantage is that,
during the training phase, the rate of improvement of the model becomes steeper.
Lastly, the trained model converges better, which means the loss can reach the min-
ima better. [27]

3.2 Transfer Learning Application Review

This section gives an overview of the new transfer learning approach by Clement
et al. [6]. The work improves prostate cancer detection by introducing a new learn-
ing algorithm. The work proposes a new algorithm based on transfer learning to
improve accuracy. The main limitation that medical imaging application has, is the
amount of available data. It is hard to acquire suitable medical data due to ethical
problems. It also has to go through an anonymization process and needs to meet
strict security conditions. Transfer learning is an alternative method to tackle the
problems mentioned above. The learned knowledge is transferred to other similar
tasks and the tasks can have a benefit from the pre-trained model. The goal of the
work is to classify prostate cancer. The work gathered similar medical images of dif-
ferent body parts, which were brain and lung images. By using the brain and lung’s
features, their model could generalize and perform better on classifying prostate
cancer.

3.3 Process Overview

First, the dataset for each body part is gathered, and preprocessing is applied. The
work trains the model on the target dataset (Prostate dataset) and save the model
which has the highest AUC. Then, the work takes two different steps on non-target
datasets (Brain and Lung dataset);

1. Only the feature extractor from the previous step is loaded and the decision
maker is reset. The feature extractor is frozen and only the decision maker is
trained. The term "freezing" refers to keeping the weights when loaded and
not updating them. "Unfreezing", on the other hand, has to do with making
the layers update the weights when trained. After all the epochs, the best
performing model is saved.

2. The model which had the best AUC and accuracy is loaded and the feature
extractor is unfrozen. End-To-End training is applied to the same dataset. End-
To-End training means to train the undivided model (the feature extractor and
the decision maker).

After the above two steps are performed on non-target datasets, the best model
is saved and loaded. The model is trained again with the frozen step on the target
dataset. Here, instead of resetting the decision maker with random initialization,
the decision maker from the first step, which has the highest AUC, is loaded and
attached to the model. Finally, the feature extractor is unfrozen and the whole model
(the feature extractor and the decision maker) is trained on the target dataset. The
best performing model with the highest accuracy and AUC are saved and tested on
the target test set. Each step of training the datasets with freezing and unfreezing is
done with 2000 epochs. [6]
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3.3.1 Evaluation metric

The evaluation metric used for the transfer learning implementation is AUC (Area
Under Curve). AUC is a frequently used evaluation metric, especially in medi-
cal imaging deep learning applications. AUC measures the prediction ability of a
model. For a cancer detection model, the model with a higher certainty of its predic-
tion is preferred.

3.3.2 Dataset 1 (Prostate)

From 200 random initialization, the best initialization which has the best AUC on
the prostate validation dataset is chosen. The whole dataset is trained with a learn-
ing rate of 1e-8, and a dropout rate of 0.4. The gap between the training and the
validation graphs is not so large, which means that model is learning features well
and also generalize on the unseen data.

3.3.3 Dataset 2 (Brain)

The best model from the previous step is saved and loaded when training the brain
dataset. Then, the feature extractor is frozen and the decision maker is initialized
with random weights. At the beginning of training, the accuracy and AUC are fairly
low because of the random initialization in decision maker layers. The model con-
ducts a classification task solely based on a feature extractor from the previous step.
This shows that the features extracted from the prostate dataset adapted well to the
brain cancer dataset. Furthermore, training and validation curves behave similarly
with a little gap in between. After the frozen process, the feature extractor layers
were unfrozen and the end-to-end model was trained on the same brain dataset
with a different learning rate of 1e-8. Since the decision maker is trained beforehand
with a feature extractor which was suitable for the brain dataset, the initial metric
values has a high starting point. During the training, the model focuses on learning
new features from the brain cancer set.

3.3.4 Dataset 3 (Lung)

The previous model is attached and the feature extractor is frozen. Like the previous
training, the decision maker is randomly initialized again. Accuracy and AUC from
the frozen training was lower than the brain dataset training, however, the training
and validation graph still shows a good result. It indicates that the features from
the prostate and brain are helping the model to learn better. For the full end-to-end
training step, the model is trained with a decreased learning rate.

3.3.5 Dataset 4 (Prostate)

For the final step, the target dataset (prostate) is trained again with the frozen feature
extractor from the previous step and the decision maker from the first step of full
training on the prostate dataset. Now, the last layer is trained again with the help
of features learned from the other datasets (brain and lung). The high values of
the metrics in the beginning show that the transfer learning worked well among
all the three datasets. The model slowly improves thanks to the common low-level
features that were acquired from the brain and lung dataset. Finally, the frozen layer
is unfrozen, and full training is performed. The model reached its optimal at around
500 epoch. For this step, dropout was omitted, however, the values of the metrics of
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validation set were higher than those of the training set which suggests the model
could generalize well. Since the training was for prostate cancer detection, the best
model was tested on a test set. The best model could get an accuracy of 0.6842 and
AUC of 0.8000 which were more or less equivalent to a novice radiologist’s result.
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Chapter 4

Multitask Learning

This chapter presents an explanation of what multitask learning is. A description of
what it is and differences with the traditional machine learning approach are given.
There also exists some differences between multitask learning and transfer learning.
The comparison between these two learning algorithms are also looked at.

4.1 Multitask Learning and Single task Learning

Traditional machine learning focuses on building and optimizing a model for one
specific task. While we still can get a reasonable result, helpful information from
training signals of related tasks might be missed out. Multitask learning is an al-
ternative machine learning approach to exploit such information. Multiple related
tasks are trained at the same time using shared hidden layers. It aims to improve
generalization performance for one main task. [28] This algorithm is based on the
idea that tasks can share what they learn via a shared common hidden layer and are
trained in parallel. [29]

Task 1

Inputs

. . .

Task 2

Inputs

. . .

Task 3

Inputs

. . .

FIGURE 4.1: Traditional single task learning. Three machine learn-
ing models are presented. Each task is considered as an independent

model, thus trained separately. They do not share any layers. [28]

Figure 4.1 shows several single task learning (STL) neural networks. Each of
the neural network is given the same inputs, but different tasks. The networks are
trained individually, not sharing any hidden layers with each other. Figure 4.2 shows
a multitask learning (MTL) neural network. Unlike single task learning, MTL has a
hidden shared layer that is shared by all the tasks. The tasks consist of the main task
and extra (auxiliary) tasks.
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Task 3

Inputs

. . .

Task 2Task 1

FIGURE 4.2: Example of multitask learning. The task 1, 2, and 3 are
different tasks but they are trained at the same time. All the tasks are

trained on the same input. Three tasks share hidden layers. [28]

4.2 How does MTL work?

Traditional machine learning techniques focus on learning a single task at a time.
However, MTL is a learning algorithm that trains multiple tasks. When the multiple
tasks are learned simultaneously, the model can learn better with improved general-
ization. The reason why the model learns better in MTL is due to the inductive bias
helping the shared hidden layer.

There are some possible explanations of why Multitask Learning works. First,
when the tasks are not correlated in the backpropagation stage, the network might
take added gradient as noise to other tasks. [30] This can improve generalization.
The second possible reason is that added tasks might change parameter updating
dynamics which supports networks with multiple tasks. The last possibility is that,
thanks to the reduced net capacity, the model is better generalized. Caruana et al’s
work [28], shows that this is achieved through the additional training signals work
as domain-specific inductive biases, not because of the above reasons. They shuffle
the extra task training signals among all the cases in the training set, which gets rid
of the relatedness of the main task and the extra tasks.

4.3 Related tasks

A task in machine learning is a formulation of what we want to predict based on the
available data. A task can be divided into the main one and the extra one. Typically,
the extra tasks are a subset of the main task. For instance, if the main task consists
of recognizing whether the object is a cat or a dog, the extra tasks would consist of
recognizing the shape of the ear and the color. To utilize multitask learning, a main
task and extra tasks need to be related. As caruana stated [28], "MTL is an inductive
transfer method that uses the domain specific information contained in the training
signals of related tasks."
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An inductive transfer is a learning technique which makes use of information
gained from other similar tasks to improve generalization. MTL is considered as an
inductive transfer, because it leverages supplemental information from the training
signals of related tasks. This information from similar tasks works as an inductive
bias to improve the generalization of the main task. From the perspective of the
main task, the additional tasks are viewed as bias.

4.4 MTL Mechanism

Caruana [28] suggested various mechanisms to explain how the backpropagation
nets can generalize better. For all the cases below, the notation T refers to a task, T’
refers to a task related to T and F refers to a hidden layer feature.

• Statistical Data Amplification

MTL has an effect of increasing a sample size thanks to the information in the
training signals of extra tasks. This is called data amplification. When the noise
is added to T and T’ respectively, a net gains additional information which can
be seen as amplification of data. If the two tasks T and T’ can notice that they
share F, then a model learning the two tasks averages F through different noise
processes. As a result, the hidden layer F can be learned better.

• Attribute Selection

A model with few data or significant noise which is fitted to only learn the task
T is not likely to well distinguish inputs pertinent to F from ones that are not
relevant to it. However, a model that learns both T and T’ will better determine
more relevant inputs to use to train F thanks to improved training signals for
it.

• Eavesdropping

Let us consider that there is a hidden layer F and two tasks T and T’ that are
not learned together. A net can learn F well when learning the task T, but a net
learning T’ cannot learn F easily. However, when T and T’ can be learned to-
gether in an MTL net and they can share the hidden layer F, then the net learn-
ing T’ can obtain information by observing the F learned for T (eavesdrop).
Due to the additional information that T’ learned about F by eavesdropping, a
model can learn F better.

• Representation Bias

When there are two tasks T and T’, the MTL model is biased to select hidden
layer representations that both tasks prefer. The MTL model also tends not to
select the representations that other tasks do not prefer. [28]

4.5 Parallel and Sequential Transfer

4.5.1 Parallel Transfer

When the information learned for one task is transferred to another task when being
trained, it is called parallel transfer. Each tasks are learned at the same time, while
transferring their knowledge to each other.

MTL uses parallel transfer. According to Caruana [28], the advantages of parallel
transfer are:
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• The full detail of what is being learned for all tasks is available to all tasks since
all tasks are being learned at the same time.

• In many applications, the extra tasks are available in time to be learned in par-
allel with the main task(s). Parallel transfer does not require one to define a
training sequence. The order in which tasks are trained often makes a differ-
ence in a serial transfer.

• Tasks often benefit each other mutually, something a linear sequence cannot
capture. For example, if task T is learned before task T’, task T’ cannot help
task T. This not only reduces performance on task T, but can also reduce task
T’s ability to help task T’. [28]

4.5.2 Sequential Transfer

Sequential transfer learning indicates that a model is learned for one task and the
learned knowledge is transferred to another task sequentially (one after another).
The whole training of a model happens first then the knowledge is transferred to
another task.

In the case of transfer learning, the pre-trained model is used as a baseline for
a new task. The tasks are learned sequentially. A model trained to learn a task T
can be used as a base for a model made for a task T’, since it is not learned at the
same time. The two nets cannot help each other at the time of learning. Caruana et
al [28] proposed an approach that MTL benefits from the pre-trained model. When
the training data is not available from the previously learned model, synthetic data
can be generated using the model and the training signals in the synthetic data can
be used as extra MTL tasks.



31

Chapter 5

Proposed Approach

This chapter presents the whole process of the P-Hydra learning technique. The P-
Hydra learning implementation partially relies on Clement et al’s work [6] in terms
of the data preprocessing and the model architecture. The difference is that instead
of sequential transfer, we make use of parallel transfer, implementing a new P-Hydra
algorithm.

First, the difference between multitask learning and our method is discussed.
Then, the individual steps of the process are explained in the process overview
alongside with the visual representations. Thereafter, the detailed information about
the P-Hydra net that we use in this work is analyzed.

5.1 Different Aspects From Multitask Learning

The original multitask learning aims for the specialization of one main task, while
our proposed method aims for generalization. Our goal is to have a generalized base
for any medical imaging application. It can be used as a base (i.e. feature extractor)
for cancer detection model so that only the training a decision maker part is needed.
The main difference comes from the relationship between the main task and extra
tasks. In multitask learning, the extra tasks are regarded as sub-tasks which are in
the same domain, while our case, there is no distinction between the main task and
the extra task. All the tasks are treated more or less equally. Caruana et al [28]
defined the tasks as related when they are the same function of the inputs, but with
independent noise processes added to the task signals.

5.2 Goal

Transfer Learning and Multitask Learning are particularly useful when the amount
of data is not sufficient. In this work, we implement a new learning technique that is
based on multitask learning to improve cancer detection application. The final goal
of this work are:

• To prove that in cancer detection, our learning algorithm is valid

• To provide a baseline (the generalized feature extractor) for other cancer detec-
tion tasks.

To successfully transfer the knowledge and make it useful, the datasets must
share common features. The training makes use of related three different datasets
simultaneously. The premise is that DSP, DSB, and DSL that are used in this work
share these common low level features. This was shown in Clement et al [6], as
they improved the AUC of prostate cancer detection through sequential transfer.
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Based on this result, we could apply the relatedness of these datasets to our P-Hydra
implementation.

Dataset Original After Augmentation Training Set Validation Set Test Set

DSP 1150 27919 25314 2276 329
DSB 226 41042 36000 4800 242
DSL 81 16837 14120 2640 77

TABLE 5.1: The number of training, validation, and test set for each
dataset. Column "Original" represents the number of dataset before
augmentation. Notice that the size of dataset has changed after aug-

mentation.

5.3 Model Architecture

The model used here is based on a VGG-16 network. The model is divided into two
parts: the feature extractor and the decision maker. The feature extractor collects the
features that represent a cancerous tumor. The decision maker makes a final decision
whether the input image is a cancerous tumor or not.

Figure 5.1 illustrates the model architecture. The architecture is modified from
the VGG-16 network. The VGG convolutional neural network was proposed by
the Visual Geometry Group (VGG) from Oxford’s University in 2014. The number
16 represents the number of layers. It achieved an accuracy of 92.7% on ImageNet
dataset, resulting top 5th place in Large Scale Visual Recognition Challenge 2014.

The model consists of 9 convolutional layers and 4 fully connected layers, which
is smaller number of layers than the original VGG-16 network. The input goes
through three VGG blocks and 4 fully connected layer blocks. Each VGG block is
composed of three convolution blocks, dropout, and max pooling layer. Inside each
convolution part, there are a convolutional layer, a batch normalization layer and
an ELU activation function layer (See figure 5.1). Inside the fully connected block,
a fully connected layer is followed by an ELU activation function layer. For the last
fully connected layer block, a softmax layer follows a fully connected layer as it has
to classify the output class.

First convolution block has 32 filters whose size is 3x3, and 1x1 for the last con-
volutional layer. All the convolution blocks have a stride of 1 and padding of 0.
Except for the number of filters, other conditions stay the same for the remaining
convolution blocks. As the input goes through each convolution block, the number
filter size becomes double; the number of filters of the second block is 64 and that of
the third block is 128.

5.4 Roulette

We are using the roulette when initializing the feature extractor and decision maker
for each model. These models are initialized with a feature extractor and a decision
maker which resulted in the highest AUC after running the model 200 times. All the
three models share the same feature extractor to get the generalized feature extractor.
To this end, the feature extractor for DSP is used for all the other body parts when
deciding the best decision maker. The best feature extractor with the DSP among
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FIGURE 5.1: Model architecture. The left column indicates a model
architecture with a description of each layer. The model is divided
into two parts: feature extractor and decision maker. The right col-
umn shows a layer structure of a convolutional block and a fully con-

nected block.



34 Chapter 5. Proposed Approach

200 runs of the roulette is saved and used for other dataset’s (DSB and DSL) decision
maker initialization.

The roulette is validated by comparing between average AUC of 10 random ini-
tialization and the output of the roulette. After running 200 random runs, the final
outcome is decided by picking the feature extractor and decision maker with the
highest AUC. Ten random initialization is done and each AUC for each dataset is
averaged for comparison. The AUC of the roulette had a higher accuracy than that
of 10 random outputs.

AUC Roulette Output
Average of

10 random runs

DSP 0.75887926 0.49394466
DSB 0.91688627 0.38305817
DSL 0.76782320 0.46263825

TABLE 5.2: Comparison between the roulette output and average
AUC of 10 random runs. The "roulette output" column presents the
highest AUC from 200 roulette runs. "The average of 10 random
runs" column shows the average AUC of 10 random runs. For all
the datasets, roulette output has a higher AUC. It was tested on the

validation set.

5.5 Process Overview

All the datasets (DSP, DSB, DSL) that are used in this work follow the pre-processing
step explained in Chapter 2. As our learning technique takes advantage of related
tasks, we first need to verify if the tasks are related. In our case, the task is to di-
agnose if the patient has cancer or not (if the image has a malignant tumor or not).
The detailed tasks for neural networks differ as the dataset contains three different
body parts as each dataset have different features. We can see that the three tasks are
related since the dataset is presumed to share common low-level features according
to the experiments in Clement et al. [6] Each step of the learning process in cancer
detection is schematized in Figure 5.2. And the description of each step is as follows:

• Generalization

1. The best feature extractor (FE) and the best decision maker (DM) from the
DSP are chosen from 200 random roulette initialization. After getting the
best feature extractor (FE), it is attached to the decision maker of brain
and lung datasets. After 200 runs, the best decision maker (DM) for both
datasets are saved.

2. The best feature extractor (FE) and decision maker (DM) for DSP as a
whole model is trained.

3. The same feature extractor (FE) and the decision maker (DM) from the
roulette for DSB as a whole model is trained.

4. The same feature extractor (FE) and the decision maker (DM) from the
roulette for DSL as a whole model is trained.

5. All three datasets are trained for 200 epochs while transferring the learned
structure to each other.
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6. After 200 epochs, each model that consists of the shared feature extractor
(FE) and respective decision maker (DM) is tested on the test set.

• Specialization

1. The model from the generalization step is loaded for each dataset to train
independently.

2. Each independent model is trained for 200 epochs and the best model
which has the highest AUC on the validation set is saved and tested on
each test set.

5.6 Training

For simplicity, training occurs in a fixed order (i.e. First DSP, second DSB then DSL).
This sequence remains the same during the entire training. Three individual mod-
els3 consist of a shared feature extractor and a separate decision maker. The same
feature extractor is trained and updated after every epoch. Each decision maker
is also trained accordingly after each epoch. Several hyperparameter options (the
learning rate and the dropout) are set differently for each model.

5.6.1 Evaluation Metric

The performance of the model is measured by the AUC metric. As explained in
Chapter 3, AUC is a frequently used target metric in medical applications. For cancer
detection tasks, it is important to see how confident the model is about its decision.

5.6.2 Visualization of a Model

To visualize performance of a model, we use Tensorboard, visualization a toolkit
for tracking and visualizing metrics, visualizing the model graph, and displaying
images and text. [31]

Throughout the training, seven evaluation metrics (loss, AUC, accuracy, preci-
sion, recall, f1score, and specificity) are computed and saved for both training and
validation set respectively. After running all the epochs, the metrics of training and
validation set are plotted in the same graph, so that both metrics can be compared
and interpreted. The three models are then tested on the test set and their results
are also recorded separately in Tensorboard. The full boards for the experiments
described here can be found in chapter 6.

5.6.3 P-Hydra Learning Net

The model implemented in this work shares hidden layers with decision maker 1
(DM1), decision maker 2 (DM2), and decision maker 3 (DM3). The feature extractor
is trained while being shared among all three tasks as common hidden layers. The
model gets a medical image as an input. In the feature extractor, the hidden layers
are learned together in parallel. The feature extractor is trained one after another in
a fixed order (DSP, DSB, DSL). After the feature extractor outputs the feature, each
feature is fed into each decision maker as an input. Unlike the feature extractor,
decision maker is not shared among three tasks and trained individually just for
their own target dataset. Finally, the decision maker decides the output class.
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FIGURE 5.2: Process overview. Each model for each dataset is ini-
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model is trained for 200 epochs. After 200 epochs, each model is
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Chapter 6

Experimental Results

In this chapter, experimental results of P-Hydra learning are analyzed. This includes
the explanation of hyperparameter option used for the experiment and correspond-
ing training and validation graphs of seven metrics at each epoch and performance.
The final results of each model (DSP, DSB, and DSL) are discussed.

6.1 Experiments

The experiment consists of two parts: generalization and specialization. After train-
ing the model with a shared feature extractor, we have a generalized baseline that
can be used for specialization tasks. The model used for specialization does not share
hidden layers, instead, it is an independent model that is specialized for one specific
task. The generalization task is trained with 200 epochs and the specialization task
for each dataset is trained with 200 epochs.

Several experiments are executed to tune the hyperparameters manually. Ex-
periments with smaller epochs are first tested. With the small epochs experiment,
a rough decision whether to run more epochs or not can be made. If the model
shows a good learning process with a smaller epoch, it is trained with more epoch.
Learning rates of 1e-5, 1e-6, 1e-7, and 1e-8, batch size of 64, 128, and 256, dropout
probability of 0.2, 0.3, and 0.4 are tested for hyperparameter tuning. PyTorch is used
to implement the model on conda environment. Adam optimization algorithm is
used for updating the network weights.

6.1.1 Experimental Setup

The machine used for the experiments is an Nvidia Tesla V100. It took approxi-
mately 8 hours to run 400-epoch-experiment (200 epochs for generalization and 200
epochs for specialization). Final result with training and validation graphs are rep-
resented with the help of Tensorboard. Hyperparameter options of the final result
are shown on the Table 6.1.

6.2 Results

First, a learning rate of 1e-8 is set for three datasets. Due to the small learning rate,
the model fails to learn helpful features and metrics such as accuracy, recall, and
F1score are stuck. During the hyperparameter tuning process, learning rate and
dropout probability had the most impact on the performance of a model. As a re-
sult, learning rate of 1e-5, batch size of 64, and the same dropout probability except
for DSB are applied for each model. All the models are trained 200 epochs for gen-
eralization and 200 epochs for specialization. Figure 6.1 to 6.3 illustrate training and
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Dataset Learning rate Batch size Dropout Epochs_gen Epochs_spec

DSP 0.00001 64 0.3 200 200
DSB 0.00001 64 0.2 200 200
DSL 0.00001 64 0.3 200 200

TABLE 6.1: Hyperparameter options for each dataset. DSP and DSL
model had the same learning rate of 1e-5, batch size of 64, and
dropout probability of 0.3. Notice that DSB has a different dropout
probability of 0.2. Epochs_gen is the number of epochs trained for a
generalization task. Epochs_spec is the number of epochs for a spe-
cialization task. Each model is trained 200 epochs for generalization

and 200 epochs for specialization.

validation graphs created by Tensorboard. Table 6.2 to 6.4 show the final accuracy
and AUC of each model.

Task (DSP) Accuracy AUC

Generalization 0.4711 0.6160
Specialization 0.5562 0.5793

TABLE 6.2: Accuracy and AUC of DSP after generalization and spe-
cialization.

Task (DSB) Accuracy AUC

Generalization 0.7851 0.8734
Specialization 0.8091 0.8402

TABLE 6.3: Accuracy and AUC of DSB after generalization and spe-
cialization.

6.2.1 Discussion

The final result of hyperparameter tuning is explained in this section with the de-
scription of an individual model with its corresponding training and validation
graph. X-axis is the number of epochs. Y-axis represents each metric value of train-
ing and validation. Both generalization and specialization are presented in the same
plot.

DSP

The feature extractor from DSP works as common hidden layers which will be shared
among all the other datasets. First, the best feature extractor and the best decision
maker from the roulette are initialized as a whole model. The best initialization
from the roulette is decided by the best AUC on the validation set of DSP. After each
epoch, only the feature extractor is shared with the next models (a model for DSB
and DSL) so that the next models can benefit from what is learned in this step. For
the next steps, the hidden layers are trained to learn the common features that all
the other datasets have. Figure 6.1 describes Tensorboard graphs of seven different
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Task (DSL) Accuracy AUC

Generalization 0.5065 0.5992
Specialization 0.5584 0.6037

TABLE 6.4: Accuracy and AUC of DSL after generalization and spe-
cialization.

metrics. Until 200 epochs, it shows a generalization task. After 200 epochs, special-
ization part which uses an independent model for DSP is trained for 200 epochs.
Thanks to the roulette initialization, the model could converge quickly in the be-
ginning. It has a slow but steady improvement. The generalization task achieved
an accuracy of 0.4711 and AUC of 0.6160. The accuracy and AUC achieved after
specialization are 0.5562 and 0.5793.

DSB

An end-to-end model that consists of the common feature extractor and the best
decision maker from the roulette is initialized. The best decision maker is chosen
by the best AUC on the DSB validation set. It is trained while sharing the common
feature extractor for first 200 epochs.

The DSB is trained with the learning rate of 1e-5, which is the same number as the
first dataset (DSP). Slightly small dropout probability of 0.2 is applied on this model.
Figure 6.2 illustrates training and validation graphs of the DSB model. Thanks to
learned features from DSP and DSL, a model could achieve a high accuracy and
AUC from the beginning. As the epoch increases, accuracy and AUC also improve.
After 200 epochs, where the specialization task begins, it is observed that the training
and validation curves become closer. Using generalized features, the specialization
task could have a higher start and the validation loss starts to decrease. At the end
of the generalization task, the DSB model achieved AUC of 0.8734 which shows
that the model could make use of all the learned features and generalize well on an
unseen dataset.

DSL

Like DSB, the common feature extractor and the best decision maker from the roulette
are initialized. The entire model is trained with a learning rate of 1e-5, a dropout
probability of 0.3 and a batch size of 64.

Corresponding training and validation graphs are presented in Figure 6.3. Like
DSP and DSL, the model converges in the first epochs and training accuracy and
AUC could achieve high values thanks to shared hidden layers and large learning
rate. After generalization task, the model could have a higher start, thanks to the
learned knowledge from that task. The training and validation graph shows that the
model is learning features and improving. As the specialization task begins at 200
epoch, accuracy and AUC start going down until approximately 250 epochs, since
the feature extractor is adapting to only one dataset (DSL). The DSL model achieved
accuracy of 0.5065 and AUC of 0.5992 after generalization. Both accuracy and AUC
increased when trained on DSL only as 0.5584 and 0.6037.
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FIGURE 6.1: Final result. DSP with learning rate 1e-5, dropout of 0.3.
Accuracy, AUC, f1score, loss, precision, recall, and specificity graphs
are illustrated. The number of epochs are shown on Y-axis. X-axis

represents a training and validation metric.
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FIGURE 6.2: Final result. DSB with learning rate 1e-5, dropout of 0.2



44 Chapter 6. Experimental Results

FIGURE 6.3: Final result. DSL with learning rate 1e-5, dropout of 0.3
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Conclusion

This work presented a novel approach to classify malignant tumors of three different
body parts (prostate, brain, and lung). Deep learning with medical images (i.e. MRI,
CT scans) usually suffers from lack of data. Two machine learning techniques, trans-
fer learning and multitask learning, useful to overcome the data limitation problem
are introduced. Transfer learning and multitask learning are similar in a sense that
they both transfer the pre-trained information to another model. For transfer learn-
ing, the transferring process occurs after training is finished (sequential transfer),
however, it occurs at the time of training for multitask learning (parallel transfer).

Our work is similar to transfer learning and multitask learning in that they both
hand over the knowledge to a new model so that the new model can make use of
the features acquired from the previous training. In contrast to our implementation,
transfer learning cannot utilize information from related tasks since it is not available
during training. With multitask learning, common hidden layers between related
tasks make it possible to share what is learned for each task. The major difference
between our work and multitask learning lies in specialization and generalization.
Multitask learning focuses on specializing one specific main task by using auxiliary
tasks on the same input whereas P-Hydra algorithm have three different inputs that
are incompatible. As each decision maker is specialized on a completely different
input, it is not possible to activate the three decision makers on the same input.

A state-of-the-art algorithm by Clement et al [6] is introduced for comparison.
The work focused on developing a model that detects prostate cancer. However,
our approach focuses on implementing a generalized feature extractor that can be
used as a baseline for machine learning applications in cancer detection. Since there
is a common problem in medical imaging fields: little availability of data, various
methods had to be applied such as new learning techniques, and data augmentation.
To train the feature extractor, three datasets (DSP, DSB, and DSL) were used. These
datasets were assumed to have common low features, which means they could be
used to train a generalized feature extractor. In addition to the generalized feature
extractor, cancer detection models for three different body parts were developed.

Through the work, the learning pipeline is generated that can be used for other
applications. One could produce a more generalized feature extractor with different
hyperparameter settings, more data, or a different model architecture. The other
option is using the feature extractor from our work as a baseline. Transfer learning
could be applied for this case. For a cancerous tumor detection task using other
datasets, the pre-trained feature extractor can be attached and then the only decision
maker is trained for a different task. Using this sequential transfer approach can
save time and effort for individuals who are implementing similar medical imaging
tasks.

Several experiments with different learning rate, dropout probability, and batch
size are conducted. Training with a very small learning rate (1e-8) resulted in a
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constant accuracy problem. This is because the learning rate was too small to update
weights properly (the update is too small). The same learning rate of 1e-5 was chosen
for all the models and the same dropout probability of 0.3 was applied to except
for DSB. For DSB, a smaller dropout probability of 0.2 was suitable to generalize
better. The experiment shows that features from different body parts could help
each other to generalize better. The generalized DSP, DSB, and DSL detection model
had AUC of 62%, 87%, and 60% respectively. In the specialization task, where the
model used a generalized model as a baseline, AUC achieved by each independent
model are 58%, 84%, and 60%. Specialization tasks struggle as they try to adapt to
the particular dataset. It was more difficult for the model to train on DSP and DSL.

7.1 Future Work

This work used MRI images and CT scans for three different body parts and pro-
duced a cancer detection model for each of them. As a result, a generalized feature
extractor is produced that can be used for other medical applications. It can be used
as a baseline and help a new model classify other medical datasets.

Although we picked another approach when it comes to distinguishing the main
task and extra tasks. One can set extra tasks as a subset of the main task then train
the model to perform a classification task (tumor, cancer detection) or even a seg-
mentation task (location, coordinates of a tumor). For example, when the main task
is to detect whether a patient has a cancerous tumor or not, then extra tasks can be
the size of a tumor, the location of a tumor, the intensity of a tumor, etc. Another
method is adding a less quantized task as an extra output.

The task of this work is dichotomous (It is a cancerous tumor or not). One can
make the task less quantized by changing it to predict probability rather than a dis-
crete label (i.e. True and False). Since it has smoother representation, this can help
neural networks learn more easily. [28]

One can improve the model by training it with different hyperparameter options.
This work trains the model for 200 epochs for both generalization and specialization.
Applying different hyperparameters for each task, or using learning decay, which is
a technique to change learning decay by certain factor, could improve the model.
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Appendix A

Appendix

A.1 Script Options

Having script options makes it possible to set the dataset and tune the hyperparme-
ters and other choices for training. Table 3.4 shows all the possible commands when
training the model. The hyperparameters that we can tune are batchsize, number of
epochs, learning rate, and dropout.

Command Description Required Type

trainingset A list of training datasets folder path True Comma-separated strings
validationset A list of validation datasets folder path True Comma-separated strings
testset A list of test datasets folder path True Comma-separated strings
batchsize Batch Size True int
nbepochs Number of epochs True int
lr A list of learning rate of each model True Comma-separated floats

lossfunction Loss function name of choice [L1Loss, MSELoss, CrossEntropyLoss]
False
default = CrossEntropyLoss

String

cudadevice Device to run the model
False
default = cuda

String

dropout Dropout probability
False
default = 0.2

Float

optimizedmetric
Metric of choice to measure the best performing model
[’auc’, ’accuracy’, ’precision’, ’recall’, ’f1score’, ’specificity’]

False
default = ’auc’

String

featuredirectory A path to a directory to load the initialized feature extractor True String
dmdirectory A list of folder path that contains each decision maker True Comma-separated strings
outputdirectory A list of roots of the output directory used by Tensorboard and to save the models True Comma-separated strings

TABLE A.1: Script options
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