UNIVERSITE DE FRIBOURG
UNIVERSITAT FREIBURG exascale Infolab

UNIVERSITY OF FRIBOURG

MASTER’S THESIS

Prostate Cancer Classification:
A Transfer Learning Approach
to Integrate Information
From Diverse Body Parts

Authors: Supervisor:
Julien Clément Prof. Dr. Philippe
Johan Jobin Cudré-Mauroux

Co-Supervisors:
Dr. Giuseppe Cuccu
Akansha Bhardwaj

March 13, 2020

eXascale Infolab
Department of Informatics

Boulevard de Pérolles 90 o 1700 Fribourg e Switzerland
phone +41 (26) 300 84 65 e diuf-secr@unifr.ch e www3.unifr.ch/inf

http://www.unifr.ch
mailto:julienclement22@gmail.com
mailto:joh.job13@gmail.com
https://exascale.info/phil
https://exascale.info/phil
https://exascale.info/members/giuseppe-cuccu/
https://exascale.info/members/akansha/
https://www3.unifr.ch/inf/en/exascale-infolab.html
https://www3.unifr.ch/inf/fr/

iii

Abstract

Julien Clément, Johan Jobin

Prostate Cancer Classification: A Transfer Learning Approach
to Integrate Information From Diverse Body Parts

Automating the detection of cancer contributes to an early detection and treatment,

which increases the chances of recovery. Recent algorithms in artificial intelligence
relying on deep learning have shown promising results in this field. Indeed, the use-
fulness of convolutional neural networks (CNN5s) for segmentation or classification
tasks is no longer to be proven. However, the performance of these models is often
limited by the amount of data which is available to train the algorithm.

This thesis first presents a state-of-the-art convolutional neural network for pro-
state lesion classification. All the steps from the data processing to the smallest de-
tail regarding the neural network training are explained, ensuring a complete re-
producibility of the experiment. This model is then evaluated on the official SPIE-
AAPM-NCI Prostate MR Classification Challenge dataset, achieving an AUC of 0.76.
This result constitutes a solid baseline and confirms the proper functioning of the
implementation.

On top of this implementation, a new transfer learning approach using lesions
of multiple body parts (brain and lung) is built. This method shows that integrating
information from diverse datasets improves automated prostate cancer diagnosis.
Indeed, it appears that cancerous lesions coming from various body parts share low-
level features that can be used to increase the generalization ability and performance
of the prostate lesion classifier. This technique provides a concrete solution to the
lack of available data for prostate classification and suggests that many other types
of cancers can be taken advantage of. Thanks to this technique, the AUC achieved
on our test set increases by 18% (from 0.68 to 0.80).

Keywords: Prostate cancer classification, Convolutional Neural Network (CNN),
Transfer learning, PROSTATEx, Machine Learning (ML), Deep Learning (DL),
Artificial Intelligence (AI)

mailto:julienclement22@gmail.com
mailto:joh.job13@gmail.com

Acknowledgements

Common acknowledgements

First of all, we would like to thank Dr. Giuseppe Cuccu for his valuable advice, the
exciting discussions we had and the precious time he took to supervise the project.
Even we were struggling to find the cause of disappointing results for weeks, he
always encouraged us and pushed us to give our best. We are extremely grateful to
him for his support. We would also like to greatly thank Akansha Bhardwaj for her
supervision throughout the project and the amazing work she did reviewing the the-
sis. Last but not least, we would like to express sincere thanks to Prof. Dr. Philippe
Cudré-Mauroux for supervising the project. Having the opportunity to work with
such a wonderful team and having access to amazingly powerful machines was awe-
some.

Julien Clément’s acknowledgements

I wish to thank my close friends and relatives who supported me throughout this
work and understood the time-consuming nature of it.

Also, I'm sincerely grateful for having had the opportunity to work with Johan Jobin.
His work ethic and determination to reach new goals despite the obstacles made the
completion of this work possible. His kind and wise words were really valuable
during tougher times.

Finally, a special thought goes to my father Joseph who encouraged me to strive for
the best throughout his whole life. Having him in mind gave meaning to this cancer-
related project and allowed me to keep pushing when needed.

Johan Jobin’s acknowledgements

On a personal note, I would like to acknowledge with gratitude the support of my
family, specially my parents (Jean-Bernard and Marie Jobin), my brother (Lucas
Jobin), my uncle (Xavier Marchand) and my girlfriend (Julie Timmermans). They
have allowed me to be in the best conditions to carry out this work and have ex-
pressed great interest in it, which gave me even more motivation. A special thanks
goes to my close friends that have always encouraged me. Finally, I would like to
thank Julien Clément for the great work we did together on this thesis but also for
all the years we have spent at the university. The realization of this work would not
have been possible without him.

Contents

Abstract
Acknowledgements
1 Introduction
1.1 Motivation e e
1.2 Contributions e
1.3 Workrepartition L o o
2 Literature review
2.1 Prostate —PROSTATEx
22 Lung-LungCT Challenge
23 Brain—-KaggleBrain 00 0L
3 Deep learning
3.1 Introductiontodeeplearning
3.1.1 Historical background
3.1.2 Whatisaneuralnetwork?
3.1.3 Supervised and unsupervised learning
3.2 Neuralnetworksbasics
321 Notation e
322 Perceptrons
3.2.3 Activationfunctions
3.24 Multilayer perceptrons L.
3.3 Traininganeuralnetwork
3.3.1 Forward propagation.
332 Losscomputation.
3.3.3 Backpropagation
334 Metrics e e
335 Data e
3.3.6 Weightinitialization
3.3.7 Hyperparametertuning
3.4 Convolutional Neural Networks
3.5 Transferlearning
4 Medical information

41 Cancer e e e e
411 BasiCS. v e e e e e
412 Seriousnesso e e e e

42 Typesof medicalimaging

43 DICOMffileformat e
431 Origin

432 Dataformat

vii

iii

viii

433 Processingimages
Order e

Data manipulation,

44 NIfTIfileformat e
441 Origin e

442 Dataformat

443 Overview of the headerstructure

45 RAWand MHDfileformats
4.6 Visualizationtools.
4.6.1 DICOM e

4.62 NIfTI e

4.63 RAW e

47 ConversiontoPNG oo
471 8-bitconversion e e e

Research paper experiment reproduction
51 Processoverview oo
Experiment reproduction
PROSTATEx challenge
5.2 Reproducing the paper experiment
52.1 PROSTATEx: Dataprocessing
Dataset descriptiono L.
Methodology
From DICOM to NumPy arrays
From NumPy arrays to augmented stacked images
From NumPy arrays to augmented non-stacked images
52.2 Data processing verification
Cropping verification usingreddots
Alignment L L L
523 Training the neuralnetwork
Architecture L L
Scriptoptions
Tensorboard
Model roulette L o
Experimentalsetup
524 Training verification
Gradient flow visualization
525 Results
526 Discussion oo
5.3 SPIE-AAPM-NCI Prostate MR Classification Challenge
5.3.1 Training the neural network with the whole dataset
5.3.2 Results on the challenge testset.
533 Discussion L

Improving performance using transfer learning

6.1 Goal e
6.2 Processoverview e e e e
6.3 Dataprocessing o
6.3.1 PROSTATEX ettt
6.32 LungCTChallenge

Dataset description Lo L

iX

From DICOM to augmented NumPy arrays 60
633 KaggleBrain. 61
Dataset descriptiono Lo L. 61
Ground truth creation 62
From JPG to NumPyarrays 62
634 Imagecropping 63
6.3.5 Verification oL 63
Visualchecking 63
6.4 Transfer learning implementation, 63
641 Layerfreezing 63
6.4.2 Conditions to choose the bestmodel 64
6.4.3 Scriptoptions L L o 64
Automated transfer learning L 64
Manual transfer learning L oL 64
6.4.4 Visualization of the impact of the various datasets on the target
task . . .o 65
6.45 Experimentalsetup, 66
65 Results 66
6.6 Discussion 74
6.61 Training 74
DS1 ... 74
DS2 . . 75
DS3 . . . 75
DS4 75
6.6.2 Visualization of the impact of the various datasets on the target
task . .. 76
6.6.3 Performanceonthetestset 76
6.64 Conclusion 0 L. 78
7 Conclusion 79
71 Conclusion L 79
72 FutureWork 80

Bibliography 81

xi

List of Figures

2.1

2.2

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1

4.2
4.3
44

51
52
53

54
5.5
5.6
5.7
5.8
5.9

5.10
5.11

6.1
6.2
6.3
6.4
6.5

AUC values achieved by the 71 methods that participated in the PROSTA-

TExChallenge [7] 7
AUC values for the 11 computerized methods and six radiologists in

the task of classifying malignant and benign nodules [9] 8
Deep learning milestones - Wang etal. [15] 10
The perceptronmodel o 0L 13
The sigmoid function and its derivative 13
The tanh function and its derivative 14
The ReLU function and its derivative (undefined whenx =0) 14
The ELU function and its derivative 15
Multilayer perceptronso L oL 16
Forward propagation 17
5-fold cross-validation 21
Convolutions - Basic convolutioninaCNN 23
Convolutions - Different padding methods 24
MRI sequences - PROSTATEX - From left to right: T2-weighted, ADC

and DWI 28
Visualization of a folder of DICOM files 32
Visualization of a four-dimensional NIfTIfile 32
Visualization of a three-dimensional RAW file 33
Overview of the whole experiment process 37
Patient splitting process L L L. 41
Red dot test - Patient 0082, Finding ID 1 From left to right: T2, DWI,

ADC. . 42
Alignment - Patient 0242 - FindingID1 43
Model architecture with the corresponding PyTorch code 44
Gradient flow at epoch 0 of the experiment, batch6 47
Metrics on the training and validationsets. 48
AUC of the best model onour testset 49
Score achieved on the PROSTATEXx challenge only using our custom

training set (80% of all available data) for the training 49
Metrics on the training using all data available as training set 53
Score achieved in the PROSTATEx challenge by the model picked at

epoch 20, trained on all available data as trainingset 54
Transfer learning - Overview 59
Transfer learning - Model split. 64
Transfer learning -DS1 Full 67
Transfer learning - DS2 Frozen 68

Transfer learning -DS2 Full 69

Xii

6.6
6.7
6.8
6.9
6.10

6.11
6.12
6.13

Transfer learning - DS3 Frozen 70
Transfer learning -DS3Full 71
Transfer learning - DS4 Frozen 72
Transfer learning -DS4 Full 73
Transfer learning - Performance comparison between the best model

obtained during DS1 Fulland DS4 Full 74
Transfer learning — Global Performance — Validation AUC 77
Transfer learning — Global Performance — Validation accuracy 77
Transfer learning — Global Performance — Validation fl-score 78

Chapter 1

Introduction

According to the World Health Organization, cancer caused 9.6 million deaths in Clément
2018, making it the second leading cause of death [1]. An early detection and treat-

ment increase the chances of recovery. In this context, Computer-Aided Diagno-

sis (CAD) systems can play a massive role by preventing health professionals from

missing positive diagnoses. Thanks to the attention that deep learning has gotten

over the last decade, newer and better diagnosis systems have transferred the ad-

vantages of deep learning to cancer detection, diagnosis and localization tasks.

Deep learning applications require a lot of data to perform well. While certain
fields profit from massive amounts of publicly available data, the medical field is
quite the opposite. First of all, medical information is protected by the doctor-patient
confidentiality and cannot be shared freely. As a consequence, data first has to be
collected, organized and anonymized. Then, additional information regarding the
clinical significance of the samples, the location of the lesions, etc. must be pro-
vided so that deep learning models can make use of the data. This whole process is
time-consuming and medical institutions do not always see the benefits which could
ensue from publishing good-quality datasets. As a consequence, the lack of data is
one of the toughest challenges related to this field. To deal with it, techniques like
transfer learning exist. The latter aims at using independent but similar datasets in
order to increase the performance of a model on a target dataset. In other words,
models are trained on the former in order to learn relevant features which improve
the results on the latter. In the case of cancer detection and classification, only few
datasets are available for each body part. Therefore, the idea behind this work is to
make use of datasets of different body parts to improve the classification of prostate
lesions.

This work is divided into various parts. First, the related literature was reviewed
in order to gather techniques and architectures which gave decent results.

Second, deep learning is presented from the ground up under the historical and
technical points of view. This section demystifies the topic by making an overview
of the mathematical concepts and definitions related to it, which makes the under-
standing of the technical part possible (without any background in the field).

The next chapter deals with medical knowledge related to cancer. Characteris-
tics of the disease are presented, before focusing on the most common medical file
formats. The last part is critical since a lot of data processing was performed in order
to be able to make use of these files.

Then, the experiment presented in a prostate cancer classification research paper
was reproduced. This chapter allows to set a baseline proving that our methods and
implementations work, from the image preprocessing to the training of the neural
network.

Finally, the last part is dedicated to a transfer learning method making use of
multiple body parts and its application to prostate cancer classification.

Jobin

Jobin

2 Chapter 1. Introduction

1.1 Motivation

Cancer is a serious concern in today’s society. An early detection is key to maximize
the chances of recovery. As explained by Nicholas Petrick, "it has long been rec-
ognized that clinicians do not always make optimal use of the data acquired by an
imaging device. The limitations of the human eye-brain system, limitations in train-
ing and experience, and factors such as fatigue, distraction, and satisfaction of search
may all contribute to suboptimal use of available information" [2]. Under these cir-
cumstances, CAD systems can contribute to address some of these issues by being
used as an aid for clinicians. A complete CAD system is composed of two parts.
The first one is called CADe which stands for "computer-aided detection". This part
includes medical image analysis tasks such as segmentation, identification, localiza-
tion and detection. The other part is CADx for "computer-aided diagnosis", which
aims at extracting the characteristics of lesions to classify them according to their
malignancy. CAD systems provide multiple advantages.

First of all, used as an extra diagnosis, they can decrease the probability of miss-
ing positive diagnoses. Then, they can also speed up the diagnosis process by
proposing regions of interest to clinicians, which, in time, could reduce the screening
costs. Similarly, lower screening costs imply a greater accessibility to screening tests,
which can result in an earlier cancer detection. As stated before, detecting cancers
at an early stage maximizes the probability of curing them. Another benefit of using
CAD systems (especially the ones based on deep learning) is the number of cases
that the latter are trained on. In fact, in order to build efficient deep learning models,
large amounts of data are required. Consequently, efficient CAD systems usually see
a lot more cancer cases than beginner clinicians.

However, these advantages remain partially theoretical nowadays. Research is
still ongoing, aiming at improving existent CAD systems. Problems like poor detec-
tion rates, small amounts of available data and poor levels of generalization are still
recurrent. Therefore, this situation can and must be improved.

1.2 Contributions

The major contributions of this work are:

o A state-of-the-art deep learning model for prostate cancer classification. To
make the experiment completely reproducible, all steps are clearly described,
the corresponding scripts are available on GitHub! and the raw results are
presented.

o A transfer learning pipeline that makes use of different body parts to increase
the classification performance on one chosen body part. This technique is a
concrete solution to overcome the lack of available data for each body part.
Furthermore, it increases the generalization ability of the neural network.

e Processing scripts for the SPIE-AAPM-NCI Prostate MR Classification Chal-
lenge dataset, the SPIE-AAPM Lung CT Challenge dataset and the Kaggle
Brain MRI Images for Brain Tumor Detection dataset. This includes the conver-
sion of DICOM and PNG files to NumPy arrays, their registration (alignment
and resizing to the same resolution for stacking purpose, ensuring the same
amount of tissue on each image), their augmentation and the organization of

Ihttps://github.com/eXascaleInfolab/2019_Hospital-Fribourg

https://github.com/eXascaleInfolab/2019_Hospital-Fribourg

1.3. Work repartition 3

the resulting images into multiple subsets (training, validation and test) that
can be used as input to machine learning algorithms. Also, the class imbalance
problem is taken into account. The processing scripts automatically augment
each class in order to balance the number of elements. In addition to this, an
alternative relying on undersampling was implemented as a PyTorch sampler.

e Visualization scripts for DICOM, NIfTI and RAW medical file formats. A sys-
tem to navigate through 4D data (width, height, depth and time) using the
directional arrows is available: left/right arrows to make the time axis vary
and scrolling up/down to navigate through the different slices (i.e the depth)
of a patient’s images. 3D data is also supported with the same functionalities
(apart from the navigation through the fourth dimension (time)).

e Scripts for the PROSTATEx challenge. This goes from the preprocessing of
the challenge test images to the generation of the CSV file containing the pre-
dictions of a given model, which are probabilities € [0,1] of the lesion being
malignant ("benign lesion" if < 0.5, "malignant tumor" otherwise).

Other minor contributions:

e Verification scripts to check the gradient flow of a neural network, the cropping
of images, the presence of NaN values in images, etc. All these scripts can
easily be used in other projects.

1.3 Work repartition

This thesis was jointly written by two authors. The name(s) of the contributor(s)
in the margins of the following chapters only concern the written thesis. Both of
them contributed equally to the work leading to the writing of the latter. The work
was either done together or in parallel, depending on the tasks. In any case, parts
written by one of the authors were reread by the other. Finally, the order in which the
names are cited does not represent the quantity of work performed and was chosen
arbitrarily.

Chapter 2

Literature review

As this work focuses on lesion classification, this chapter presents the main research Jobin
papers about CAD systems based on convolutional neural networks for each body
part used in Chapters 5 and 6 (i.e. prostate, lung and brain). Furthermore, it exclu-
sively focuses on studies that used the same datasets as the ones used in this thesis.

2.1 Prostate - PROSTATEXx

As stated by Gao et al., "prostate cancer is the most common malignancies among Clément
men and remains a second leading cause to deaths in men globally. It was predicted

that there would be 1.7 million new cancer cases by 2030. The early detection and

diagnosis of prostate cancer can help to survive nine out of 10 men for the last five

years" [3]. Therefore, researchers proposed many different models to achieve good
performance in prostate cancer detection. All the below-mentioned research papers

are based on the SPIE-AAPM-NCI PROSTATEx Challenge dataset. This dataset is
composed of multiparametric MRIs (T2W, DWI, ADC, DCE, PD, Ktrans) of prostate

lesions (see Section 5.2.1).

Song et al. [4] presented a DCNN method to detect prostate cancer on multipara-
metric MRIs. Their data processing approach kept T2W, DWI and ADC grayscale
images only. After resampling each image to the same resolution, T2W, DWI and
ADC images were first cropped (65x65px patch) with the lesion in the center and
stacked per patient, resulting in images containing three grayscale channels. Thanks
to this method, the same lesion is visible in the same area over the three channels.
This increases the probability of detecting a cancer by ensuring a good visibilty for
each lesion, since the latter is not necesarily as visible with each parameter. Images
were then normalized based on the Z-score per patient and per sequence (T2W, DWI,
ADC), i.e. by subtracting the mean before dividing by the standard deviation. The
data was split into a training set (80%), validation set (10%) and test set (10%). The
training (undefined number of times), validation (undefined number of times) and
test images (11x) were augmented using -20° to 20° rotations, horizontal and verti-
cal flipping, horizontal and vertical shifting of less than 2 pixels and stretching by
a factor between 0.9 and 1.1. Their model is a modified version of the well-known
VGG-

16 model, including the addition of 1x1 convolutions and dropout layers after
each max pooling layer. They also use the ELU activation function instead of ReLU
(see figure 5.5). The evaluation method for each patient and finding made an aver-
age of the 11 predictions resulting from the augmentation of the test set. The best re-
sults were obtained by using DWI images with the highest b-value (stacked with T2
and ADC images), reaching an AUC of 0.944 with a 95% confidence interval (0.876-
0.994). However, this model was not tested on the official PROSTATEx challenge,

Jobin & Clément

6 Chapter 2. Literature review

which would have been an interesting benchmark to evaluate how well the model
generalizes.

Liu et al. [5] created another architecture called XMasNet. They took part in the
actual PROSTATEXx challenge, achieving the second best performance at the time
with an AUC of 0.84. The AUC on their validation set reached 0.92. Contrary to
Song et al., their data processing approach stacked different combinations of the
various sequences as the three channels instead of defining a single combination:
DWI-ADC-Ktrans, DWI-ADC-T2W, ADC-Ktrans-T2W and DWI-Ktrans-T2W. The
data augmentation process differs in that it uses a three-dimensional process. First,
each lesion was sliced seven times using seven different orientations. These seven
2-dimensional slices were then augmented using rotation, shearing and translation
of 1px, resulting in 207144 training samples. Both validation and test sets were also
augmented in the same manner. This whole process allows to include 3-dimensional
information in 2-dimensional images. The training method relied on ensemble learn-
ing which combined different models to reach the best performance possible.

Mehrtash et al. [6] used a different approach. First of all, the input was fed to
three separated parts of the model, each one responsible for a specific sequence
among ADC, maximum b-value DWI and Ktrans. Then, each of these feature ex-
tractors’ outputs were merged into a common decision maker. Furthermore, 3-
dimensional convolutions instead of 2-dimensional ones were performed. In fact,
3-dimensional patches centered on the lesion were cropped. Augmentation includ-
ing translation and flipping was used in order to balance the dataset. Apart from
these differences, other minor differences such as normalizing the images within the
range [0, 1] exist compared to the previous papers. These tricks allowed their model
to achieve an AUC of 0.80 on the PROSTATEx challenge. To make predictions, five
different models were used, averaging the predictions of the four best models.

Armato et al. [7] summarized the results obtained by all the teams that took
part in the PROSTATEx challenge in 2017. This challenge was split into two sep-
arate tasks. The first one was devoted to prostate lesion diagnosis (classification),
whereas the other was about segmenting lesions and determining their Gleason
Grade Group. Thirty-two groups submitted their results to the first challenge, re-
sulting in a total of 71 different methods (each group was allowed to submit up to
three methods for evaluation). The article indicates that "most, but not all, methods
outperformed random guessing (AUC=0.5)" [3]. The best performing method ob-
tained an AUC value of 0.87 (standard error 0.027) and the next three methods all
achieved an AUC of 0.84 (with standard errors of 0.036, 0.032, and 0.032). Figure 2.1
shows the different results. Finally, the median AUC on the challenge is 0.68.

2.2 Lung - Lung CT Challenge

Gao et al. claimed that "lung cancer is one of the most frequent and leading causes of
death all over the world. It was reported that there were approximately 1.8x10° new
cases of lung cancer globally in 2012. Early detection of lung cancer, which is typi-
cally viewed in the form of lung nodules, is an efficient way to improve the survival
rate" [3]. The papers cited below make use of the SPIE-AAPM Lung CT Challenge
dataset, which is composed of CT scans, and are devoted to the classification of lung
nodules (see Section 6.3.2 for further details).

Cengil et al. [8] built a fairly simple convolutional neural network to classify the
images of the Lung CT Challenge dataset. The model takes 4-dimensional data as
input (depth, height, width and channels) and performs 3D convolutions on it. The

2.3. Brain — Kaggle Brain 7

o
O
T

1

o
©

AUC (95% confidence interval)
o
~

)
000,
0.6 - OOOOO N
20000000006
%)
) 1 0o A] 000
| | 1 | | o
00 10 20 30 40 50 60 70

Submissions ordered by AUC

FIGURE 2.1: AUC values achieved by the 71 methods that partici-
pated in the PROSTATEXx Challenge [7]

model consists of an input layer, five layers of 3D convolutions (the first is associ-
ated with a ReLU activation function and pooling, the last with nothing, and the
others with pooling) and a fully connected layer at the end. Regarding the model
evaluation, authors announce an accuracy of 0.7 on their test set which contains 30
findings.

Armato et al. [9] described the LUNGx Challenge and the overall results. This
challenge consisted in classifying the lung nodules as benign or malignant among a
training set of 10 scans and a test set of 60 scans. Since the training set was extremely
small, training the model on other datasets was allowed. The article describes the
results of the proposed methods and compares them with the performance of six
qualified radiologists on the same task. The article reports that "ten groups applied
their own methods to 73 lung nodules (37 benign and 36 malignant) that were se-
lected to achieve approximate size matching between the two cohorts. Area under
the receiver operating characteristic curve (AUC) values for these methods ranged
from 0.50 to 0.68. Only three methods performed statistically better than random
guessing. The radiologists” AUC values ranged from 0.70 to 0.85. Three radiolo-
gists performed statistically better than the best-performing computer method." [9].
Figure 2.2 reports all methods used to classify the lung lesions with their associated
performance. It also provides the performance achieved by the radiologists.

2.3 Brain - Kaggle Brain

Brain cancer is another major type of cancer. According to the American Society
of Clinical Oncology, "brain and other nervous system cancer is the 10th leading
cause of death for men and women. It is estimated that 17760 adults (9910 men and
7850 women) will die from primary cancerous brain and central nervous system tu-
mors this year" [10]. The following research papers are based on the Kaggle "Brain
MRI Images for Brain Tumor Detection" dataset. This dataset, unlike the ones for
the other body parts, does not come from a certified medical authority but from the
Kaggle website [11]. However, as it is the only dataset available for brain tumor clas-
sification, some publications used it. Further details can be found in Section 6.3.3.
Saxena et al. [12] implemented three convolutional neural networks to classify
the brain tumors coming from the Kaggle "Brain MRI Images for Brain Tumor Detec-
tion" dataset. Their processing method used a cropping technique which removed

Jobin

8 Chapter 2. Literature review
Method AUC value SE Nodule segmentation Classifier Cases to train
1 0.50 0.068 Voxel-intensity-based SVM LUNGXx calibration
segmentation
2 0.50 0.056 Region growing WEKA NLST
3 0.54 0.067 None required Rules based on LUNGx calibration
histogram-equalized
pixel frequencies
4 0.54 0.066 Bidirectional region growing Uses tumor perfusion LUNGXx calibration
surrogate
5 0.55 0.067 Region growing WEKA NLST
6 0.56 0.054 Graph-cut-based surface detection Random forest LIDC
7 0.59 0.066 Manual initialization, gray-level SVM LUNGKx calibration
thresholding, morphological operations
8 0.59 0.053 None required Convolutional neural network LIDC
9 0.61 0.054 GrowCut region growing with SVM NLST
automated initial label points
10 0.66 0.063 Radiologist-provided nodule Discriminant function LUNGKx calibration
semantic ratings
1 0.68 0.062 Semiautomated thresholding Support vector regressor In-house dataset
Observer
1 0.70 0.060
2 0.75 0.057
3 0.78 0.046
4 0.82 0.049
5 0.83 0.047
6 0.85 0.044

FIGURE 2.2: AUC values for the 11 computerized methods and six ra-
diologists in the task of classifying malignant and benign nodules [9]

extra black margin around the skull. Each border of the image was merged with
a part of the skull. Since the images come from different sources, their resolution
varies quite a lot. Therefore, the authors resized them to 224x224x3. Moreover, data
was augmented using rotation, vertical shifting and horizontal shifting. As the crop-
ping was performed before augmenting the images, small parts of the brain were
outside of the augmented images due to rotation and shifting. The data was split
into a training set, a validation set and a test set. Regarding the models, authors
implemented three of them (a Resnet-50, a VGG-16 and an Inception-V3) in order
to compare their performance. The best results on the test set were achieved by the
Resnet-50 (AUC of 0.95 and accuracy of 0.95). The VGG-16 was close (AUC of 0.90
and accuracy of 0.90), whereas the Inception-V3 did not perform well (AUC of 0.55
and accuracy of 0.55).

Habib Mohamed Ali [13] proposed his own convolutional neural network to
classify the images of the Kaggle Brain dataset. First, the data was augmented.
Then, it was cropped so that the resulting images only contained the brain itself.
Afterwards, they were resized and normalized in order to scale pixel values to the
range [0,1]. Once the processing part was over, the data was split into a training
set (70%), a validation set (15%) and a test set (15%). Regarding the neural network
structure, the model is simple. It is composed of only one convolutional layer with
a batch normalization layer and ReLU activation function, followed by two max-
pooling layers and a dense layer. This model achieved an accuracy of 89% on the
test set.

Chapter 3

Deep learning

This chapter provides the theoretical foundation in deep learning which is required
to understand the rest of the work. It starts with a historical timeline of deep learn-
ing before describing what a neural network is. Then, the notion of training a neural
network, with all that is involved (like forward propagation, backpropagation, hy-
perparameters, data splitting or performance evaluation), is explained. This part is
followed by another section devoted to a special type of neural networks, the "con-
volutional neural networks". They are used in many computer vision applications
due to their great performance on these tasks. Finally, the concept of "transfer learn-
ing" is discussed as Chapter 6 entirely relies on it.

3.1 Introduction to deep learning

Deep learning is currently one of the trendiest topics in machine learning, a sub-
set of artificial intelligence. Machine learning refers to statistical models that allow
computers to perform specific tasks without having been explicitly programmed to
solve them. In fact, these models try to find structural patterns within data in order
to understand new incoming situations and react in the best possible way. There
exist various techniques in machine learning such as k-NN, SVM, k-means, decision
trees, association rules, etc. What mainly differentiates deep learning from these al-
gorithms is the concept of neural networks (see Section 3.1.2) that are combined to
form deep neural networks.

Neural networks are inspired from the biological neural networks of the brain.
These systems try to learn how to solve a problem based on the data they receive
as input. Many concrete applications make use of neural networks: autonomous
vehicles, translators, computer-aided diagnosis systems, personal assistants, art cre-
ation, robotics, etc. The presence of deep learning techniques in these use cases
clearly confirms the enthusiasm of many for this technology. Furthermore, as this
field has recently gained interest (see Section 3.1.1), a lot of research is still ongoing,
which suggests that many exciting new applications will certainly be discovered in
the near future.

3.1.1 Historical background

As described on Figure 3.1, the theoretical foundations of deep learning appeared
long before the invention of computers. From the first attempts to understand the
human brain until today, huge progress was made to establish the basic components
of modern neural networks. One could ask why deep learning took off recently if
the theory was around for a long time.

As stated by Goodfellow et al. [14], the first part of the answer is "computing
power". In fact, deep learning algorithms need a lot of data to work properly, which

Jobin

Jobin

Jobin

10 Chapter 3. Deep learning

requires powerful CPUs/GPUs that either did not exist or were only within few peo-
ple’s reach. One other main reason concerns the lack of data. Since deep learning
algorithms "learn" from data, learning is impossible if large amounts of good-quality
data are not available. The era of Big Data enhanced deep learning possibilities. Fi-
nally, before the year 2012, the abilities of neural networks were still to be proven.
This changed with the ImageNet Large Scale Visual Recognition Challenge (a com-
petition where researchers evaluated their algorithms on several visual recognition
tasks). In fact, the deep convolutional neural network called "AlexNet" achieved
16% of classification error rate, whereas the previous best scores were around 25%.
This victory marked the beginning of a new craze for these types of algorithms.

Year Contributer Contribution
. introduced Associationism, started the history of human’s
300 BC Aristotle attempt to understand brain.
. introduced Neural Groupings as the earliest models of
1873 Alexander Bain neural network, inspired Hebbian Learning Rule.
. introduced MCP Model, which is considered as the
1943 McCulloch & Pitts ancestor of Artificial Neural Model.
considered as the father of neural networks, introduced
1949 Donald Hebb Hebbian Learning Rule, which lays the foundation of
modern neural network.
1958 Frank Rosenblatt introduced the first perceptron, which highly resembles
modern perceptron.
1974 Paul Werbos introduced Backpropagation
1980 Teuvo Kohonen introduced Self Organizing Map
Kunihiko Fukushima introduced Neocogitron, which inspired Convolutional
Neural Network
1982 John Hopfield introduced Hopfield Network
1985 Hilton & Sejnowski introduced Boltzmann Machine
Paul Smolensky introduced Harmonium, which is later known as Restricted
1986 Boltzmann Machine
Michael I. Jordan defined and introduced Recurrent Neural Network
introduced LeNet, showed the possibility of deep neural
1990 Yann LeCun networks in practice
1997 Schuster & Paliwal introduced Bidirectional Recurrent Neural Network
Hochreiter & introduced LSTM, solved the problem of vanishing
Schmidhuber gradient in recurrent neural networks
introduced Deep Belief Networks, also introduced
2006 Geoffrey Hinton layer-wise pretraining technique, opened current deep
learning era.
2009 Salakﬁ?;;iolrrllov & introduced Deep Boltzmann Machines
2012 Geoffrey Hinton introduced Dropout, an efficient way of training neural

networks

FIGURE 3.1: Deep learning milestones - Wang et al. [15]

3.1.2 What is a neural network?

From a descriptive point of view, neural networks can simply be seen as non-linear
applications that associate an input to an output with respect to certain parameters.
The input can be an image, a sound or any input that can be converted into numeri-
cal features. The output of a neural network depends on the problem it tries to solve.
In computer vision, the most common types of outputs are classes (for classification
problems) and pixel coordinates (for segmentation problems).

3.2. Neural networks basics 11

From a mathematical standpoint, a neural network can be defined as a non-linear
function f that associates an input x to an output y with respect to parameters 6.

y=f(x,0) 3.1)

The parameters 6 are estimated from the training samples.

3.1.3 Supervised and unsupervised learning

Machine learning algorithms can belong to two classes. The first one is "supervised
learning". It includes learning algorithms whose training samples are associated
with their labels in order to find the optimal mapping between the input and the
output. The second one is "unsupervised learning". In contrast to supervised algo-
rithms, the latter rely on unlabeled data. Its main goal is to infer the natural structure
present in the data. As the models presented in this work belong to the "supervised
learning" category, notions explained below refer to this kind of algorithms.

3.2 Neural networks basics

3.2.1 Notation

In order to keep the mathematical description of neural networks consistent, this
work will use Andrew Y. Ng’s notation [16], who is a pioneer in deep learning.

General comments

e Superscript (i) denotes the i training example.

e Superscript [I] denotes the I'" layer of the neural network.
Sizes

e m: number of examples in the dataset

e 7, input size

ny: output size (or number of classes)

nl[ll). Aumber of hidden units (i.e. neurons) of the /! layer

e L: number of layers in the network
Neural networks components
e X € R is the input matrix of a neural network.
e x() € R™ is the i" example (sample) represented as a column vector.
o Y € R"™*™ is the label matrix.
(i)eR™

oy is the output label for the it" example.

W[l] cR* of neurons in the next layer = j x # of neurons in the previous layer =k g the Weight

matrix at layer [/].

blll ¢ R#ofunitsinnextlayer jg the bias vector at the ' layer.

Jobin

Jobin

12 Chapter 3. Deep learning

e) € R" is the predicted output vector. It can also be denoted as al’) where L is
the number of layers in the whole network.

e gl(x) is the I" activation function.

o zlIl = W,x() 4 bl denotes the weighted sum of the input given to the I*" layer
before passing through the activation function.

Forward propagation equations

e a = gI(Wx 4+ plly = ¢lI(zl1) where gl!l denotes the I layer activation
function.

o a][.l] = (%, w][i] a,[cl -1y b][l]) = ol (z][.”) is the general activation formula at [*

layer.

e J(x,W,b,y) and J(§,y) denote the cost function.

3.2.2 Perceptrons

Jobin Perceptrons are the main components of neural networks. They were "developed
in the 1950s and 1960s by the scientist Frank Rosenblatt, inspired by earlier work of
Warren McCulloch and Walter Pitts" [17]. Today, they are called "artificial neurons"
or simply "neurons".

The output a of a perceptron j is a function f of input x = (xy, ..., x,,) weighted
by a vector of weights w = (wy, ..., wy,), completed by a bias b; and associated to a
non-linear activation function g:

aj = fi(x) = g((kiﬂl Xj * W) + by) (3.2)

Schematically speaking, a perceptron can be represented as on Figure 3.2. Each in-
put is multiplied with its corresponding weight. The sum of these multiplications
then goes through a non-linear function, called "activation function". This activation
function acts like a threshold that determines the proportion of the result that goes
further in the network. There exist multiple activation functions (see Section 3.2.3).
It is extremely important to use non-linear functions instead of linear functions. In
fact, the output of a perceptron is given as input to the others (see Section 3.2.4).
Consequently, if linear functions only are used throughout the network, linear out-
puts are given as inputs to other linear functions. As the composition of two linear
functions is itself a linear function, assembling perceptrons to create neural networks
of multiple layers does not make sense in this case.

3.2.3 Activation functions

Jobin Once the computation of the weighted sum of all inputs for a specific neuron is
done, the latter has to pass the sum through an activation function. The latter must
be non-linear in order to approximate extremely complex functions. In fact, neural
networks are considered as universal approximators. Hornik et al. claim that "multi-
layer feedforward networks are capable of approximating any measurable function
to any desired degree of accuracy, in a very specific and satisfying sense" [18]. Ac-
cording to Thomas Epelbaum [19], the most commonly used activation functions are:

3.2. Neural networks basics 13

Activation
function

inputs weights

FIGURE 3.2: The perceptron model

Sigmoid function
The sigmoid function is defined as:

8(x) =7 p= (3.3)
Its derivative is:
§'(x) = g(x)(1-g(x)) (3.4)
1|l— s | L]
05 —g(x)(1—g(x)) |/
o 0.6 =
5
> 04 |
0.2 —
0 - |

—10 -5 0 5 10
X-axis

FIGURE 3.3: The sigmoid function and its derivative

Tanh function

1—e 2

g(x) = tanh(x) = Tre™

(3.5

Its derivative is:
g'(x) = tanh'(x) = 1 — tanh®(x) (3.6)

14 Chapter 3. Deep learning

1|— tanh(x)]
— 1 — tanh?(x)
05} 2
B2
o |
EN
—05 2
1} i
| | | |

l
-10) 0 5 10
X-axis

FIGURE 3.4: The tanh function and its derivative

ReLU function
ifx >0
g(x) = ReLU(x) = o . (3.7)
0 otherwise
10 |— ReLU(x) |
— ReLU'(x)
8 — |
2 6]
2
®
B> 4l o
2 - |
o / |
l l l l l
—-20 —-10 0 10 20

X-axis

FIGURE 3.5: The ReLU function and its derivative (undefined when
x=0)

ELU function

e* —1 otherwise

3(x) = {x N 69)

Its derivative is:

e* otherwise

g'(x) = {1 =0 (3.9)

3.2. Neural networks basics 15

20 |— ELU(x) i
— ELU'(x)
15| |
-8
2 10| |
>
5 - .
O - / -
| | |

l l
-20 -10 0 10 20
X-axis

FIGURE 3.6: The ELU function and its derivative

3.2.4 Multilayer perceptrons

A multilayer perceptron is a type of artifical neural networks. Du et al. [20] define Jobin
multilayer perceptrons as "feedforward networks with one or more layers of units
between the input and output layers" where "the output units represent a hyper-

plane in the space of the input patterns". A multilayer perceptron is composed of

L layers, each of them composed of 1}, perceptrons. The layers are organized in the
following way:

e The input layer: It is the neural network entry point for the data. Generally
speaking, the data are provided in the form of a matrix X € R of size (1, x
batch_size) with their corresponding labels Y € R of size (n, x batch_size).
The batch size defines the number of samples that will be fed to the network at
the same time and 7, is the dimension of each sample. Moreover, x() is the ith
sample represented as a column vector. The total number of training samples
is given by m. Finally, y(/) is the output label for the i* example. For instance,
suppose the number of samples is 100 and the batch size 32. In this situation,
the network will be fed with 4 batches of sizes [32, 32, 32, 4] respectively.

e The hidden layer(s): Hidden layers stand for all layers that are between the
input layer and the output layer. Each of them has its own weights and biases
(W, b), denoted by Wl € R and b} respectively, where W}; corresponds to
the weights associated with the connection between perceptron j in layer / and

perceptron i in layer I + 1. By analogy, bz[l] is the bias associated with percep-
tron i in layer [. Weights and biases are the parameters to optimize in order to
obtain the best mapping between the input and the output of the network (see
Section 3.3). Before training the neural network, the weights can be randomly
initialized or initialized with more sophisticated methods such as "Xavier ini-
tialization" or "Kaiming initialization" (see Section 3.3.6).

e The output layer: It is the last layer of the neural network. Its role is essential
since it produces the prediction of the network for a given input. The predic-
tion of a neural network is given by § € R" with n, representing the number
of different labels. In a classification task, whose goal is to assign a specific

Jobin

Jobin

16 Chapter 3. Deep learning

class to each input, 7 is usually the probability that the input belongs to each
class. In this case, the softmax activation function would be used at the end.

The advantage of organizing the weights, biases and inputs in matrices is due to the
ability of modern CPUs/GPUs to quickly perform linear algebra computations. This
way of structuring the network components is called "vectorization" which avoids
using loops in the code, which would considerably slow down the computations.
Figure 3.7 illustrates the concept of multilayer perceptrons. In this example, the total
number of layers L is equal to 3, the input size n, is equal to 4 and the number of
units of each layer is nj = 4, n2 = 2, 3 = 1. The network contains the weights
W1 e R23 W2 ¢ R12 and the biases b1 € R?, b2 € RL.

Input Hidden Ouput
layer layer layer
I
H;y
I
O,
I

NI

Iy

FIGURE 3.7: Multilayer perceptrons

3.3 Training a neural network

Training a neural network can be broken down into multiple steps. The first one
is the "forward propagation” step. It consists in giving examples that need to be
classified (or segmented, depending on the task) to the untrained neural network
and to spread intermediate results through all layers of the network. After seeing
every single batch, the loss is computed using a "loss function". The latter is used to
evaluate the predictions of the neural network in comparison to their ground truth.
Then, the weights and biases of the network are updated during a process called
"backpropagation” in order to find the global minimum of the loss function. As soon
as the neural network has seen every single batch, the end of an "epoch" is reached.
This process is repeated for a defined number of epochs.

3.3.1 Forward propagation

The forward propagation is used to transmit the input through the entire neural net-
work. Mathematically speaking, the forward propagation step for a specific layer !
is represented by two equations. The first equation denotes the weighted sum of the
input given to the I layer before passing through the activation function g:

2 = Wil | i (3.10)

3.3. Training a neural network 17

The second equation describes the effect of the activation function:
all = g[l} (Z[l}) (3.11)

Since the output of the activation function is then given as input to all the neurons
of the next layer, the whole forward propagation step can be defined as:

o = el 1) D 12

Figure 3.8 illustrates the computation of the forward propagation pass for the !

layer. The weight matrix W]lk represents the weights associated with the connection

between perceptron k in layer / and perceptron j in layer [+ 1. This matrix is multi-
[1-1]

plied by the output of the previous layer a; before adding the bias b, The result

is given as input to the activation function.

Input layer [I-1] Output layer [1]

Activation function
p N

1 [Wi W Ws Wy | al1l, @ E B
m Wi Wo W3 Wy X a["1]2 + bl - A Activation ol
[a1,

@

FIGURE 3.8: Forward propagation

3.3.2 Loss computation

As stated by Thomas Epelbaum, "the loss function evaluates the error performed Jobin
by the neural network when it tries to estimate the data to be predicted" [19]. It is
therefore useful to measure the penalty for a single input. On the contrary, when

the goal is to get a more general overview of the error on the entire batch or on the

entire dataset, the cost function | is used. The latter is represented by J(7, y) where 7

is the prediction of the neural network and y the real label. There exist multiple cost
functions.

For a regression problem, a commonly used loss function is the mean squared error:

J@y) = L0 -y (3.19)

iz
For classification problems, the cross entropy function is regularly used. The binary
classification where the number of classes 1, = 2 is distinguished from the multiclass
classification where 1, > 2. In the case of binary classification, the cross entropy is:

m

F9,y) =~ Yy log(30) + (1 —) log(1 — §,)] (3.14)

i=1

Jobin

18 Chapter 3. Deep learning

In the case of multiclass classification, the categorical crossentropy is given by:

J({@y) = — ' Y (yij * 1og(9if)) (3.15)

As the cost function gives an estimation of the overall error of the network, the main
objective of training a neural network is to update its weights in order to approach
the minimum of the function. Therefore, deep learning problems can be considered
as optimization problems. Solutions to these problems can be found using the gra-
dient descent algorithm during backpropagation.

3.3.3 Backpropagation

Backpropagation relies on a technique called "gradient descent" to minimize the cost
function J(W, b). Generally speaking, "the intuition behind the backpropagation al-
gorithm is as follows. Given a training example (x(i), y(i)), we will first run a forward
pass to compute all the activations throughout the network, including the output
value of the network. Then, for each node i in layer /, we would like to compute an
"error term" af” that measures how much that node was "responsible" for any errors
in our output. For an output node, we can directly measure the difference between
the network’s activation and the true target value, and use that to define 85”’) (where
layer n; is the output layer). How about hidden units? For those, we will compute

55” based on a weighted average of the error terms of the nodes that uses al@ as an
input" [21].

In other words, after each forward pass through the entire network, backprop-
agation performs a backward pass which aims at minimizing the cost function by
adjusting the parameters of the model. The way parameters are updated is defined
by the gradients of the cost function with respect to each parameter of the network.

The gradient of the cost function J(x1, X, ..., X,) at point x is given by:

o _ (oL 9 9,

9x ‘oxy’ oxa” T Oxm (3.16)

The gradient shows how much the parameters that constitute x need to change to
minimize the function. In neural networks, the parameters of the cost function are
all weight matrices W' and biases b"l. The computation of all these gradients relies
on the "chain rule". In the case of weights, the chain rule is:

oz
aafl _ ;’l ol (3.17)
(" z; Wy
Similarly, the chain rules has to be applied to the biases:
9 a7 ozl
] _ 9 % (3.18)

EYV I Ralen]
bl az} ob]

Once the gradients of each parameter are computed, the corresponding parameters
are updated. The weight update is described by the following equation:
9]

3.3. Training a neural network 19

The bias update corresponds to:

H”:bm—a*gx] (3.20)

The "learning rate" a determines the influence that the gradient has at each epoch. It
is an hyperparameter and has to be manually tuned.

3.3.4 Metrics

In classification tasks, four separate output labels can occur:

True Positive (TP): an output belongs to this class if the prediction that the
latter contains a certain feature is correct.

True Negative (TN): an output belongs to this class if the prediction that the
latter does not contain a certain feature is correct.

False Positive (FP): an output belongs to this class if the prediction that the
latter contains a certain feature is incorrect.

False Negative (FN): an output belongs to this class if the prediction that the
latter does not contain a certain feature is incorrect.

From these four categories, multiple metrics with their own specificities can be com-
puted [22]:

Accuracy: "Ratio of the correctly labeled subjects to the whole pool of subjects".

(TP + TN)
TP+ FP +FN +TN

Accuracy = (3.21)
Accuracy is a great measure in the case of symmetric data (i.e. the number of
FN = FP and their cost is similar). When this condition is not fulfilled, accu-
racy can lead to bad models. For instance, suppose that a binary classification
model always outputs class 0. If the data is composed of 99 samples from class
0 and 1 sample from class 1, the accuracy is equal to 99%, but the model is not
smart. Consequently, this metric has to be used in addition to other metrics.

Precision: "Ratio of the correctly labeled positive subjects to all positively la-

beled subjects"
TP
Precision = (TP + FD) (3.22)
This metric is recommended when the confidence of the true positives pre-
dicted by the model is important. For instance, this happens in the case of
spam blockers where it is preferable to have a spam in the mailbox rather than

a regular mail in the spam folder.

Recall (sensitivity): "Ratio of the correctly labeled positive subjects to all sub-
jects whose class is actually positive".

TP
Recall = ——— 3.23
COt = TP ¥ EN) (3.23)
This metric is recommended when the occurence of false negatives is intol-

erable and false positives are preferred. This makes perfect sense for disease

Jobin

20 Chapter 3. Deep learning

detection models: labeling an healthy person as unhealthy is better than label-
ing an unhealthy person as healthy.

e Fl-score: Harmonic mean (average) of the precision and recall.

2 x recall x precision
(recall + precision)

F1-score = (3.24)

Fl-score considers both precision and recall and is the highest if these two
metrics are balanced. This metric is perfectly suitable when the cost of false
positives and false negatives is not the same.

e Specificity: "Ratio of the correctly labeled negative subjects to all subjects whose
class is actually negative."

TN

(TN + FP) (3.25)

Specificity =
This metric is recommended when the occurence of false positives is intolera-
ble whereas true negatives are desired. For instance drug tests can not indicate
false positives but they have to cover all true negatives.

e ROC curve and AUC: As explained by Sarang Narkhede [23], "the ROC curve
is plotted with the true positive rate (=recall) against the false positive rate (1-
specificity) where recall is on y-axis and the false positive rate is on the x-axis.
AUC-ROC curve is a performance measurement for classification problem at
various thresholds settings. ROC is a probability curve and AUC represents
degree or measure of separability. It tells how much model is capable of dis-
tinguishing between classes. Higher the AUC, better the model is at predicting
Os as Os and 1s as 1s".

3.3.5 Data

Jobin In deep learning, data is essential. As seen previously, neural networks learn fea-
tures from it. Therefore, data has to be handled carefully and in the right way. Usu-
ally, it is split into three different sets:

e The training set: This is the part of the dataset that is used to train the neural
network (the weights and biases).

o The validation set: This dataset is used to evaluate a trained model. Usually,
the evaluation on the validation set is performed every N epochs, where N is
a fixed number. The validation set needs to come from the same distribution
as the training set but should exclusively contain unseen data. This last point
is crucial since the validation set shows how well the neural network general-
izes on unknown data. The validation set can also be used as an indicator to
decide when the training should be stopped in order to prevent "overfitting"
which is the behaviour of a model that fits to the training set too closely and do
not generalize well. In fact, if the validation loss continuously increases for a
certain number of epochs, going on with the training will increase the overfit.
The fact of interrupting the training earlier is called "early stopping".

o The test set: This last part of the dataset is used to establish the final evaluation
of the model. It also contains unseen data exclusively.

3.3. Training a neural network 21

The way these three sets are split mostly depends on the number of samples avail-
able. If the latter is big, the data is split into training and test sets using the ratio
80/20. Then, the remaining training samples are also split into training and valida-
tion using the ratio 80/20. On the contrary, if there are few data available, k-fold
cross-validation is a good practice. This technique consists in splitting the entire
dataset into k folds. One fold is picked as test set and the others are considered
as training sets. The model is trained on training folds and tested on the test fold.
Then, another test set is picked and the same process is repeated until all possible
test sets are picked. At the end of the process, the results of all test sets are averaged,
which provides a good estimation of the model’s performance. This technique is
summarized on Figure 3.9.

Do the same for each
possible configuration

Pick one fold as test set, the others
are training sets

Average results of all test sets

FIGURE 3.9: 5-fold cross-validation

3.3.6 Weight initialization

Before training a neural network, the weights have to be initialized in order to Jobin
proceed to the first forward propagation. The initialization of the neural network
weights is crucial since it will determine how quickly the network converges to an
optimum. According to James Dellinger, the idea behind weight initialization is to
generate an initialization that "prevents layer activation outputs from exploding or
vanishing during the course of a forward pass through a deep neural network. If

either occurs, loss gradients will either be too large or too small to flow backwards
beneficially, and the network will take longer to converge, if it is even able to do so

at all" [24].

The simplest and least efficient technique to initialize neural network weights is
to randomly generate them. The major problem of this technique comes from the
fact that some initializations can lead to extremely small or big values that lead to
values near 0 or 1 for most activation functions. Consequently, the slope of the gra-
dient changes slowly and the learning process takes a lot of time.

To prevent this effect when the tanh activation function is used, "Xavier initializa-
tion" multiplies the random initialization by the fraction:

V6
[14+1]

(3.26)
”g] +n,

where nLl }is the number of incoming network connections to the layer and ng i

the number of outgoing network connections from that layer.
For activation functions that are not symmetric around zero and do not have outputs

Jobin

Clément

22 Chapter 3. Deep learning

inside the range [—1, 1] such as ReLU or ELU, Kaiming initialization is an alternative.
It consists in multiplying the randomly initialized weight matrix by:

V2

A

(3.27)

U

where n, is the number of incoming connections coming to a given layer from the
previous layer’s output.

3.3.7 Hyperparameter tuning

Hyperparameters denote parameters that cannot be directly learned from the data.
That is the case for the learning rate, the batch size and the number of epochs that
were described in previous sections. So, these parameters have to be manually tuned
in order to find the best configuration (i.e. the one that minimizes the cost function
and that keeps an acceptable level of generalization).

Regarding the learning rate «, its value has to be neither too large nor too small.
A too large learning rate is recognizable by analyzing the training loss curve: if the
loss is exploding, oscillating or if there is no improvement and it is stuck around a
suboptimal local optima, the learning rate is too high and should be decreased. On
the contrary, if the learning is very slow and the loss does not decrease, or if the
model is overfitting, it is a clear sign that it should be increased. The learning rate
can take a wide range of values. Consequently, the most used technique to find the
optimal learning rate is simply the "trial and error" method, which consists in "trying
widely different learning rates to determine the range of learning rates that need to
be explored" [25]. There also exist methods that, instead of keeping a fixed learning
rate for the entire training, reduce it after each epoch (learning rate decay) or each
time the loss on the validation set does not decrease (learning rate scheduling).

Batch size is another important hyperparameter to tune. Training a network with
a small batch size "requires less memory, since the latter is trained using fewer sam-
ples" [26]. Furthermore, "networks train faster because the weight update is done
after each propagation” [26]. Nevertheless, "the smaller the batch, the less accurate
the estimate of the gradient will be" [26]. Indeed, due to the high weight update
frequency, the gradient fluctuates much more than if it was computed after a bigger
number of samples.

Finally, the number of epochs during which the network is trained has to be care-
fully chosen. In fact, from a certain point in the training onwards, neural networks
do not learn anymore useful features in the data and start overfitting. This point cor-
responds to the moment where the validation loss does not decrease anymore and
starts increasing continuously. It is at this moment that the training should stop. To
achieve this goal, it is either possible to directly choose the right number of epochs
or to use the so-called "early stopping"” method which stops the training as soon as
the validation loss does not decrease for N epochs.

3.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a specific type of deep neural networks.
They are particular in that they contain layers which perform a mathematical oper-
ation named "convolution" on the input data. CNNs are mostly used in image and
video analysis.

3.4. Convolutional Neural Networks 23

To perform a convolution, numerical input data and a "filter" are required. A
filter can be seen as an f * f numerical patch that moves across the entire input. It
first moves horizontally until reaching the right-most border of the image. Then, it
goes down a cell and starts from the border on the left-hand side. This process is
repeated until the filter reaches the bottom-right corner of the image, which marks
the end of the convolution. At each step, the dot product between the filter and
the part of the input covered by the filter is computed. Figure 3.10 showcases a
simple convolution which aims at finding vertical lines in a black and white image.
For example, the output of the first step of the convolution (in red) is computed
by evaluating the dot product between the blue filter and the red part of the input
image:

(=1)*0+2%0+(—1)*0
|

(1) *0+2%0+(—1)*1
.|
(=1)*04+2%0+(=1)x1
=2

(3.28)

The output of the entire convolution shows negative values in the outside parts and
large positive values in the center. This means that the 3 * 3 filter detected a vertical
line in the center of the input image. Like other parameters, filters are learned while
training.

3x3 filter
102 -1
102 -1
102 (-1

0/0/0|0]|O0 0/0(0|0]O
0o|0|1 /0|0 o|jo0j1/0|0 Output
o(o0o(1(0|0 Input image olol1/0]|0 D2 4 2
ojo0|1/0]0 oj0(1/0]0 -3 6 |-3
0/0|0|0]|O 0/|0(0|0]O 2 4 -2

First step of the convolution Second step of the convolution Result of the entire convolution

FIGURE 3.10: Convolutions - Basic convolution in a CNN

Different parameters can change the way a convolution behaves. First of all, the
previous example relied on a filter moving by respectively one cell to the right and to
the bottom. In this case, the so-called "stride" is equal to 1. Other applications could
rely on a bigger stride. Furthermore, the previous example reduced the output size
of 3 x 3 in proportion to the initial input size of 5 * 5. To influence the output size, a
padding can be added to the outside of the input image, usually filled with Os. Three
ways of padding images are commonly used as shown on Figure 3.11:

e Valid: The input image is not padded. This means that the filter only goes
through existing pixel values, which makes the output size smaller than the
input size.

Jobin

24

Chapter 3. Deep learning

e Same: The input image is padded in a way that makes the output size the same
as the input size.

e Full: The input image is padded so that, in the first step of the convolution,
only the bottom-right cell of the filter overlays the pixel values of the image,
the rest overlaying padding cells. This makes the output size larger than the

input size.

Valid

1st step

3rd step

Output

4th step

Same

1st step 2nd step 3rd step

Output

Full

1st step

2nd step 3rd step

Output

FIGURE 3.11: Convolutions - Different padding methods

3.5 Transfer learning

According to Jason Brownlee, "transfer learning is a machine learning method where
a model developed for a task is reused as the starting point for a model on a second
task" [27]. The model dedicated to the second task uses some or all parts of the first
model (i.e. keeps the same weights and architecture or a part of them) and is then
retrained on the data that is available for this task. The first model can either be im-
plemented from scratch if enough data is available or downloaded from institutions
that release large pretrained models for similar tasks. Transfer learning provides
three major benefits [27]:

3.5. Transfer learning 25

e Higher start: The initial skill (before refining the model) on the source model
is higher than it otherwise would be.

e Higher slope: The rate of skill improvement during training of the source
model is steeper than it otherwise would be.

e Higher asymptote: The converged skill of the trained model is better than it
otherwise would be.

Nevertheless, "in general, it is not obvious that there will be a benefit to using trans-
fer learning in the domain until after the model has been developed and evalu-
ated" [27].

27

Chapter 4

Medical information

This chapter gives an overview of the basic medical knowledge that is required to
apprehend the following chapters smoothly. First of all, some notions about cancer
are described in order to understand what it is and which effects it has on the human
body. Second, medical data has its own file formats. To make use of them in a deep
learning project, medical files must be processed in a certain way, depending on each
format. In fact, formats represent 2D, 3D or even 4D data. Some of them require spe-
cific normalization in order to obtain the right rendering. Finally, some visualization
tools that were developed to display raw medical files easily are presented.

4.1 Cancer

4.1.1 Basics

An accumulation of cells forming a mass is called a tumor. These tumors are de-
tectable thanks to medical imaging (see Section 4.2) and other symptoms. However,
not every tumor is as dangerous as the other, as it can be benign (does not contain
cancerous cells) or malignant (contains cancerous cells).

The term cancer refers to different phenomena which involve mutation, abnor-
mal multiplication and spreading of cells. As stated by Hanahan et al. in "The Hall-
marks of Cancer" [28] and "The Hallmarks of Cancer: The Next Generation" [29],
every malignant tumor acquires six different capabilities during its evolution:

e "Sustaining proliferative signaling"
Cancerous cells do not wait for the body’s approval to grow and proliferate,
contrary to normal cells. They become responsible for their own multiplica-
tion.

¢ "Evading growth suppressors"
The body sends signals to contain cell growth within a tissue. Cancerous cells
are insensitive to these.

e "Activating invasion and metastasis"
Metastases are cells whose role is to propagate to other parts of the body in
order to colonize and create new tumors.

e "Enabling replicative immortality"
Healthy cells replication is limited to a certain amount, which is not the case
for cancerous cells.

¢ "Inducing angiogenesis"
Angiogenesis is the process of creating new blood vessels. Tumors have an in-
fluence on angiogenesis around them, since they need vascularization to con-
tinue growing.

Clément

Clément

Clément

Clément

Clément

28 Chapter 4. Medical information

¢ "Resisting cell death"
Apoptosis is the programmed death of cells, which is part of the continuous
regeneration of every cell within a body. Cancerous cells survive this pro-
grammed death.

4.1.2 Seriousness

Most cancers can be staged thanks to the TNM system. The T corresponds to the tu-
mor size and its location; the N corresponds to whether or not the tumor has spread
to draining lymph nodes; the M corresponds to the presence or absence of metas-
tases in other parts of the body [30]. These pieces of information are used to classify
cancer between four (I to IV) or sometimes five (0 to IV) different stages, reflecting
the progression and the seriousness of the illness [31]. The earlier they are detected,
the higher the chances of recovery are. This aspect makes cancer detection critical as
every misjudgment can threaten someone’s life.

4.2 Types of medical imaging

Multiple types of medical imaging exist. The most commonly used to detect can-
cer are Magnetic Resonance Imaging (MRI), CT (Computed Tomography) scans and
mammograms.

MRI relies on magnetic fields to provide a three-dimensional view of body parts,
which allows to see the generated images as a volume. Different settings, usually
called sequences, make the look of the output vary, as shown on Figure 4.1. Unlike
MRI, CT is based on X-rays instead of magnetic fields, but still provides a three-
dimensional representation of a body part. Figure 4.2 shows a lung CT scan.

FIGURE 4.1: MRI sequences - PROSTATEx - From left to right: T2-
weighted, ADC and DWI

4.3 DICOM file format

4.3.1 Origin

The acronym DICOM stands for Digital Imaging and Communications in Medicine.
Before the 1980’s, images resulting from CT scans and MRIs were only decodable by

4.3. DICOM file format 29

machine manufacturers, while the medical community needed to export and share
them for other tasks. For that reason, the ACR (American College of Radiology)
and the NEMA (National Electrical Manufacturers Association) created a committee
to build a standard. After two iterations with other names, DICOM was created in
1993. It standardized the representation of medical images and their transmission as
it provided a network protocol built on top of TCP/IP.

4.3.2 Data format

DICOM files can be viewed as containers of attributes, also called tags. The values of
the pixels themselves are stored under the "Pixel Data" tag. Every single DICOM file
usually represents a 2-dimensional image, which will form a 3-dimensional volume
when put all together.

Other useful information such as the patient’s name and ID is directly stored
within DICOM files. This approach aims at linking each image to a specific person
and event in order not to mix them up. Each DICOM file can be seen as part of a
bigger dataset.

4.3.3 Processing images

When manipulating DICOM files, multiple details must be taken into account.

Order

First of all, the name of the files within datasets is a 6-digit number, from 000000
to the number of images minus one. However, this order does not match the real
order of the images. In fact, the correct order is given by the "Instance Number"
tag contained in the various files. Therefore, converted images must be sorted by
instance number.

Data manipulation

CT and MRI machines, as well as monitors, differ from one manufacturer to the other
and even from one model to the other. DICOM takes this problematic into account
by providing specific tags that allow to display the exact same representation of the
data, no matter the hardware used. Otherwise, physicians may struggle to detect
anomalies because of color and exposition-related variations. Therefore, before dis-
playing or converting an image to any format (such as PNG or NumPy array), pixel
data must be normalized.

The procedure depends on the tags "Window Width" and "Window Center" (one
always come with the other). These are used to represent a range of values corre-
sponding to the pixel values in the data. For instance, a window center of 0 and a
window width of 200 imply pixel values between -100 and 100.

If they are missing, a simple conversion is sufficient. The parameters used to convert
the data are given by two tags:

e Bits allocated: the number of bits used to represent a single pixel (value: 1 or a
multiple of 8)

e Samples per pixel: the number of channels for each pixel

Clément

Clément

Clément

Clément

Jobin

30 Chapter 4. Medical information

Examples:
e 1bit, 1 sample: black and white
e 8 bits, 1 sample: grayscale
e 8 bits, 3 samples: RGB
e 16 bits, 1 sample: grayscale

If they are included in the DICOM header, a linear transformation must be done to
convert the stored representation of the pixels to the correct visualizable one. To
achieve this, two steps are required:

1. Apply the Hounsfield correction
Hounsfield Units (HU) are used in CT images. It is a measure of radio-density,
calibrated to distilled water and free air. Provided that the rescale slope and the
rescale intercept are included in the DICOM header, the correction is applied
thanks to the following formula:

HU=mxxP+b 4.1)
where m is the rescale slope, P the pixel value, b the rescale intercept.

2. Apply alinear transformation
The result of the first operation then goes through a linear transformation
based on the following conditions:

w—1

if(P<c—05— T), then y = yuin 4.2)
. w—1
elseif (P >c¢—05+ T)' then y = Yyax 4.3)
P—(c—05)
else Yy = <f1) + 05) * (ymax - ymin) + Ymin (44)

where c is the window center, w window width, P the pixel input value, y the
pixel output value, ¥y, the minimal value of the output range (usually 0),
Ymax the maximal value of the output range (usually 255). Equations 4.2, 4.3
and 4.4 ensure that the pixel values are correctly distributed within the output
range.

4.4 NIALTI file format

4.4.1 Origin

The Neuroimaging Informatics Technology Initiative (NIfTT) file format is the suc-
cessor of the ANALYZE file format. The main problem of the latter was a lack of
information about orientation in space. Therefore, the interpretation of stored data
could be problematic and inconsistent. For instance, there was a real confusion to
determine the left and right sides of brain images. Hence, the NIfTI file format was
defined to overcome this major issue.

4.5. RAW and MHD file formats 31

4.4.2 Data format

Unlike the ANALYZE format that used two files to store the metadata and the actual Jobin

data, the NIfTI file format stores them in one single “.nii” file, but keeps this split
between the real data and the header for compatibility. This has the advantage to
facilitate the use of the data and avoid storing the data without the metadata. The
NIfTI format can also be compressed/decompressed on the fly using the “deflate”
algorithm. A. M. Winkler affirms that this is particularly useful as "it is very common
for images to have large areas of solid background, or files describing masks and
regions of interest containing just a few unique values that appear repeated many
times" [32].

4.4.3 Overview of the header structure

With the goal of preserving the compatibility between the ANALYZE and the NIfTI Jobin

formats, both headers have the same size of 348 bytes. A. M. Winkler confirms this
fact by claiming that "some fields were reused, some were preserved, but ignored,
and some were entirely overwritten" [32]. Details about the different fields contained
in the header can be found in the references of the previous citation.

4.5 RAW and MHD file formats

Some datasets use a combination of RAW and MHD files. The latter contain metain-
formation about their corresponding RAW file(s) which contain the data. In most
cases, each MHD file points to a unique RAW file whose name is the same as the
MHD file name. A single RAW file can be used to represent three-dimensional
data, i.e. the combination of multiple two-dimensional images. Libraries such as
SimplelTK in Python allow to manipulate RAW images in an easy way.

4.6 Visualization tools

Processing data manually increases the probability of making mistakes. For that
matter, visualization tools relying on the same processing code as the ones used to
generate training images were developed. Their primary goal is to compare our
visual representation of an image to the one obtained in professional pieces of soft-
ware. These tools are convenient to visualize a dataset easily. In some cases (espe-
cially RAW/MHD images), no free software capable of reading the files was avail-
able, which made the corresponding tool useful.

4.6.1 DICOM

Visualizing DICOM files is pretty straightforward since each file represents a single
two-dimensional image. However, a lot of pixel transformations and normalizations
have to be applied to obtain the desired result (see Section 4.3.3), which may be a
source of errors. Our tool allows to display a single DICOM file as well as a sequence
of files if the function is fed with a directory. Users can then scroll through the z-axis,
displaying the next or previous slice. Figure 4.2 shows the visualization of a lung
CT scan at three different z-axis coordinates. This allows the user to have a complete
overview of the body part he wants to analyze.

Clément

Clément

Clément

32 Chapter 4. Medical information

Going through Z-axis Going through Z-axis

slice 164

FIGURE 4.2: Visualization of a folder of DICOM files

4.6.2 NIfTI

Clément As a single NIfTT file can contain three- or four-dimensional data (the fourth di-
mension being time), our visualization tool takes this aspect into consideration by
allowing to scroll through them: scrolling with the mouse goes through slices be-
longing to a specific timestamp over a specific axis, while the left and right arrows
allow to jump to the same slice at another timestamp. When reaching the end of a
timestamp with the mouse, the first slice of the next timestamp is displayed. Fur-
thermore, the three-dimensionality implies that the volume is viewable from three
different perspectives. For example, a three-dimensional brain volume can display
it from the top of the head to the bottom, from one ear to the other and from the
back of the head to the person’s face. Therefore, the user can choose a specific axis
to navigate through. If no axis is chosen, all three perspectives are shown one after
the other.

Going through Z-axis, time stamp 2

Gging through X-axis, time stamp 2

FIGURE 4.3: Visualization of a four-dimensional NIfTT file

4.6.3 RAW

Clément Medical RAW files are three-dimensional, which means that a single file contains
a volume, i.e. a succession of 2D slices. Scrolling with the mouse goes through
slices over a specific axis. Like the NIfTT file format, the user can profit from the
three-dimensionality by displaying the body part under three different perspectives.
This tool is particularly useful as no free software capable of handling these files is
available. Photography-related programs such as Photoshop can open RAW pictures
but not these three-dimensional ones.

4.7. Conversion to PNG 33

FIGURE 4.4: Visualization of a three-dimensional RAW file

4.7 Conversion to PNG

In addition to the visualization tools, scripts allowing to convert medical files into
PNG files were developed. The main one is called "anydatasettopng" and is the
one to use to convert any file format to PNG as it makes use of the others. Given
a root directory, it scans the latter and its subdirectories to find all DICOM, NIfTI
and RAW/MHD files. Then, each file is converted to PNG and saved into the same
directory as the one it came from. This script allows to keep an easily accessible
visual representation of medical files without having to rely on a specific piece of
software to display them. Finally, it also played the role of a debugging tool since
the conversion techniques are the same as the ones used further in this work.

4.7.1 8-bit conversion

Medical data is often represented over 16 bits. However, exporting images to PNG
requires 8-bit images. To transpose a 16-bit image to an 8-bit one, the procedure
described by algorithm 1 was applied.

Algorithm 1 16 to 8 bits conversion

1: procedure 16_TO_8_BITS_CONVERSION(pixel_array)

2: Pixel,,;, <— minimal pixel value in pixel_array
3 Pixel;q0y < maximal pixel value in pixel_array
4: for pixel_value in pixel_array do

. (pixel_value—Pixel,;,)*255.0
5 pixel_value < Dixelyme—Pixel

A

Modify object type to 8 bits
7: Export pixel_array as PNG

Clément

Clément

35

Chapter 5

Research paper experiment
reproduction

This chapter is based on the article "Computer-Aided Diagnosis of Prostate Cancer Jobin
Using a Deep Convolutional Neural Network from Multiparametric MRI" from Song

etal. [4], shortly presented in Chapter 2. It aims at reproducing the experiment of the

paper in order to acquire the medical, theoretical and technical background before
proposing a transfer learning method as a way to improve the classification using

other body parts (see Chapter 6).

Song et al. [4] proposed a deep convolutional neural network (DCNN) method to
detect prostate cancer based on the SPIE-AAPM-NCI PROSTATEx Challenge dataset.
This dataset is one of the biggest datasets available for prostate cancer classification.
The two different output classes of the latter are benign lesion (class 0) and malignant
lesion (class 1). The dataset contains a total of 204 patients for the training (labels are
known) and 208 patients for the challenge (labels are unknown). This paper explains
all the steps to follow with the goal of building a deep learning model for prostate
cancer detection. Moreover, it also provides results (AUC) about the algorithm per-
formance on a test set they built themselves (which is not the same as the challenge
test set). In fact, they split the PROSTATEX training set into a training set, a vali-
dation set and the mentioned test set. These results can be used as a benchmark to
compare with the results of the reproduction of the experiment. However, the article
gives no information about the results their model achieved on the official PROSTA-
TEx challenge test set (208 patients without labels). Therefore, the reproduction of
the experiment will fill that gap by taking part in the actual challenge.

This chapter is built in a top-down fashion. First, an overview of the entire pro-
cess is established in order to understand the purpose of the experiment as a whole.
Then, each theoretical notion is described in detail. This includes the structure of
the dataset, the steps involved in its processing, and the techniques used as a verifi-
cation of the proper functioning of the algorithm. Then, the training phase is dealt
with in depth and all hyperparameters, options and implementation choices are de-
scribed to ensure the reproductibility of the experiment. This part is followed by the
presentation of the raw results the model achieved on the test set (the one built for
the experiment), which is itself followed by their analysis in the "Discussion" sec-
tion. Finally, the last section is devoted to the so-called SPIE-AAPM-NCI Prostate
MR Classification Challenge. It presents the results that the model achieved on the
challenge test set using the whole training set for the training. The latter section is
not part of the original paper.

Jobin

36 Chapter 5. Research paper experiment reproduction

5.1 Process overview

Schematically speaking, the entire experiment process can be represented as shown
on Figure 5.1. The first part of the experiment is about the reproduction of the pa-
per experiment, whereas the second one is devoted to the participation in the SPIE-
AAPM-NCI PROSTATEXx challenge since the authors of the article did not take part
in it.

Experiment reproduction

The first part of the experiment makes use of the PROSTATEX training set. This
dataset is only composed of samples whose clinical significance is provided (labeled
data). The first step of the reproduction is the data processing. In fact, many pro-
cessing steps are involved to transform the original DICOM files into NumPy arrays
which can be fed to the neural network. Data processing includes lesion cropping,
normalization, MRI images stacking, data augmentation, etc. (see Section 5.2.1 for
further details).

Once the processing part is completed, the labeled data are split into a training set,
a validation set and a test set using respectively 80%, 10% and 10% of the available
data for each subset. The training set samples are then fed to the neural network
in batches. At the end of each epoch, the current model is tested on the validation
set and the resulting metrics are plotted in Tensorboard (see Section 5.2.3). The val-
idation set is independent of the training set and has never been seen by the model,
which gives an indication of how well the latter generalizes. Then, if the current
model reaches a higher AUC and a higher accuracy than the previous best model, it
becomes the new best model and it is saved. Furthermore, if the validation AUC de-
creases for a defined number of epochs, the learning rate is reduced to prevent over-
fitting and avoid a progressive decrease in validation performance. This technique
contributes to maintaining a good generalization level and optimizes the training
with respect to the AUC.

As soon as the training phase reaches the defined number of epochs, the model
is tested on the test set with the authors” method called "enhanced prediction” to
compute the AUC. The latter method consists in predicting an output for each aug-
mented test image before averaging the predictions for each lesion of each patient.

PROSTATEXx challenge

The second part of the experiment relies on the results of the first one. Indeed, the
same data processing pipeline is applied and the hyperparameters used to train the
neural network are the same. The difference lies in the fact that the entire dataset (i.e.
the entire PROSTATEX training set) is used as training set instead of splitting the data
into a training, validation and test sets. In this way, the model sees more training
examples, which maximizes the performance of the model on the challenge test set
by increasing its generalization ability. During the training phase, the model is saved
at the end of each epoch. Once the training is over, multiple models are chosen
around the epoch that produced the best result on the validation set during the first
part of the experiment. These models are then evaluated on the challenge test set
by submitting their predictions for each lesion to the Grand Challenge organization.
The model with the best result on the challenge is considered as the most efficient
one.

5.2. Reproducing the paper experiment 37

. For all epochs
Paper reproduction Train the model on the
204 patients in total training set
Pg PROSTATEX dataset: Training Set (80%)
] :
-] - DICOM files . - :
P2 ProstateX-Findings-Train.csv Data Set (10%) Atthe end of each epoch |
- - ProstateX-Images-Train.csv '
P Test Set (10%)
*To select the best model Test the model on the
validation set (unseen

(Criterion not provided in the paper): B ———
Atthe end of each epoch | data) and save best
1) New AUC >= Best model's AUC model

2) New Accuracy >= Best model’s Accuracy

(AUC and Accuracy on the validation set)

At the end of all epochs

Contribution: Participation in the SPIE-AAPM-NCI PROSTATEX challenge

204 patients in total

. Train the model with the best hyperparameters
RECSIAIEx(Clatasety found in the experiment above during
the same number of epochs

Train the model on the |}
whole training set H

- DICOM files
- ProstateX-Findings-Train.csv
- ProstateX-Images-Train.csv

Data Training Set (100%)

Choose a model at a certain epoch and test it
on the SPIE-AAPM-NCI PROSTATEX challenge
test set |

Labeled data

) ProxIn, fid,Clinsig
208 patients in total Prostatex-0204,1,0.400981068611145
Prostatex-0204,2,0.5293022394180298

Prostatex-0204,3,0.6873714327812195

PROSTATEx c“a"e"ge dataset: Prostatex-0205,1,0.43872684240341187 H
- DICOM files Make predictions ProstateX-0206,1,0.35319510102272034 |:
- ProstateX-Findings-Test.csv Data Test set (100%) Prostatex-0207,1,0.2637541502121124 |}
- P’OSta(ex-|mage$-TeS‘.C$V Prostatex-0207,2,0.33186042308807373 H

Prostatex-0208,1,0.29184356331825256 '

Unlabeled data for
the challenge

ProstateX-0208,2,0.5143755078315735

FIGURE 5.1: Overview of the whole experiment process

5.2 Reproducing the paper experiment

5.2.1 PROSTATEx: Data processing

This section describes the processing operations performed on the raw data until it Clément
passes through the neural network. All the steps mentioned below are also valid for
the second part of the experiment about the challenge (Section 5.3).

Dataset description

The SPIE-AAPM-NCI PROSTATEx Challenge dataset is publicly available on the Clément
Cancer Imaging Archive website [33, 34, 35]. This dataset is composed of multi-
parametric MRIs for a total of 204 training patients and 208 challenge patients. Im-
ages were taken under the sagittal, transverse and coronal planes. These MRIs are
multiparametric because the same exam was performed using different radiological
settings called "sequences". Each sequence allows to see human tissue in a different
way on the resulting images. The sequences available within the scope of PROSTA-
TEx are T2 weighted images (T2W), Diffusion weighted images (DWI), Apparent
diffusion coefficient (ADC), Dynamic contrast enhanced (DCE), PD (Proton Density)
and K-trans. The PROSTATEXx dataset comes with two CSV files for the training set:

e The first one, ProstateX-Findings-Train.csv, lists all findings with their clinical
significance. Multiple findings can belong to the same patient (ProxID).

e The second one, ProstateX-Images-Train.csv, gives information about where to
find the right DICOM file for each patient and each finding. Important labels
are "ProxID" (patient ID), "fid" (finding ID € [1, o0]), "ClinSig" (clinical signifi-
cance, TRUE or FALSE), "DCMSerNumber" (digit before the dash in the folder
name containing DICOM files), "ijk" (position of the lesion: slice number k at

Clément

Clément

38 Chapter 5. Research paper experiment reproduction

coordinates (i,}), 1,j, k € [0, c0]) and "VoxelSpacing" (3-dimensional vector rep-
resenting the correspondance between a pixel and the space it occupies in the
real world). Both CSV files are complementary to each other.

Regarding the challenge patients, two analog CSV files are provided: ProstateX-
Findings-Test.csv and ProstateX-Images-Train.csv. The only difference is the absence of
clinical significance. Finally, images are in the DICOM file format (see Section 4.3).

Methodology

The methodology described in this section is the closest replication possible of the
authors’ data processing methodology. Most of it were reproducible in a similar
way, apart from the manual lesion contouring which was performed by a qualified
radiologist in the authors’ case. Furthermore, the authors did not mention any par-
ticipation in the official PROSTATEX challenge.

In order to get an unbiased evaluation of the performance of our model, these
images were also processed as explained below in order to take part in the challenge,
but were not augmented. Nevertheless, the authors created their own test set by
splitting the PROSTATEX training images into a training set (80%), a validation set
(10%) and a test set (10%). They mentioned that the test set was augmented 11 times
but gave no information about the training and validation sets. Since the training
set is imbalanced (3 false for 1 true), the true class was augmented more times than
the false class (which was augmented 60x) in order to create balanced training and
validation sets.

From DICOM to NumPy arrays

Before anything else, T2ZW, DWI and ADC grayscale images were used, which means
that DCE, PD and Ktrans images were left aside. Furthermore, DWI images re-
group various parameters which create different subcategories. One of them is the
so-called "b-value" which is "a factor that reflects the strength and timing of the
gradients used to generate diffusion-weighted images. The higher the b-value, the
stronger the diffusion effects" [36]. The authors tested three different b-value con-
figurations. This led to the conclusion that using DWI images with the highest b-
value increased the performance of the model. For that matter, DWI images with
the highest b-value only were used in this work. Moreover, only images showing
the prostate under the transverse plane were used. The reason for this is that the
tumors are much more visible under this perspective.

The first step consisted in converting PROSTATEx’s DICOM files to NumPy ar-
rays. Algorithm 2 describes the steps involved in this process. The right slices were
found thanks to the two CSV files. Important information such as the patient ID, the
sequence, the lesion location and the voxel spacing was included in the file output
names, which allows to use these files independently for the next steps (i.e. with-
out relying on the CSV files) that consist in stacking and augmenting the images.
Furthermore, this information is also extremely useful for the visualization and ver-
ification scripts in order to provide concrete details regarding the displayed images.

5.2. Reproducing the paper experiment 39

Algorithm 2 PROSTATEX preprocessing

1: procedure MAIN(dataset_folder, findings_CSV,slices_CSV,output_folder)
2 Create output directories: “output_folder/True”,”output_folder/False”
3:
4. findings < read_CSV (findings_CSV) > ProstateX-Findings-Train.csv
5 slices < read_CSV (slices_CSV) > ProstateX-Images-Train.csv
6 meta < merge(findings, slices) > Both CSV files are complementary to each
other.
7
8: for row in meta do
9: patient_id < row|” ProxID"]
10: finding_id < row|” fid"]
11: mri_type_number < row|[” DCMSerNumber” |
12: clinical_significance < row["ClinSig”|
13: img_i,img_j,img_k < row|"ijk”]
14: slice_number <— img_k—+1 1> CSV indexing in [0, co], DICOM in [1, co]
15:
16: for visit in patient_id’s folder do
17: for mri_type in visit do
18: if mri_type starts with "mri_type_number-" then
19: for dicom_file in mri_type do
20: if slice_number == dicom_file.InstanceNumber then
21: slice <— normalize_dicom(dicom_file) > see Section 4.3.3
22: Save slice into "output_folder/clinical _significance”

From NumPy arrays to augmented stacked images

This step can be split into two substeps: aligning and stacking images before aug-
menting them and splitting them across a training set, a validation set and a test
set.

Once full images were converted to NumPy arrays, the images related to a spe-
cific lesion of a specific patient needed to be aligned and resampled to the same res-
olution. In fact, T2-weighted images have a much higher resolution than the DWI
and ADC images (in this dataset at least). Without this operation, a single pixel on a
DWI image would have covered a lot more tissue than a pixel of the corresponding
T2 image. To perform the alignment, the lesion was localized on the three sequences
than to the CSV file. Then, the goal was to crop a large patch which contained the
same amount of tissue on the three images. This patch had to be centered on the
lesion to ease the augmentation process. So, a fixed patch size was defined for the
T2 image since its resolution was the highest. Then, using the voxel spacing infor-
mation, the patch size required to cover the same amount of tissue was computed
for the two other sequences (DWI, ADC). Finally, the three images were cropped,
resized to the same resolution and stacked. Stacking images consists in putting each
single image (grayscale) into a single array, as three different channels. At this point,
the pixel i, j of the three channels represents the exact same tissue, which means that
the lesion is at the same position and is covered by the same number of pixels on
each channel. This approach increases the probability of detecting a cancer by en-
suring a good visibilty for each lesion, as the latter is not necessarily as visible on the
three images.

Jobin & Clément

40 Chapter 5. Research paper experiment reproduction

An important part of this process is the normalization. In fact, images were nor-
malized before being stacked, based on a Z-score, i.e.

Piel Pixel;; — p
lxe i'jnormalized -

- (5.1)
where Pixel;; € [0,255] is a grayscale pixel value, y is the mean value of all images
of the corresponding sequence for this patient and ¢ the standard deviation of all
images of the corresponding sequence for this patient. According to the authors,
normalizing each sequence of each patient separately allows to keep slight contrast
nuances which ultimately help the final diagnosis. In other words, all T2-weighted
images belonging to a specific patient were concatenated into a single NumPy ar-
ray. Then, the mean and standard deviation of the array were computed. These
values served as y and ¢ to normalize the T2-images of this specific patient. The
equivalent was applied to the patient’s DWI and ADC images, and the same pro-
cess was employed for all patients separately. Then, the dataset was augmented in
the same way as the authors. Concretely, images were rotated (—20 to 20°), flipped
horizontally (probability of 0.5) and shifted horizontally (value € [—1,0,1] pixel).
These techniques alone allowed to create a large enough amount of data. Therefore,
two other augmentation methods used by the authors (horizontal stretching by a
factor € [0.9,1.1] and vertical shifting) were not used.

On the other hand, authors did not mention how they managed class imbalance.
It seems like the manual lesion contouring performed by the qualified radiologist
led to a natural class balance. However, the unmodified dataset has a ratio of 3
negative images for 1 positive. To solve this problem, multiple approaches were
implemented. The first one made use of undersampling which consists in taking N
elements of each class, where N is the size of the class whose number of elements
is the smallest. As the size of the dataset is relatively small, taking a subset of it
was not a good idea and led to a clear lack of data. The second solution solved the
problem by using different augmentation factors. In fact, one of the script options
sets the augmentation factor for the class whose number of elements is the largest.
Then, according to this factor, the algorithm computes the augmentation factor for
the other class in order to balance the final datasets. For example, if the dataset
follows the above-mentioned 3 negatives for 1 positive ratio, and if the script option
augmentation factor is set to 50, each image belonging to the negative class is going
to be augmented 50 times and each image belonging to the positive class 150 times.
At the end, the resulting dataset is balanced and makes use of all images.

Finally, the data was split into three subsets (training (80%), validation (10%)
and test (10%)) and was exported as NumPy arrays. The percentages represent a
percentage of patients. Figure 5.2 explains the entire splitting process and gives de-
tails about the patients that are in each set. Each subset contains respectively 80%,
10% and 10% of all patients belonging to the "true" and "false" classes. At the be-
ginning of the process, class "false" contains [0.8 * 164| = 131 training patients,
|0.1%164] = 16 test patients and 164 — 131 — 16 = 17 validation patients. On the
other hand, class "true" contains |0.8 * 69| = 55 training patients, |[0.1 *x69] = 6
test patients and 69 — 55 — 6 = 8 validation patients. Then, during the stacking pro-
cess, some patients were not used since the three sequences were not available for
them. These patients were simply discarded. At the end, the "false" class contained
131 training patients, 17 validation patients and 15 test patients, whereas the "true"
class contained 55 training patients, 8 validation patients and 4 test patients. This

5.2. Reproducing the paper experiment 41

approach does not take the number of images into account (a patient may have mul-
tiple lesions for example) but guarantees that every lesion is exclusive to a specific
subset. In other words, it is impossible to find a slighty different version of the same
lesion (resulting from the data augmentation) in the training set and in the valida-
tion set for example. This would be problematic since the validation set and the test
set need to contain unseen data to be able to evaluate the generalization ability of
the model in an unbiased way.

164 patients in
false class

69 patients in
true class

Notes:

- Patients 25, 31 and 159 were
manually removed

- Some patients can belong to
both classes (i.e. one finding
belongs to false class and the
other to true class)

Split into
training/validation/test subsets

floor(164 * 0.8) = 131 training patients
floor(164 * 0.1) = 16 test patients
164 - 131 - 16 = 17 validation patients

floor(69 * 0.8) = 55 training patients
floor(69 * 0.1) = 6 test patients
69 - 55 - 6 = 8 validation patients

l

During the stacking/augmentation process, it appears that at least one MRI sequence
is lacking for these patients:

« For false class: .
o Patient 202-fid-2 is not complete and has to be discounted from the test set :
o For true class: !
o Patient 202-fid-1 is not complete and has to be deducted from the test set 1
o Patient 202-fid-1 is not complete and has to be deducted from the test set
o Patients 203-fid-1 and 203-fid-2 are not complete and have to be deducted from the validation set !
o Patients 199-fid-1 and 199-fid-1 are not complete and have to be deducted from the validation set |
o Patients 202-fid-1 and 202-fid-2 are not complete and have to be deducted from the validation set
o Patient 200-fid-1 is not complete and has to be deducted from the validation set !

131 training patients
15 test patients
17 validation patients

55 training patients
6 test patients
8 validation patients

+ Complete list of samples

« For false class:
o Validation set:

145-fid-1, 135-fid-2, 117-fid-3, 112-fid-1, 107-fid-1, 76-fid-1, 69-fid-1, 64-fid-1,
60-fid-1, 59-fid-1, 49-fid-1, 47-fid-1, 44-fid-1, 37-fid-2, 23-fid-2, 23-fid-1, 22-fid-1, 0007-fid-1

o Testset:

184-fid-1, 182-fid-1, 180-fid-1, 166-fid-1, 116-fid-1, 104-fid-2, 103-fid-2, 81-fid-1, 80-fid-1,
75-fid-1, 50-fid-1, 27-fid-1, 20-fid-1, 9-fid-1, 5-fid-1

« For true class:
o Validation set:

184-fid-2, 119-fid1, 94-fid-1, 67-fid-1, 46-fid-1, 40-fid-1, 37-fid-1, 18-fid-1
o Testset:
143-fid-1, 127-fid-1, 115-fid-1, 106-fid-2

o Training set: all remaining samples

o Training set: all remaining samples

FIGURE 5.2: Patient splitting process

Clément

Clément

42 Chapter 5. Research paper experiment reproduction

From NumPy arrays to augmented non-stacked images

Another way of processing and using the data was tested. Instead of stacking the
images of various sequences coming from the same exam, each image was treated
independently. In other words, each of them was resized as explained previously,
then cropped, augmented and exported separately. At the end, each image was fed
as separate input to the neural network.

This way of proceeding gave awful results. The main reason is that images from
different sequences show the same tissue in an almost opposite way. The most strik-
ing difference to the human eye is the colors. Tumors are usually white on DWI
images and black on ADC images. Moreover, they are not always as visible on the
images of the various sequences. Therefore, finding similar features on all sequences
is extremely difficult. Stacking the three sequences solves this problem.

5.2.2 Data processing verification
Cropping verification using red dots

In order to check the correctness of the augmentation process, images with a red
dot at the lesion coordinates were generated. First of all, a red dot was placed on
the full image thanks to the "ijk" attribute of the CSV file. This full image was
exported. Then, images were augmented in the exact same manner as described in
Section 5.2.1. The expected result satisfies the following properties:

o The red dot is localized in the center of the cropped and augmented image.

o The three cropped and augmented images within a stacked image contain the
exact same tissue.

o The three cropped and augmented images within a stacked image are not ro-
tated /shifted /flipped differently.

o A lesion is visible to the naked eye.

Figure 5.3 shows an example generated during this test. While being exactly the
same size for the 3 images, the red dot looks bigger on the images whose resolution
was smaller since it was drawn before resampling the images. These images come
from the same exam performed on the same patient on the same day.

Full images with red dot

Cropped and augmented images

FIGURE 5.3: Red dot test - Patient 0082, Finding ID 1
From left to right: T2, DWI, ADC.

5.2. Reproducing the paper experiment 43

Alignment

In addition to the previous test, another one aiming at checking the alignment of the
images was implemented. This test ensures that the three images show the exact
same content at the same spot over the three channels (see Figure 5.4).

T2 DWI ADC

[Patient]: t2-ProstateX-0242fid-1

[T2]: mri-4-t2tsetra-84443

[DWI]: dwi-mri-8-diff tra b 50 500 800 WIP511b alle spoelenCALCBVAL-51683
[ADC]: adc-mri-7-diff tra b 50 500 800 WIP511b alle spoelenADC-83399
[Visit]: visitO

FIGURE 5.4: Alignment - Patient 0242 - Finding ID 1

5.2.3 Training the neural network

Training the neural network is the most important step of the experiment after the Jobin
data processing. This section first describes the architecture of the model, then
presents the script used for the training and finally provides details about the ex-
perimental setup such as the training procedure, the hyperparameters of the model

and the configuration of the machine on which it was trained.

Architecture

The model architecture used in the paper is a modified version of the VGG network Jobin
from the Oxford’s Visual Geometry Group (VGG). This model was initially designed

as part of the Large Scale Visual Recognition Challenge 2014 that used the ImageNet
dataset composed of 14 million images belonging to 1000 classes. Figure 5.5 illus-

trates its structure and its corresponding implementation in Python with the PyTorch
framework.

It is first composed of three convolution-dropout-max-pooling blocks followed
by three fully-connected-dropout blocks. Each convolutional box (in blue) in the
figure represents in reality three layers: the convolutional layer, the batch normal-
ization layer and the exponential linear unit (ELU) activation function. The same
principle applies to the fully connected layer box (in orange) that is divided in a
fully connected layer followed by the exponential linear unit. The last fully con-
nected box (in purple) has the same structure except that the exponential linear unit
is replaced with a softmax function for classification.

In comparison to the original VGG, this model keeps the small filter size of 3 *
3, also doubles the number of filters after each convolution-dropout-max-pooling
block and has a stride of 1 for all convolutions. It differs from the traditional VGG
in that it makes use of a smaller number of layers since the task is simpler than
the original one. Moreover, it uses exponential linear units instead of rectified linear
units as activation functions and adds dropout and batch normalization layers. Also,
it uses 1 * 1 convolutions.

44

Chapter 5. Research paper experiment reproduction

Model Legend PyTorch code
Input Convolution size x size, n filters self.features = nn.Sequential(
v nn.Conv2d(in_ch Is=3, out_ch Is=32,

Convolution 3x3, 32 filters

A7

Convolution 3x3, 32 filters

Convolution size x size, n filters

A7

Y Batch normalization
Convolution 1x1, 32 filters Y
A4 R .
ELU activation function
Dropout (0.3)
v

Max-pooling (2x2)
A 4

Convolution 3x3, 64 filters

A7

Convolution 3x3, 64 filters

A7

Convolution 1x1, 64 filters

A7

Dropout (0.3)

A 7

Max-pooling (2x2)
Y

Fully connected layer, x neurons

Fully connected layer, x neurons
A%

ELU activation function

Convolution 3x3, 128 filters

Fully connected layer, x neurons

A7

Convolution 3x3, 128 filters

A7

Convolution 1x1, 128 filters

Fully connected layer, x neurons

A7

A7

Dropout (0.3)

Softmax

\ 2
Max-pooling (2x2)
\

Fully connected, 256 neurons

A2

Dropout (0.3)

v

Fully connected, 64 neurons
Y

Dropout (0.3)

A\ 4
Fully connected, 16 neurons

A7

Fully connected, 2 neurons

Y

Output

kernel_size=3, stride=1),
nn.BatchNorm2d(32),
nn.ELU(),

nn.Conv2d(in_channels=32, out_channels=32,
kernel_size=3, stride=1),

nn.BatchNorm2d(32),

nn.ELU(),

nn.Conv2d(in_channels=32, out_channels=32,
kernel_size=1, stride=1),

nn.BatchNorm2d(32),

nn.ELU(),

nn.Dropout(p=dropout),
nn.MaxPool2d(2),

nn.Conv2d(in_channels=32, out_channels=64,
kernel_size=3, stride=1),

nn.BatchNorm2d(64),

nn.ELU(),

nn.Conv2d(in_channels=64, out_channels=64,
kernel_size=3, stride=1),

nn.BatchNorm2d(64),

nn.ELU(),

nn.Conv2d(in_channels=64, out_channels=64,
kernel_size=1, stride=1),

nn.BatchNorm2d(64),

nn.ELU(),

nn.Dropout(p=dropout),
nn.MaxPool2d(2),

nn.Conv2d(in_channels=64, out_channels=128,
kernel_size=3, stride=1),

nn.BatchNorm2d(128),

nn.ELU(),

nn.Conv2d(in_channels=128, out_channels=128,
kernel_size=3, stride=1),

nn.BatchNorm2d(128),

nn.ELU(),

nn.Conv2d(in_channels=128, out_channels=128,
kernel_size=1, stride=1),

nn.BatchNorm2d(128),

nn.ELU(),

nn.Dropout(p=dropout),
nn.MaxPool2d(2)

self.features.add_module('flatten’, Flatten())
self.classifier = nn.Sequential(
nn.Linear(2048, 256),
nn.ELU(),

nn.Dropout(p=dropout)
self.last_layer = nn.Sequential(

nn.Linear(256, 64),

nn.ELU(),

nn.Dropout(p=dropout),

nn.Linear(64, 16),
nn.ELU(),

nn.Linear(16, num_classes),
nn.Softmax(1)

)

FIGURE 5.5: Model architecture with the corresponding PyTorch code

Script options

Jobin Since training a neural network requires datasets, hyperparameters and many more
configuration choices, the creation of a generic script that accepts multiple options
is necessary. This requirement was solved thanks to the Python module called "arg-
parse". The latter automatically generates help/usage messages and displays errors

5.2. Reproducing the paper experiment 45

when the arguments typed in by the user are invalid. Table 5.1 shows all options
accepted by the script, provides information about what they concretely mean and
indicates their respective types.

Command Description Required Type
--trainingset Training set path True String
--validationset Validation set path True String
--batchsize Number of samples per batch True Int
--nbepochs Number of epochs the training phase has to last True Int
. . False
-Ir Learning rate used by the optimizer Default: 1e-3 Float
—lossfunction Loss function name False Strin
[CrossEntropyLoss, L1Loss, MSELoss] Default: "CrossEntropyLoss’ 8
. . False .
--cudadevice GPU name to run the experiment Default: “cuda’ String
—-modeltoload Pretrained model name False Strin
If given, load it, otherwise randomly initialize it Default: ” &
. False
--dropout Dropout probability Default: 0.3 Float

Number of channels of the input images
[1,3]
Metric to optimize

--inputchannel True Int

False

--optimizedmetric The best model during the training will be saved according to it Default: “auc’ String
["auc’, ‘accuracy’, "precision’, ‘recall’, ‘flscore’, "specificity’] :
--outputdirectory Root of the output directory used by Tensorboard to save the models True String

TABLE 5.1: Complete list of script options

Tensorboard

Tensorboard’s official website [37] claims that "Tensorboard provides the visualiza- Jobin
tion and tooling needed for machine learning experimentation:

e Tracking and visualizing metrics.

Visualizing the model graph (ops and layers).

Viewing histograms of weights, biases, or other tensors as they change over
time.

Projecting embeddings to a lower dimensional space.
¢ Displaying images, text, and audio data" [37].

In this experiment, Tensorboard is mainly used to plot Matplotlib figures of the
model performance. In fact, during the training the following metrics are com-
puted: loss, accuracy, precision, recall, F1-score, specificity and AUC. These metrics
are computed separately on the training and on the validation sets at the end of each
epoch. They are then stored and plotted on the same figure at the end of the process
thanks to Tensorboard. In addition to this, written reports regarding which model
was the best and the results it achieved are also added to the dashboard.

Model roulette

As stated by the authors, "the training process is sensitive to the parameter initial- Clément
ization" [4]. Experience showed us that the exact same hyperparameters with two
different initializations could give opposite results. Therefore, in order not to train
the model vainly, a script which generates a given number of initializations was
created. Each untrained model was then tested on the validation set since the best
model during training is saved according to its performance on the validation set.

Jobin

Jobin

46 Chapter 5. Research paper experiment reproduction

The model whose score was the highest on a given metric (the AUC in this experi-
ment) was saved and used as base model for the experiments. It can then be used as
initialization model using the script option --modeltoload <path>.

Experimental setup

Keeping the exact same hyperparameters as the original paper led the experiment to
disappointing results. Consequently, new hyperparameters had to be found. A grid
search approach driven by the AUC obtained on the test set (the one built for the
experiment, not the one of the challenge) was chosen. In practical terms, this con-
sisted in trying multiple combinations of hyperparameters and keeping the one that
produced the best AUC on this test set. At the end of this process, it appeared that
the best model was obtained when the data was organized in batches of 32 samples,
with an initial learning rate of 1+ 1077, a learning rate scheduler on plateau using a
factor of 100 with a patience of 2 (the learning rate is divided by 100 when the valida-
tion AUC decreases for two consecutive epochs) and a dropout rate of 0.2. Note that
the model was initialized picking the best one among 200 models generated from a
roulette maximizing the AUC. This model was implemented with PyTorch using the
Adam optimizer to update its weights and was trained on an Nvidia GeForce GTX
Titan X graphics card during approximately 3 hours.

5.2.4 Training verification

In deep learning, two main problems can occur during training. The first one is
called the "vanishing gradient” problem and refers to the fact that it is possible for
the loss function to compute extremely small gradients, near zero. Consequently,
the weight update is also extremely small, which makes the neural network hard or
impossible to train. The second problem, the "exploding gradient" is the opposite.
In this case, large gradients are computed, which leads to huge weight updates that
can even reach "NaN" values. This makes the model unstable and unable to learn
from training data.

As a result, it is important to analyse the gradient propagation across the net-
work to ensure that it is not facing such problems. To achieve this goal, a visual-
ization tool to display the gradients of the entire network was implemented. This
implementation is based on the code of RoshanRane [38]. This allows to visually
notice the gradient flow at a glance and to see its evolution throughout all epochs
(one visualization per batch is generated).

Gradient flow visualization

The visualization displays the gradient flow through the entire neural network. It
shows the name of each layer on the x-axis and its average gradient value on the
y-axis (recall: for each layer the gradient is a matrix). Furthermore, it also gives
information about the max value of the gradient and indicates in black if one of
them is equal to zero.

Figure 5.6 shows the gradient flow at epoch 0, batch 6. From the output layer
(called "last_layer0.weight" on the graph) to the first layer, the gradient is well prop-
agated: no huge average gradients are registered, neither extremely small ones. The
training process goes on correctly.

5.2. Reproducing the paper experiment 47

Gradient flow

0.0200
mems max-gradient
0.0175 7 === mean-gradient
0.0150 = zero-gradient
]
c
2 0.0125 4
=)
e
o 0.0100 +
v
on
T 0.0075 -
g
© 0.0050
0.0025 A
0.0000
7T/ T/ 1" 1T "1 T "T+T T/ "7 "1T 7T "1T ""T ""T1T 1T 1T "T 7
L e T R e e I I T T T I T I I =
£ £ £ £ £ £ £ £ £ - £ £ - - - £ - - - =
=L~ = (.= = = = = = L = L = | .= = =L =L = = = = = N = =
U U1 U U 0 0 0 U U U U U U U U T U U T U U T
==:%:333533253533:3:233353333
S A oMo 8~ Ao oo~ BN 8l oMWY o
I T R R T L L L L T L T B B
U U U U LU Uy owow ow o owow ow ow oW oy oW U U U U
5555559 ¢ 9900000000 EEE B
wowm wm ©
mmmmwmwm 2222222222232 9wy
qﬂgg&'gq@q@mmmmmmmmmmmmg%%ﬁ
g e g e g pop g e gy i
Layers

FIGURE 5.6: Gradient flow at epoch 0 of the experiment, batch 6

5.2.5 Results

Figure 5.7 shows the different metrics registered on the training and validation sets Jobin
during the training phase. The best model was chosen at epoch 21 with an accuracy
of 0.7525 and an AUC of 0.765 on the validation set (recall: the condition for a model
to be chosen as best is that the current AUC and accuracy must be higher than the
AUC and accuracy of the previous best model).
This best model was evaluated on the test set built for the experiment and achieved
an AUC of 0.75 using the authors’ "enhanced prediction" technique (see Figure 5.8).
Finally, the model was also tested on the official SPIE-AAPM-NCI Prostate MR
Classification Challenge test set and achieved an AUC of 0.71 (see Figure 5.9). This
result will be used as a benchmark in comparison with the model trained on the
whole dataset in the second part of the experiment.

48

Chapter 5.

Research paper experiment reproduction

accuracy

flscore

precision

accuracy, Best HP: 50 epochs, 1e-07 Ir

auc, Best HP: 50 epochs, 1e-07 Ir

0.75 4 — Training accuracy —— Training auc
—— Validation accuracy 0.751 —— validation auc 7‘%@%57\90*
v v
0.704 0.70 4
0.65
0.65 g
E
0.60
0.60 -
0.55 4
0.55 1 0.50
T T y T y T T T T T T T
0o 10 20 30 40 50 0 10 20 30 40 50
Number of epochs Number of epochs
flscore, Best HP: 50 epochs, 1e-07 Ir loss, Best HP: 50 epochs, 1e-07 Ir
—— Training flscore —— Training loss
0744 — Validation flscore 0.69 4 —— Validation loss
0.727 0.68
0.70 4
2 0.67 -
2
0.68 §
0.66 -
0.66
0.65
0.64 4
T T T v T v T T y T v T
0 10 20 30 40 50] 10 20 30 40 50
Number of epochs Number of epochs
precision, Best HP: 50 epochs, 1e-07 Ir recall, Best HP: 50 epochs, 1e-07 Ir
. 0.900 o -
—— Training precision —— Training recall
0.75 4 — Validation preqs\;}n 08754 Validation recall
0.850 -
0.70 4
0.825 4
o.6s E 0.800
2
0.775 4
0.60 71 0.750 1
0.725 1
0.55 1
0.700 -
T T T T v T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50

Number of epochs Number of epochs

specificity, Best HP: 50 epochs, 1e-07 Ir

081 Training specificity

—— Validation specificity
0.7)
0.6

0.3 4

0.2 A

20 30
Number of epochs

FIGURE 5.7: Metrics on the training and validation sets

5.2. Reproducing the paper experiment 49

AUC OF THE CLASSIFIER ON THE TEST SET

AUC: 0.75

Running time: 0.8341419696807861

FIGURE 5.8: AUC of the best model on our test set

Result

User

. .
itﬁ_’! JohanAndlulien

Challenge
PROSTATEx

Submission created
Feb. 13, 2020, 10:32 a.m.

Result created
Feb. 13, 2020, 10:32 a.m.

Position on leaderboard
955

Visibility
@ This result is published on the leaderboard
Algorithm Description:

Comment:

Metrics
{

"case": {1},
"aggregates": {
"roc_auc_score": 8.71

b

FIGURE 5.9: Score achieved on the PROSTATEXx challenge only using
our custom training set (80% of all available data) for the training

5.2.6 Discussion

Thanks to the curves of Section 5.2.5, a lot of information regarding the model per- Jobin
formance can be inferred. In fact, as stated by Jason Brownlee, "reviewing learning

50 Chapter 5. Research paper experiment reproduction

curves of models during training can be used to diagnose problems with learning,
such as an underfit or overfit model, as well as whether the training and validation
datasets are suitably representative" [39].

First of all, when observing the loss plot, it is noticeable that the training and
validation losses have the same behavior during the 50 epochs. This is a clear sign
of good fit of the model on the data. All the features learned by the model on the
training data are also applicable to the validation set. This situation is the optimal
one. Regarding the slope of the curve, a big change occurs at epoch 17. This moment
corresponds to the one where the learning rate is reduced by a factor of 100 thanks to
the reducelronplateau function. In fact, at this moment, the validation AUC (the train-
ing is optimized according to this metric) is at its optimum with this learning rate.
If this technique had not been used, the training loss would have continued to go
down whereas the validation loss would have gone up immediately, which would
have led to overfitting. Here, thanks to the learning rate scheduler, this scenario is
avoided as the validation and training losses stay stable from this point onwards.
The same behaviour is clearly noticeable for all other metrics.

Regarding the overall performance of the best model chosen at epoch 21, the
latter generalizes well. This is particularly visible on the accuracy and AUC plots
where the validation metrics are higher or equal to the training ones. The validation
accuracy indicates that the model makes the right class decision in approximately
75% of the time. Furthermore, as the model achieves a validation AUC of 0.76, it
shows that it has a good distinction capacity. In fact, the highest the AUC is, the
highest is the ability of the model to predict benign lesions as benign and malignant
lesions as malignant. Armato et al. [7] claim that a less-experienced radiologist can
reach an AUC of 0.81 and an expert an AUC of 0.91. Consequently, this model is
almost at the level of a radiologist, which is very promising. It is also important to
keep in mind that the model was trained using only 164 patients (80% of the 204
training patients), which suggests that even better results can be reached with more
data.

The precision plot, which is used to measure the proportion of malignant lesions
correctly classified among all lesions classified as malignant lesions, confirms the
hypothesis that the model has a good distinction capacity with a score of approxi-
mately 0.76 on the validation set.

Another extremely important aspect in the medical field is to avoid the number of
false negatives as much as possible. In fact, the consequences of classifying a malig-
nant lesion as benign are far worse than the opposite. This concept is measured by
the recall, which quantifies the proportion of malignant lesions correctly classified
among all malignant lesion. The model has a recall of around 0.74 on the validation
set.

The two last metrics (precision and recall) are both considered in the f1-score that is
equal to 0.76.

Finally, the specificity indicates the proportion of correctly classified benign lesions
among all benign lesions and is equal to approximately 0.76.

Globally, this model is balanced as no metric is exploding at the expense of another.
This stability constitutes a serious strength regarding its generalization ability.

As the goal of the experiment was to reproduce the experiment of the paper, a
comparison between the two models is necessary. The reproduced model achieves
an AUC of 0.75 on our test set (see Figure 5.8) using the authors” "enhanced predic-
tion" technique, whereas the authors achieved an AUC € [0.876 — 0.994] with 95%
of confidence on their test set. Consequently, the model presented in this work has a

5.2. Reproducing the paper experiment 51

slightly smaller AUC of [0.126 — 0.244] than the one achieved in the paper. Multiple
factors can explain this difference.

First, in their work, the lesion cropping was performed by a qualified radiolo-
gist, whereas, in our case, it was automatically done using the information in the
CSV files. Then, the way the test set is built can make the results vary a lot. In fact,
the authors did not provide any information about how they built their test set. It
is therefore possible that the test set was chosen to maximize the performance of the
model. In the current work, the test set is built randomly. Consequently, the com-
parison of the performance is difficult since the test set is not the same in the two
works. The only way to seriously compare the two models would be to compare
their performance on the official SPIE-AAPM-NCI Prostate MR classification chal-
lenge test set. The model of this section (trained with 80% of all the data available)
reached an AUC of 0.71. Unfortunately, no information about the performance of
the model of the paper is given. Knowing that the best result at the time of the chal-
lenge was an AUC of 0.87 on the challenge test set, it is highly surprising not to take
part in it when claiming an AUC in the interval [0.876 — 0.994] with 95% of confi-
dence. Finally, another source of difference is the number of participants in the ex-
periment and the level of experience they have. Indeed, seven authors contributed
to the paper, including one student with a Bachelor degree and six PhD with one
of them working for Siemens Healthcare and one for hImagingTek Ltd. These big
companies are specialized in medical imaging and have departments dedicated to
machine learning. On the opposite, this work was produced independently by two
MSc students without previous experience in the medical imaging field.

Jobin

Jobin

Jobin

52 Chapter 5. Research paper experiment reproduction

5.3 SPIE-AAPM-NCI Prostate MR Classification Challenge

This section aims at maximizing the result on the SPIE-AAPM-NCI Prostate MR
classification Challenge test set by using the entire dataset as training set, instead of
using 80% of it, as it was done in the previous section. First, the changes needed to
reach this new goal are detailed, then the raw results are presented and the latter are
finally interpreted.

5.3.1 Training the neural network with the whole dataset

The first part of the experiment, in which the whole dataset was split into a train-
ing (80%), a validation (10%) and a test set (10%), was extremely useful to find the
right hyperparameters. It also gave the opportunity to check that the model and the
processing of the data worked as expected with the goal of creating a state-of-the-art
deep learning model for prostate lesion classification.

As a complement, this part of the experiment focuses on the challenge results
in order to improve the AUC of 0.71 achieved by the model trained with 80% of all
available data. In a general way, the more available data there is, the better the model
performs. Consequently, the idea behind this section is to use the entire dataset as
training set, discarding the validation and test sets from the previous section. Apart
from this new split, the data processing and the hyperparameters stay the same. The
only difference in the training is about the learning rate scheduler. Since the valida-
tion set does not exist anymore, there is no possibility to use the reducelronplateau
function to prevent overfitting. However, this does not cause any problem thanks to
the results of the previous section. In fact, it is clearly visible that the model would
have started overfitting at epoch 17 if no learning rate correction had been applied.
Hence, it is possible to conclude that, in this case, the best model should also be the
one around epoch 17 (or a few epochs later). In order to ensure this, the models at
epochs 15,16, 17, 18, 19, 20, 21, 22, 23 and 30 were evaluated on the official challenge
test set. For each of these models, a CSV file containing the predictions for each
lesion of each patient was automatically generated and submitted to the challenge.

5.3.2 Results on the challenge test set

Figure 5.10 presents the metric values the model reached while training on the whole
dataset. The models whose results are reported in Table 5.2 were picked from this
training.

Table 5.2 shows the AUC values achieved by the model on the official challenge test
set. The range of values is contained in the interval [0.75 — 0.76]. Each model was
tested in order to see if a slight peak of 0.01 could be found from one epoch to the
other.

Finally, Figure 5.11 shows our participation to the challenge with the model picked
at epoch 20, which achieved an AUC of 0.76.

5.3. SPIE-AAPM-NCI Prostate MR Classification Challenge

53

flscore

accuracy, Best HP: 100 epochs, 1e-07 Ir

auc, Best HP: 100 epochs, 1e-07 Ir

—— Training accuracy 0.90 1 —— Training auc
0.80 1
0.85 1
0.75 4 0.80 1
o
£ 0.701 o 0.75
3 E
©
0.70
0.65 1
0.65 1
0.60
0.60 1
0.55 4
[20 40 60 80 100) 20 40 60 80 100
Number of epochs Number of epochs
flscore, Best HP: 100 epochs, 1e-07 Ir loss, Best HP: 100 epochs, 1e-07 Ir
08254 ___ Training flscore —— Training loss
0.675
0.800 +
07754 0.650
0.750 1 0.625
]
0.725 1 < 0.600 1
0.700 4 0.575
0.675 1 0.550
0.650 0.525 -
0 20 40 60 80 100 0 20 40 60 80 100
Number of epochs Number of epochs
precision, Best HP: 100 epochs, 1e-07 Ir recall, Best HP: 100 epochs, 1e-07 Ir
—— Training precision 0.825 { — Training recall
0.85
0.800 -
0.80
0.775
0.75 A
§ _ 0750
i} T
G 0.70 S
g g
a 0.725
0.65 1
0.700
0.60 4
0.675 -
0.55
0.650
T T v T T T T u T v T T
0 20 40 60 80 100 0 20 40 60 80 100

Number of epochs

Number of epochs

specificity, Best HP: 100 epochs, 1e-07 Ir

094 Training specificity

0.8

o o
o ~

specificity

14
w

0.4

0.3 4

40 60
Number of epochs

80 100

FIGURE 5.10: Metrics on the training using all data available as train-
ing set

54 Chapter 5. Research paper experiment reproduction

Epoch | 15 16 17 18 19 20 21 22 23 30

AUC |0.75|0.75]0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.75 | 0.75

TABLE 5.2: AUC of the model saved at different epochs on the official
SPIE-AAPM-NCI Prostate MR classification test set

Result

User
i%! JohanAndJulien

Challenge
PROSTATEX

Submission created
Feb. 17, 2020, 9:18 a.m.

Result created
Feb. 17,2020, 9:18 a.m.

Position on leaderboard

742

Visibility

@ This result is published on the leaderboard
Algorithm Description:

Comment:

Metrics
{

"case": {},
"aggregates": {
"roc_auc_score": 0.76
¥
¥

FIGURE 5.11: Score achieved in the PROSTATEX challenge by the
model picked at epoch 20, trained on all available data as training
set

5.3. SPIE-AAPM-NCI Prostate MR Classification Challenge 55

5.3.3 Discussion

Figure 5.10 illustrates once again the correct behavior of the model during the train-
ing. All metrics reach their point of convergence at some point, the curves do not
oscillate much and the loss curve is continually decreasing, which is a good learning
indicator. In comparison to the the first part of the experiment, it is clearly visible
that the metrics have a higher best value. This is due to the absence of learning rate
scheduler during the training. As a result, from a certain epoch onwards, features
learned by the model are not transposable to unseen data anymore and the latter
overfits the data. To determine this point, multiple models around epoch 20 were
evaluated on the challenge test set (see Figure 5.2). It is noticeable that the model
did not reach its best performance before epoch 15 and that it started overfitting af-
ter epoch 23. Every model between these two epochs achieved an AUC of 0.76 on
the challenge, which seems to be the optimum value with this data and this config-
uration.

In comparison to the model of the previous section trained on 80% of the avail-
able data, this new one improves the performance by 0.05 (AUC of 0.76 vs 0.71). This
is a clear indication that the more data there is, the better the model performs.

Finally, regarding the overall leaderboard of all challenge participants at the time
of the challenge, the model would have been well ranked. Indeed, according to
the 71 submissions to the PROSTATEX challenge (see Figure 2.1), the AUC of 0.76
achieved in this work would have placed the model at the 15" position overall.

Jobin

57

Chapter 6

Improving performance using
transfer learning

This chapter proposes a technique to improve cancer detection and classification
despite the lack of publicly available medical data. To achieve this, transfer learning
is used.

First, a general definition of transfer learning is given. Its utility in this specific
application is discussed as it can be useful but not in any case. Second, the different
steps involved in the process are described in order to get an overview of the whole
transfer learning pipeline that was applied. Then, a section focuses on the processing
of new datasets that are used in the final experiment. Finally, the latter and its results
are discussed.

6.1 Goal

Transfer learning consists in using a network which was pretrained on a dataset A
to improve the performance of a similar task on a dataset B.

This technique makes sense when the quantity of data available is not sufficient.
This condition is fulfilled in the case of cancer detection. In fact, medical data is
highly confidential and cannot be shared easily. Provided that medical institutions
agree to share it, it has to undergo an anonymization process which follows very
strict rules. Then, to be usable as part of a deep learning classification task, data
must be organized and described precisely. In other words, additional information
such as the clinical significance, the position of the lesion, etc. must be collected and
put together. This whole process requires considerable effort, which is one of the
reasons why usable medical data is hard to find.

However, in order for the transfer learning to be useful, common low-level fea-
tures have to be present among the datasets on which the model is trained. Con-
sequently, the goal of this experiment is to use transfer learning on three datasets
coming from three different body parts that are prostate, brain and lung, in order
to check if they share common features that could be useful to improve the perfor-
mance of the model on a specific dataset. In this experiment, the model trained to
classify prostate lesions is then trained to classify brain tumors and finally lung le-
sions. At the end of the process, the model is once again trained on the prostate
dataset and the performances of the model at the beginning and at the end of the
experiment are compared.

Throughout the whole pipeline, the target metric to optimize is the AUC. In fact,
the latter represents a degree of separability, i.e. how well the model distinguishes
between classes. In cancer classification, the diagnosis must be clear. For instance,
Model A and Model B can classify a sample X as benign (prediction: class 0) but

Jobin & Clément

Jobin & Clément

Clément

58 Chapter 6. Improving performance using transfer learning

with different probabilities of 0.10 and 0.45 respectively, where the latter are the
probabilities of belonging to class 1 (malignant). While Model A is sure of its choice,
Model B is not trustworthy and may misdiagnose samples.

6.2 Process overview

The approach consists in five different steps. Figure 6.1 gives a visual representation
of the following explanations:

1. First of all, similar datasets are collected and processed in the same way. These
datasets need to share common features. For example, DWI images (MRI se-
quence) and CT scans share the same color scheme and look alike (the same
kind of tissue is visible, etc.).

2. Second, the convolutional neural network is built and split into two parts. It is
still a single network but the first layers are treated as a feature extractor. As
the name suggests, the role of these layers is to extract visual features charac-
terizing what a cancerous tumor looks like. On the other hand, the last layers
are considered as a decision maker. They gather the features collected by the
feature extractor and process them to make a decision on the class of the input
sample.

3. Third, the model is trained on the target dataset and the model whose perfor-
mance is the best is saved. The target dataset is the dataset which one wants
to improve the performance of the model on. This first training establishes
a baseline of performance and a baseline of features which will be improved
further on.

4. Fourth, the core of the transfer learning process starts. For each non-target
dataset, two different trainings take place:

(@) The model saved at the end of the previous training is loaded. Its last
layers (the decision maker) are completely reset, i.e. the weights are reset
to another initialization, as if no training occured for these layers. After-
wards, the first layers (the feature extractor) are frozen and the model is
trained. Since the first layers have been frozen, their weights remain the
same. Only the weights of the last layers change during this training. This
part of the transfer learning allows the model to make use of the previ-
ously learned features while adapting to the new body part by training
the decision maker.

(b) Once the training with frozen layers is over, the best model is loaded,
the frozen layers are unfrozen, and a normal training is performed on the
same dataset. Thanks to this, the model adapts the previously learned
features and tries to learn new features which could be useful for the clas-
sification of the target dataset.

5. Fifth, the previous step is also applied to the target dataset. The only difference
lies in the frozen part. Instead of dropping the old last layers and initializing
their weights randomly, the decision maker of the best model found during the
training on the first dataset is attached to the model. These final two trainings
aim at keeping the interesting features from the other datasets while learning

6.3. Data processing 59

specializing the model in the target dataset again. Hopefully, the new weight
initialization resulting from the transfer learning will allow to reach better met-
ric values than before the transfer learning.

Load model from Search for the best Train using Save the best model
Dataset 1 - Fu" roulette (best the best (AUC) Test the model on
initialization i i h " Save its Decision the test set
according to AUC) manually yperparameters Maker (last layers)
Load the best model Freeze the feature Search for the best Save the best model
Dataset 2 - Frozen —— savedattne P anual e ave
previous step Reset the last layers T _manually ()
rain using them

Search for the best
Load the best model
Unfreeze the feature hyper Save the best model
Dataset 2 = Fu" saved at the extractor manually (AUC)

previous step Train using them

Load the best model Freeze the feature Search for the best Save the best model
Dataset 3 - Frozen —> savedatthe [Rlebonitt AUG —
previous step Reset the last layers Trai waty ()
rain using them
Search for the best
D ataset 3 - Fu" L“:;c:::'s'“"'; odel Unfreeze the feature hyper Save the best model

previous step Train using them

extractor manually (AUC) ‘

Load the best model Freeze the FE Search for the best
- > Load the Decision hyper Save the best model
Dataset 4 Frozen sr:‘\ll?:uas' ;:': Maker of the 1st step manually (AUC)

P P as last layers Train using them

Search for the best

Dataset 4 - Fu" Loa:;:‘; :;st":r;odel Unf the feature hyper Save the best model Test the model on
revious siej extractor manually (AUC) the test set

P P Train using them

FIGURE 6.1: Transfer learning - Overview

6.3 Data processing

6.3.1 PROSTATEx

Ideally, transfer learning should rely on multi-sequence MRIs only. In fact, the extra
information provided by different sequences increases the performance a lot. How-
ever, publicly available datasets either do not contain the clinical significance of the
samples or were purely made for segmentation purposes (where labels are also im-
ages).

As the other datasets used in this work do not contain multi-sequence exams
(single-sequence MRIs and CT scans), it was required to extract single channel im-
ages from the PROSTATEx dataset. DWI images were selected because lesions are
white on this sequence, as well as on CT scans. Hence, choosing DWI images en-
sured a consistent representation of tumors from one dataset to the other, which
helps the cancer detection.

Clément

Clément

Clément

60 Chapter 6. Improving performance using transfer learning

The overall process is the same as the one described in Section 5.2.1, apart from
a few details. First, a T2-weighted image was still used to align and resize the corre-
sponding DWI image, but was not exported at the end, resulting in a single-channel
DWI image (NumPy array) instead of a stacked image. As DWI images are not of
the same size, the fact of using the corresponding T2 images to resize them was the
easiest way to make the new implementation go without a hitch.

Second, the way of cropping images was slighty modified. Previously, a 65x65px
patch centered on the lesion was cropped, which sometimes resulted in patches
cropped inside the lesion (i.e. patches which did not contain the entire lesion). As
the two missing channels reduce the amount of information contained in each im-
age, cropping inside lesions complicates the work of the neural network. Therefore,
a larger patch of 130x130px was cropped, before being resized to 65x65px using
a bicubic interpolation. These dimensions were found to be the best compromise
across the whole dataset since they allowed to crop the vast majority of lesions with
a small tissue margin around them. Consequently, the borders of the lesions are also
visible on the images, which should help the detection process.

6.3.2 LungCTChallenge

Dataset description

Lung CT Challenge [9, 40, 41] is composed of two different subdatasets of CT scans:
one is called "calibration set" (10 patients) and the other "test set" (60 patients). Each
patient can have one or multiple findings. As labels were provided for both sets and
the amount of data is fairly low, they were merged and used as a global training
set. For each finding, an abnormal mass is visible in the lungs, which means that the
classification is going to differentiate malignant from benign tumors.

Regarding labelling, two Excel files, TestSet_NoduleData_PublicRelease_wTruth and
CalibrationSet_NoduleData, contain the corresponding labels for these images. In or-
der to facilitate the handling of information in the code, two CSV files were manually
created: TestSet.csv and CalibrationSet.csv. Contrary to PROSTATEx, more than two
labels were used in this dataset. Both "malignant” and "Primary lung cancer" were
considered as positive, whereas "benign" and "Benign nodule" were treated as neg-
ative. A fifth label called "Suspicious malignant nodule" appeared two times. Since
the diagnosis was not clearly defined for those images, they were not included in
the training data to avoid any noise.

From DICOM to augmented NumPy arrays

Like PROSTATEYX, the processing was split into two parts: preprocessing (DICOM to
NumPy arrays) and augmentation (NumPy arrays to cropped augmented NumPy
arrays). Algorithm 3 shows the various preprocessing steps.

The augmentation process is close to the one applied to PROSTATEx. An advan-
tage Lung CT Challenge has is that all images have the same resolution (512x512
pixels), making the alignment process used for PROSTATEx useless. Neverthe-
less, lung tumors are particular. What differentiates them from the others is their
look. In fact, lung tumors usually look like spider webs with a central nodule and
branches coming out of it, whereas brain and prostate tumors tend to have well-
defined boundaries. Therefore, a larger patch size was chosen in order to keep the
extra information provided by the branches in the peripheral tissue. Furthermore,
a perfect cropping method would only crop the interesting part of the tissue and a
margin around it. However, tumor size varies a lot. It can either be extremely small

6.3. Data processing 61

(a dot) or large (massive nodule with long branches). Consequently, the selected
patch size makes the largest tumors fit perfectly in the cropped area, inducing more
tissue for smaller tumors. Naturally, there were some outliers whose size was a lot
larger than the chosen patch size. If the patch size was set accordingly, entire lungs
were sometimes visible in other patients” case. For this reason, these large tumors
were treated as outliers. The chosen dimensions are 1/6 of the image width and
height (i.e. 85x85px since the image size is 512x512px). These patches were then re-
sized to 65x65px thanks to a bicubic interpolation, before being exported as NumPy
arrays.

Also, and contrary to PROSTATEX, the dataset was more or less balanced (39
positives and 42 negatives). Therefore, each class was augmented the same amount
of times (240x). Lastly, images were normalized with respect to Equation 5.1. The
mean and standard deviation were computed over the whole dataset.

Algorithm 3 Lung CT Challenge preprocessing

procedure MAIN(dataset_folder, train_CSV ,test_CSV,output_folder)
Create output directories: “output_folder/True”,”output_folder/False”

csv_test < read_CSV (test_CSV) > TestSet.csv
csv_concatenated < concat(csv_training, csv_test) > Both CSV files contain
similar information about different patients.

1:
2
3:
4 csv_training < read_CSV (train_CSV) > CalibrationSet.csv
5
6

7
8: for row in csv_concatenated do
9: patient_id < row|[”Scan Number”|
10: slice_number < row[”Nodule Center Image”] > Value in [1, o]
11: finding_id < row|”Nodule Number”
12: clinical_significance < row[”Diagnosis”|
13:
14: if clinical_significance == "malignant” or ”Primary lung cancer” then
15: clinical_significance <— True
16: else if clinical_significance == "benign” or ”Benign nodule” then
17: clinical_significance < False
18: else if clinical_significance == "Suspicious malignant nodule” then
19: Continue
20:
21: for visit in patient_id’s folder do
22: for mri_type in visit do
23: for dicom_file in mri_type do
24: if slice_number == dicom_file.InstanceNumber then
25: slice «— normalize_dicom(dicom_file) > see section 4.3.3
26 Save slice in “output_folder/clinical _significance”

6.3.3 Kaggle Brain
Dataset description

This dataset is publicly available on Kaggle [42]. All images come from single-
sequence MRIs. It is composed of two folders: one containing images with can-
cerous tumors and another one containing images either without tumor or with a

Clément

Clément

Clément

62 Chapter 6. Improving performance using transfer learning

non-cancerous tumor. Images whose quality was extremely low (resolution, picture
of a screen, artefacts, etc.) were manually removed. In other cases, the image quality
was good but disturbing objects such as left/right markers or arrows pointing the
tumor were visible. These objects were manually removed using the object removal
tool in Photoshop or by cropping the image if the disturbing object was far from the
skull. At the end of this cleaning process, the dataset was composed of 96 benign le-
sions and 133 malignant ones. File names and file formats were still heterogeneous.

Ground truth creation

The particularity of this dataset is that no information apart from the clinical signifi-
cance is provided. Therefore, it was necessary to create a ground truth CSV file from
scratch so that the same processing methods as the other datasets could be applied
to this one.

The first step was to standardize the file names and formats. The chosen conven-
tion is "[yes|nolindex.jpg". The vast majority of the files were in the JPG file format,
so the few PNG images were converted. Then, a CSV file containing the following
columns was created: "PatientID", "Nodule Center Position", "fid", "Diagnosis". The
"PatientID" is the filename without extension that was set during the first step (for
example "yes99" or "103"). The "Nodule Center Position" represents the pixel coordi-
nates of the lesion. Fortunately, brain tumors are clearly visible on brain MRIs, which
eased the process. To find the coordinates, every single image was opened at its orig-
inal size in an image visualization software. A rectangle selection tool was used to
draw a rectangle from the top left corner of the image (because the top left pixel cor-
responds to the pixel at the coordinates (0,0) in NumPy arrays) to the center of the
lesion. The pixel width and height of this rectangle gave the "ij" coordinates of the
lesion. These coordinates were reported manually. Then, the "fid" corresponds to the
Finding ID. This parameter would be more pertinent if the same "PatientID" could
have multiple findings, i.e. if the same patient could have multiple tumors. Since
this information is made use of during the image processing of the other datasets, it
was also added here. In this particular case, the "fid" was always set to "1". Finally,
the "Diagnosis" was defined as "False" or "True" according to the folder which the
image was in. This allows to simply use the same processing techniques as for the
other datasets.

From JPG to NumPy arrays

Images had to be converted to single-channel NumPy arrays (grayscale) so that the
values could be normalized further on. First, a mere conversion involving no con-
tent modification apart from going from three to one channel was performed. Sec-
ond, images were normalized according to Equation 5.1. The mean and standard
deviation were computed over the whole dataset. Both classes were augmented by
a common factor (200x) since both classes contain a relatively close number of in-
stances (133 positives and 96 negatives).

Similarly to Lung CT Challenge, tumor sizes vary substantially. The same method-
ology was applied regarding the patch size, i.e. choosing a size which fits the major-
ity of large tumors perfectly. Even though the images all show the head under the
same perspective (same height/width ratio, visible skull, black margin around the
skull), images were probably collected from different sources, which explains the
heterogeneity of resolutions. As a consequence, the patch size could not be a fixed
number of pixels for all images because the cropped area would have been the entire

6.4. Transfer learning implementation 63

head on one image and a small portion of the tumor on another. The trick consisted
in finding the horizontal and vertical portions of the image occupied by the tumor.
In fact, cropping an area centered on the lesion whose height was 2 of the image and
whose width was } gave good results. Finally, images were also resized to 65x65px
using a bicubic interpolation before being saved as NumPy arrays.

6.3.4 Image cropping

Multiple ways of cropping images were tested out. The differences lay in how much
tissue was kept around the lesion. In some cases, more context around the lesion
allows to capture details about the connections between the lesion and blood vessels
for example. Moreover, the abrupt borders inducing a clear change of colors can
help detect tumors. Experience showed that more context helps when the images
are single-sequence. On the other hand, cropping right around the lesion or even in
the lesion gives better results for multi-sequence data, i.e. when T2-weighted, DWI
and ADC images (MRIs) are simultaneously used to perform the tumor detection
and classification. In the latter case, the lesion usually appears distinctively on the
three sequences, which impacts the decision a lot. On single-sequence images, there
is a clear lack of information which makes it difficult to differentiate a tumor from
another tissue without much context.

6.3.5 Verification
Visual checking

Regarding the Kaggle brain dataset, the data generated was paid close attention to
as the ground truth CSV file was created by hand (see Section 6.3.3). In fact, each
generated image was taken a close look at, which allowed to spot 3 mistakes over
the whole dataset. They concerned typos in the "Nodule Center Position", which
created pitch black images since the cropped area was outside of the original images.
Like PROSTATEX (see Section 5.2.2), images with red dots were also generated for
the lung and brain datasets.

6.4 Transfer learning implementation

6.4.1 Layer freezing

After each dataset switch, the model is first trained with frozen layers. The frozen
layers are those considered as feature extractor, i.e. the first layers of the model. The
exact point where the model is split is right after the convolutions. To perform this
freezing, multiple steps are required:

1. Reset the last layers. To achieve this, an instance of the model is created by
loading the state dictionary of the previous one, before replacing the module
containing the last layers with a new instance (i.e. a new initialization).

2. Iterate over the batch normalization layers and freeze them. Step 3 is not suf-
ficient to freeze batch normalization layers. In an implementation based on
PyTorch, this can be achieved by calling module.eval() on each module contain-
ing such layers (after the model.train() call).

3. Only pass the parameters of these last layers to the optimizer.

Clément

Clément

Clément

Clément

Jobin

Clément

64 Chapter 6. Improving performance using transfer learning

Figure 6.2 shows the chosen model split for this experience. The first fully connected
layer is part of the feature extractor because it can be considered as a feature gatherer
and assembler. The next ones are part of the decision maker.

Feature Extractor Decision Maker

Model

Dropout (0.3)
Max-pooling (2x2)
nected, 64 neurons

Dropout (0.3)
Max-pooling (2x2)

Dropout (0.3)

g
=3
=
3
2
2
-}

Dropout (0.3)
Max-pooling (2x2)

2 2
g g
8 3
% g
g 3
e e
= =
3 3
3 2
H H
s s
3 S

Convolution 1x1, 64 filters
Convolution 1x1, 128 filters

@
2
2
5
3
2
~
£
]
°
8
£
>
5
I~

Fully connected, 16 neurons

2
2
2
8
o
4
3
£
s
3
H
8

Fully cons

FIGURE 6.2: Transfer learning - Model split

6.4.2 Conditions to choose the best model

At each step of the transfer learning, the best model is saved in order to be used
during the next transfer learning step. After each epoch, the current model is com-
pared to the previous best model. If it is better, the current model becomes the best
model. A model is considered as better if its AUC is higher than the best model’s
AUC, and if its accuracy is higher than the best model’s accuracy. As the goal is to
optimize the AUC, the first condition makes immediate sense. The second condition
was put in place in order to prevent a sudden spike in AUC to set an unreacheable
value. This scenario did not occur during this experiment but during previous ones
with random initialization. The AUC at early epochs could be really high, saving an
untrained model as best model.

6.4.3 Script options
Automated transfer learning

The first Python script runs the entire transfer learning pipeline by itself. Multiple
command line arguments are required in order to load the right datasets and the
right model, to define the hyperparameters, etc. Table 6.1 gives an exhaustive list of
the script options. The particularity lies in the learning rate, number of epochs, batch
size and dropout options. In fact, the pipeline consists in seven different phases of
training: dataset 1 (full model), dataset 2 (frozen model), dataset 2 (full), dataset 3
(frozen), dataset 3 (full), dataset 4 (frozen) and dataset 4 (full). In such a case, each
phase uses different hyperparameters. Therefore, seven different parameters need
to be specified for these command line options. For example, a valid value for the
"--Ir" option could be "le-8,1e-5,1e-6,1e-6,1e-5,1e-7,1e-8".

Manual transfer learning

The second Python script allows to perform each transfer learning step by hand.
Thanks to this, a good combination of hyperparameters can be searched for without

6.4. Transfer learning implementation 65

having to run the whole pipeline. The command line arguments slighty differ from
the automated version. Table 6.2 lists them. First of all, a single training set and a
single validation set have to be specificied. In addition to this, a second dataset is
required: the reference/target one, which does not change throughout the process.
This dataset is useful for the global performance graphs (see Section 6.4.4). Another
parameter used for the global performance graphs is the "--last_layer". Its role is
limited to this, unless "--attach_ DM" is set to "True". In this case, the decision maker
loaded as "--last_layer" is attached to the current model, provided the current step is
a frozen one. This option is used at the last frozen step (target dataset), as this deci-
sion maker comes from the first training (target dataset as well). Doing this instead
of using a new random decision maker (as it is the case for the non-target datasets)
allows to start with a skilled decision maker and optimize it according to the features
learned during the transfer learning. Furthermore, arguments which were comma-
separated values become single values, as this file runs a single transfer learning
step instead of seven. Also, an output name for Tensorboard needs to be specified.
In the automated version, this output name is automatically handled by the code
itself. The latter allows to organize the various graphs generated by Tensorboard
within the Tensorboard interface. If it is used in a correct way, Tensorboard can then
be run on the root directory containing all graphs (which may be in subdirectories).

C d Description Required Type
--trainingset1 Path to training set 1 True String
--validationset1 Path to validation set 1 True String
—-testsetl Path to test set 1 True String
--trainingset2 Path to training set 2 True String
--validationset2 Path to validation set 2 True String
--trainingset3 Path to training set 3 True String
--validationset3 Path to validation set 3 True String
--batchsize Number of samples per batch True Comma-separated ints
--nbepochs Number of epochs the training phase lasts True Comma-separated ints
-Ir Learning rate used by the optimizer True Comma-separated floats
lossfunction Loss function name False String
[CrossEntropyLoss, L1Loss, MSELoss] Default: ‘CrossEntropyLoss’
—cudadevice GPU name to run the experiment False String
For example: “cuda:(’, ‘cuda:1’, ... Default: ‘cuda’
--modeltoload Pre.trained quel name PP False String
If given, load it, otherwise randomly initialize it Default: "
--dropout Dropout probability True Comma-separated floats
Metric to optimize False
--optimizedmetric The best model during the training will be saved according to it Default: ‘auc’ String
["auc’, "accuracy’, "precision’, ‘recall’, ‘f1score’, ‘specificity’] ’
--outputdirectory Root of the output directory. Used to save the models and Tensorboard’s files. lli)ael::ult: iy — String

TABLE 6.1: Automated transfer learning — List of script options

6.4.4 Visualization of the impact of the various datasets on the target task

The so-called global performance graphs are a visual representation of the impact
of each part of the transfer learning and each dataset on the target task. On paper,
each step of the transfer learning is supposed to make the model learn new features
that are useful for the first dataset (the target dataset). As described in Section 6.2,
the model can be seen as a feature extractor and a decision maker. Hence, to see
how much each step is actually helping the process, the decision maker resulting
from the best model of the first step of the transfer learning, i.e. the training on the
first/target dataset, is saved. As this decision maker is saved after the training on
the target dataset, it is specialized in the classification of the latter. In other words, if
the target dataset is a prostate dataset, it will classify prostate tumors accurately.

Then, after each epoch of every other transfer learning step, the saved decision
maker is attached to the current feature extractor. This temporary model is then
tested on the target validation set, which results in different validation metrics that
summarize the whole process.

Clément

Jobin

Jobin & Clément

66 Chapter 6. Improving performance using transfer learning

Command Description Required Type
--trainingset Path to training set True String
--validationset Path to validation set True String
--reference_training Path to target training set (for the global performance graphs) True String
--reference_validation Path to target validation set (for the global performance graphs) True String
--batchsize Number of samples per batch True Int
--nbepochs Number of epochs the training phase lasts True Int
-Ir Learning rate used by the optimizer True Float
—lossfunction Loss function name False String
[CrossEntropyLoss, L1Loss, MSELoss] Default: ‘CrossEntropyLoss’
——cudadevice GPU name to run the experiment False String
For example: ‘cuda:0’, ‘cuda:1’, ... Default: ‘cuda’
—-modeltoload Pretrained model name False String
If given, load it, otherwise randomly initialize it Default: "

--dropout Dropout probability True Float
—inputchannel i\lh;r]nber of channels of the input images True String
Metric to optimize False
--optimizedmetric The best model during the training will be saved according to it Default: ‘auc’ String

['auc’, "accuracy’, ‘precision’, ‘recall’, ‘flscore’, ‘specificity’])
—freeze True to freeze the feature extractor, False otherwise. False String
['True’, "False’] Default: "False’
-last_layer If DS1: Skip. Otherwise: path to last_layer.pckl file of previous step FDz:::ul t: no_path’ String
True to use the "--last_layer" as Decision Maker for the model. Use it for DS4 Frozen. False .
--attach_DM . P AT String
['True’, "False’] Default: "False
Step of the transfer learning pipeline. Used by Tensorboard. .
~tensorboard_output_name [’Dgl /Full’, 'DS2 /Frozen’,g’]};sg /Full’, 'DS3 /yFrozen’, 'DS3/Full’, "DS4/Frozen’, 'DS4/Full’] T4 String
--outputdirectory Root of the output directory. Used to save the models and Tensorboard’s files. ll?elfS:u] t . /runs’ String

TABLE 6.2: Manual transfer learning — List of script options

At the end of the transfer learning pipeline, a graph is generated for each metric.
These curves show the evolution of the latter across the entire process, which allows
to determine the impact of each non-target dataset on the target task. If a metric is
increasing, the features learned thanks to the corresponding dataset are useful for
the target one. In this case, the graphs show how much the features learned from
each dataset help classify prostate lesions.

6.4.5 Experimental setup

In order to maximize performance during the whole process, the hyperparameters
were manually tuned at each step, following a grid search approach to find the best
ones. Table 6.3 presents the best hyperparameters used at each step of the experi-
ment. Note that, as it was the case in the paper experiment reproduction (see Section
5.2.3), the first model was also initialized by loading the best model among 200 ini-
tializations. The model was implemented with PyTorch using the Adam optimizer
to update its weights. The complete succession of the process took approximately 60
hours on an Nvidia GeForce RTX 2080 Ti.

Dataset Step Learning rate Batch size | Dropout | Number of epochs
PROSTATEx DS1/Full le-8 128 0.4 2000
Kaggle Brain DS2/Frozen le-7 128 0.3 2000
Kaggle Brain DS2/Full le-8 128 0.3 2000
Lung CT Challenge | DS3/Frozen le-5 128 0.3 2000
Lung CT Challenge | DS3/Full le-8 128 0.3 2000
PROSTATEXx DS4/Frozen le-5 128 0.3 2000
PROSTATEx DS4/Full le-9 128 0.0 2000

TABLE 6.3: Transfer learning — Hyperparameters at each step

6.5 Results

Figures 6.3 to 6.9 show the performance of the model at each step of the transfer
learning. Each graph displays the metric values achieved on the training and the
validation set on the y-axis, whereas the x-axis represents the number of epochs.

6.5. Results

67

accuracy, Best HP: 2000 epochs, 1e-08 Ir

auc, Best HP: 2000 epochs, 1e-08 Ir

—— Training accuracy —— Training auc
0.64 1 —— validation accuracy 0.725 4 — Validation auc
"
0.62 0.700 4
0.60 0.675 A
>
E 0.58 4 o 0.650
3 3
% 0.56 4 0.625 1
0.600
0.54 -
0.575 4
0.52
0.550 4
0.50 -
T T T T T T T T T T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Number of epochs Number of epochs
flscore, Best HP: 2000 epochs, 1e-08 Ir loss, Best HP: 2000 epochs, 1e-08 Ir
—— Training flscore —— Training loss
0.6 1 —— validation flscore 0.69 1 —— Validation loss
0.5 A
0.68
0.4
o 4
é P 0.67
@ 0.3 7 o
i=]
0.66 4
0.2 A
0.1 0.65 4
0.0 4
T T T T T T T T T 0.64 1 T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Number of epochs Number of epochs
precision, Best HP: 2000 epochs, 1e-08 Ir recall, Best HP: 2000 epochs, 1e-08 Ir
1.0 9 —— Training precision 064 — Training recall
—— Validation precision : —— Validation recall
0.8 0.5 4
0.4
0.6
=
S -
n ©
o] |
E] 0.3
2044
0.2 1
0.2 1
0.1
0044 - 0.0
T T T T T T T T T T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

Number of epochs

Number of epochs

specificity, Best HP: 2000 epochs, 1e-08 Ir

0.75

0.70

0.65

—— Training specificity
—— Validation specificity

T T T T T T
250 750 1000 1250 1500 1750 2000

Number of epochs

T T
0 500

FIGURE 6.3: Transfer learning - DS1 Full

68

Chapter 6.

Improving performance using transfer learning

accuracy

flscore

precision

accuracy, Best HP: 2000 epochs, 1e-07 Ir

0.750 1 —— Training accuracy
—— Validation accuracy
0.725 1
0.700 1
0.675
v
5
0.650 - ©
0.625
0.600
0.575 4
0 250 500 750 1000 1250 1500 1750 2000
Number of epochs
flscore, Best HP: 2000 epochs, 1e-07 Ir
—— Training flscore
—— Validation flscore
0.80
0.78
a
o
0.76
0.74
0.72
T T T T T T T u T
0 250 500 750 1000 1250 1500 1750 2000
Number of epochs
precision, Best HP: 2000 epochs, 1e-07 Ir
0704 — Trafnlng precision
—— Validation precision
0.68
0.66
0.64 =
o
e
0.62
0.60 -
0.58
0.56 1 T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000

Number of epochs

auc, Best HP: 2000 epochs, 1e-07 Ir

0.85

0.80 -

0.75

0.70

0.65

0.60 -

0.55

0.50

0.45

—— Training auc
—— Validation auc

T T T T T T
750 1000 1250 1500 1750 2000

Number of epochs

T T
250 500

loss, Best HP: 2000 epochs, 1e-07 Ir

0.69

0.68

0.67

0.66

0.65

0.64

0.63

0.62

—— Training loss
—— Validation loss

T T T T T T
750 1000 1250 1500 1750 2000

Number of epochs

T T
250 500

recall, Best HP: 2000 epochs, 1e-07 Ir

1.00 -

0.98 -

0.96

0.94

0.92

0.90

—— Training recall
—— Validation recall

750 1000 1250 1500 1750 2000

Number of epochs

250 500

specificity, Best HP: 2000 epochs, 1e-07 Ir

—— Training specificity
—— Validation specificity
0.4 1
0.3 4
z
&
&
S
@
2 0.2
0.14
0.0 1

T T T
250 500 750

T
1000
Number of epochs

T
1250

T T T
1500 1750 2000

FIGURE 6.4: Transfer learning - DS2 Frozen

6.5. Results

69

accuracy

flscore

precision

accuracy, Best HP: 2000 epochs, 1e-08 Ir

auc, Best HP: 2000 epochs, 1e-08 Ir

0.85 - R
—— Training accuracy —— Training auc
—— Validation accuracy 0.95 4 — Validation auc
0.80
0.90 A
0.75 4
[
0.70 1 7 0.854
0.651 0.80
0.60
0.75
T T T T T T u T T T T T T T T T T v
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Number of epochs Number of epochs
flscore, Best HP: 2000 epochs, 1e-08 Ir loss, Best HP: 2000 epochs, 1e-08 Ir
—— Training flscore 07004 Training loss
—— Validation flscore P Validation loss
0.85 A R
0.650
0.80 - 06251
% 0.600
0.75 0.575
0.550
0.70 A 0.525
0.500 A
T T T T T T T T T T T T T T T T T u
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Number of epochs Number of epochs
precision, Best HP: 2000 epochs, 1e-08 Ir recall, Best HP: 2000 epochs, 1e-08 Ir
0.85 1 —— Training precision 1.00 1 — Training recall
——— Validation precision —— Validation recall
| 0.95 A
0.80
0.90 A
0.75 A 0.85 4
K] 1
0704 g oso
0.754
0.65
0.70 4
0.60 - 0.65
0.60 -
T T T T T T T T ™ T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Number of epochs Number of epochs
specificity, Best HP: 2000 epochs, 1e-08 Ir
—— Training specificity
0.8 —— validation specificity
0.6 1
z
=2
&
© 0.4
&
0.2 4
0.0 §
T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000

Number of epochs

FIGURE 6.5: Transfer learning - DS2 Full

70

Chapter 6. Improving performance using transfer learning

accuracy

flscore

precision

accuracy, Best HP: 2000 epochs, 1e-05 Ir

—— Training accuracy
—— Validation accuracy

0.66
0.64
0.62
0.60
0.58
0.56 T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Number of epochs
flscore, Best HP: 2000 epochs, 1e-05 Ir

0.651 — Training flscore

—— Validation flscore
0.60 1
0.55

b

0.50 1 <
0.45
0.40

0 250 500 750 1000 1250 1500 1750 2000

Number of epochs
precision, Best HP: 2000 epochs, 1e-05 Ir

0.65 . .

— Training precision

—— Validation precision
0.64 4
0.63
0.62 4
061 4 W
0.60 1
0.59 1
0.58

T T T T u T
750 1000 1250 1500 1750 2000

Number of epochs

0 250 500

recall

0.75 A

0.70 A

0.60 4

0.55

0.690 q

0.685 q

0.680 4

0.675

0.670 4

0.70 A

0.65 4

0.60

0.55

0.50

0.45

0.40

0.35

0.30 1

auc, Best HP: 2000 epochs, 1e-05 Ir

—— Training auc
—— Validation auc

T T T T T T T T
0 500 750 1000 1250 1500 1750 2000

250
Number of epochs
loss, Best HP: 2000 epochs, 1e-05 Ir
—— Training loss
—— Validation loss
T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Number of epochs
recall, Best HP: 2000 epochs, 1e-05 Ir
—— Trainingrecall
—— Validation recall
T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000

Number of epochs

specificity, Best HP: 2000 epochs, 1e-05 Ir

0851 — Training specificity

—— Validation specificity

0.80 -

0.70 -

L‘\H

0.65 -

T T T
250 500 750

T
1000

T T T T
1250 1500 1750 2000

Number of epochs

FIGURE 6.6: Transfer learning - DS3 Frozen

6.5. Results

71

accuracy, Best HP: 2000 epochs, 1e-08 Ir

0.85
—— Training accuracy
—— Validation accuracy
0.80 1
2 0.759
e
=
S
9
®
0.70 1
0.65 +
T T T T T T T u y
0 250 500 750 1000 1250 1500 1750 2000
Number of epochs
flscore, Best HP: 2000 epochs, 1e-08 Ir
—— Training flscore
—— Validation flscore
0.80 -
0.75 4
o
o
7
& 0704
0.65
0.60 -
T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Number of epochs
precision, Best HP: 2000 epochs, 1e-08 Ir
—— Training precision
—— Validation precision
0.85 4
0.80
§ 075
a
o
o
a
0.70 1
0.65
0.60

0 250 500 750 1000 1250
Number of epochs

1500 1750 2000

auc, Best HP: 2000 epochs, 1e-08 Ir

0.90 4 —— Training auc
—— Validation auc
0.85
o 0.80
3
B
0.75 4
0.70 4
[} 250 500 750 1000 1250 1500 1750 2000
Number of epochs
loss, Best HP: 2000 epochs, 1e-08 Ir
0.68 1 —— Training loss
—— Validation loss
0.66
0.64 4
@
S 0.62
0.60
0.58 4
0.56 T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Number of epochs
recall, Best HP: 2000 epochs, 1e-08 Ir
0.80
—— Training recall
—— Validation recall
0.75
0.70 1
T
S
2
0.65
0.60
0.55

specificity, Best HP:

T T T ™ T T T T
) 250 500 750 1000 1250 1500 1750 2000

Number of epochs

2000 epochs, 1e-08 Ir

0.80 1 Training specificity
—— Validation specificity
0.85 -
z]
S 0.80
&
=
o
&
0.75 4
0.70

0 250 500

1000
Number of epochs

1250 1500 1750 2000

FIGURE 6.7: Transfer learning - DS3 Full

72

Chapter 6. Improving performance using transfer learning

accuracy, Best HP: 2000 epochs, 1e-05 Ir

0.76 1 P
—— Training accuracy ’__,_,—r'_"_/-f—"‘
—— Validation accuracy
0.74 4
0.72
0.70 4
>
9
C 0.68 1
=
S
®
0.66 1
0.64 1
0.62 (__’/__—
0.60 4
T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Number of epochs
flscore, Best HP: 2000 epochs, 1e-05 Ir
07754 —— Tra!nlng flscore /_,———*F"J_J——
—— Validation flscore
0.750
0.725
® 0.700
S
@
= 0.6751
0.650 4
0.625
0.600
0 250 500 750 1000 1250 1500 1750 2000
Number of epochs
precision, Best HP: 2000 epochs, 1e-05 Ir
—— Training precision ’__‘_‘__I,_,‘J_’—f—~—
0.70 4 — Validation precision
0.68
‘5 0.66 1
@
o
2
Q
0.64 4
0.62
0.60 - I—*’/__—d—

T T T T T T
750 1000 1250 1500 1750 2000

Number of epochs

T T T
0 250 500

al

loss

recall

auc, Best HP: 2000 epochs, 1e-05 Ir

0.78 1

0.76 1

0.74

0.72

0.70

0.68

0.66

0.64

—— Training auc
—— Validation auc

T T T T T T
750 1000 1250 1500 1750 2000

Number of epochs

T T T
0 250 500

loss, Best HP: 2000 epochs, 1e-05 Ir

0.67 4

0.66

0.65

0.64 1

0.63

—— Training loss
—— Validation loss

750 1000 1250 1500 1750 2000

Number of epochs

0 250 500

recall, Best HP: 2000 epochs, 1e-05 Ir

0.85

0.80 -

0.75

0.70

0.65 4

0.60 4

—— Training recall
—— Validation recall

-

-

750 1000 1250 1500 1750 2000

Number of epochs

0 250 500

specificity, Best HP: 2000 epochs, 1e-05 Ir

specificity

—— Training specificity
—— Validation specificity

T T T T T
750 1000 1250 1500 1750

Number of epochs

T T
0 250 500 20

T
00

FIGURE 6.8: Transfer learning - DS4 Frozen

6.5. Results

73

accuracy, Best HP: 2000 epochs, 1e-09 Ir

0.78
—— Training accuracy
0764 Valldat'l:m acct{racy
0.74 4
0.72
>
9
o
3 0.70
@
0.68
0.66 -
0.64
T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Number of epochs
flscore, Best HP: 2000 epochs, 1e-09 Ir
0.8001 — Training flscore
—— Validation flscore
0.7754 wa
0.750
© 0.725
o
7
& 0.700
0.675
0.650
0.625
T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Number of epochs
precision, Best HP: 2000 epochs, 1e-09 Ir
0.72 { —— Training precision
—— Validation precision
0.70 4
0.68
c
2
2
2
5 0.66
0.64 -
0.62

T T T T T T
750 1000 1250 1500 1750 2000

Number of epochs

T
500

auc, Best HP: 2000 epochs, 1e-09 Ir

—— Training auc
—— Validation auc
0.76
0.74 1
o
5
©
0.72
0.70
T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Number of epochs
loss, Best HP: 2000 epochs, 1e-09 Ir
0.650 —
—— Training loss
—— Validation loss
0.645 -
0.640 -
0.635 +
2
£ 0.630 -
0.625 1
0.620 +
0.615 +
T T T T T T u T
0 250 500 750 1000 1250 1500 1750 2000
Number of epochs
recall, Best HP: 2000 epochs, 1e-09 Ir
0.95 4 —— Training recall
—— Validation recall
v
0.90 1
0.85 +
— 0.80 1
©
I
L
0.75 +
0.70 +
0.65 4
0.60 +
0 250 500 750 1000 1250 1500 1750 2000

Number of epochs

specificity, Best HP: 2000 epochs, 1e-09 Ir

—— Training specificity
—— Validation specificity

0.675
0.650
0.625

2 0.600 -

S
@ 0.575
&
0.550 4
0.525 4

0.500

0.475

T T T T u T
750 1000 1250 1500 1750 2000

Number of epochs

T T T
0 250 500

FIGURE 6.9: Transfer learning - DS4 Full

Clément

74 Chapter 6. Improving performance using transfer learning

Dataset name Step Best model saved at epoch | Best model on the validation set Best model on the set set
Accuracy: 0.6842
Precision: 0.3333
Accuracy: 0.6375 Recall: 0.5000
PROSTATEx DS1/Full 527 AUC: 07334 Fl-score: 0.4000
Specificity: 0.7333
AUC: 0.6833
. Accuracy: 0.7498
Kaggle Brain DS2/Frozen 1999 AUC: 0.8483 -
. Accuracy: 0.8172
Kaggle Brain DS2/Full 166 AUC: 0.85% -
Accuracy: 0.6734
LungCTChallenge | DS3/Frozen 1852 AUC: 0.7755 -
Accuracy: 0.7367
LungCTChallenge | DS3/Full 167 AUC: 0.7691 -
Accuracy: 0.7561
PROSTATEx DS4/Frozen 1914 AUC: 0.7777]
Accuracy: 0.6842
Precision: 0.3333
Accuracy: 0.7662 Recall: 0.5000
PROSTATEX D34/Full 1 AUC: 0.7749 Fl-score: 0.4000
Specificity: 0.7333
AUC: 0.8000

TABLE 6.4: Best model performance at each step of the transfer learn-
ing pipeline

Table 6.4 summarizes the performance of the best model on the validation and test
sets at each step of the experiment. Finally, Figure 6.10 compares the performance of
the model resulting from the first training to the one which underwent the transfer
learning experiment.

SUMMARY OF THE CLASSIFIER ON TEST SET SUMMARY OF THE CLASSIFIER ON TEST SET

Accuracy: 0.6842105263157895 Accuracy: 0.6842105263157895
Precision:0.3333333333333333 Precision:0.3333333333333333
Recall: 0.5 Recall: 0.5

F1l score: 0.4 F1 score: 0.4

Specificity: 0.7333333333333333 Specificity: ©0.7333333333333333
AUC: 0.6833333333333333 AUC: 0.8

FIGURE 6.10: Transfer learning - Performance comparison between
the best model obtained during DS1 Full and DS4 Full

6.6 Discussion

6.6.1 Training
DS1

First of all, the best initialization among 200 random initializations was loaded and
trained on the PROSTATEx dataset. The best weight initialization is the one which
achieved the best AUC on the PROSTATEx validation set. With a learning rate of
1% 1078 and a dropout of 0.4, the model learned genuine features in a smooth way
(accuracy of 0.6375 and AUC of 0.7334 on the validation set). Obviously, the val-
ues are lower than the ones reached in Section 5.2.5 (accuracy of 0.7525 and AUC of
0.765) since the current experiment only uses DWI images instead of stacked images
(T2, DWI and ADC). Hence, this model could only learn from one third of the in-
formation the first model had at disposal. Furthermore, the training and validation
curves remain close during the whole experiment. This behavior indicates that the

6.6. Discussion 75

model actually learns features on the training set and generalizes well on new data
(validation set), which is the best-case scenario.

DS2

The first frozen training took place on the brain dataset with a frozen version of the
best model resulting from the previous step. During the first epochs, the metrics
remain low. For example, the accuracy is below 0.575 and the AUC below 0.5, which
means that a model classifying the input randomly could have performed better.
This is to be expected as the last layers were reset to a new random initialization. In
these early stages, the model was relying on a feature extractor capable of classifying
prostate cancer. The new decision maker did not have the time to adapt to the new
task and was classifying samples randomly. Thanks to a learning rate of 1+ 1077 and
a dropout probability of 0.3, the metrics started increasing relatively fast, reaching
impressive values (accuracy of 0.7498 and AUC of 0.8483). Since the feature extractor
is frozen, this behavior indicates that the features allowing to detect prostate cancer
transfer well to brain cancer. Once more, the training and validation curves have the
same shape for every metric, which implies a healthy learning process.

Second, the frozen layers were unfrozen and the full model was trained on the
same dataset. The model resulting from the previous step is composed of a feature
extractor resulting from the training on the prostate dataset (whose features seem
to suit this dataset well) and a decision maker trained on this dataset. Therefore,
the first metric values are already high. The rest of the training aimed at learning
new useful features from the brain images, which could then be used for lung and

prostate cancer classification. As expected, the metrics increased a bit (accuracy of
0.8172 and AUC of 0.8596).

DS3

The model was then frozen again and trained on the third dataset composed of lung
images. Again, the metrics peak early. This is partly due to the larger learning rate
of 1 %107 and to the common features that prostate, brain and lung cancers share.
The metrics go not as high as for the brain dataset but still show good signs of the
usefulness of the prostate and brain features.

The full training on the lung dataset allowed to increase the accuracy by 0.06 and
the AUC by 0.1 before reaching stability. Even with a small learning rate of 1 x 1078,
the optimal model was saved pretty early (at epoch 167 out of 2000).

DS4

Finally, the model was trained on the first dataset again. At the beginning of this
frozen part, the last layers were not reset randomly. In fact, the last layers coming
from the model resulting from the training on the first dataset were used as last
layers. Since these last layers had already been trained on the same dataset, the
improvement occuring during this training stemed from new features learned from
the brain and lung datasets. With a large learning rate of 1 107>, the curves go
up quickly at the beginning, then slowly and regularly until the completion of the
training. The initial spike and the progressive increase following it show that the
low-level features acquired thanks to transfer learning are helpful for prostate cancer
classification.

Regarding the full training, the curves contain quite some noise with an already
small learning rate of 1 x 107, An even smaller learning rate of 1 x 10~1° was tested

Clément

Clément

Clément

Clément

Clément

76 Chapter 6. Improving performance using transfer learning

out but it turned out to be too small as the training and validation curves were com-
pletely flat from the beginning to the end. The noise is also very visible on specific
graphs such as the precision and specificity because the y-axis scale is small. Dur-
ing this last part of the transfer learning, the validation metrics improved during
the first 50 epochs approximately, before gently going down as the training metrics
kept increasing. At this point, the model reached its optimum. Moreover, the fact
that the validation metrics are much higher than the training ones with a dropout
probability of 0.0 indicates that the model generalizes well.

6.6.2 Visualization of the impact of the various datasets on the target task

Figure 6.11 shows the evolution of the AUC on the validation set of PROSTATEx. As
expected, the first training on PROSTATEX generated the same curve as on Figure 6.3.
The latter looks steeper because of the difference in the x-axis scale.

Moreover, the frozen training on the second dataset (as well as the other frozen
trainings) shows a flat line. Reason for that is that the feature extractor and the
decision maker do not change here. In fact, the former is frozen and the latter is
always the same. As the decision maker is the one coming from the best model
of the first training according to the validation AUC, the flat line is as high as the
best validation AUC value reached during the first training. Furthermore, the full
training curves show that brain cancer features are actually helpful. If they were not,
the metrics would not have increased as fast and would not have reached higher
values than the ones reached at DS1 Full.

During the full training on the lung dataset, the AUC started at a high value
after the first epoch. The combination of the prostate, brain and lung features seem
to help the model generalize. This hypothesis is confirmed by the values reached
during last training on the prostate dataset. In fact, the AUC value is higher than the
one reached during the first training. Interestingly, the curve starts high, improves
for 50 epochs and starts decreasing. This implies that the model reached a high level
of generalization during transfer learning. These 50 epochs were enough to keep the
low-level features learned thanks to the other datasets while adapting the model to
the target task again. Overall, it is noticeable that the maximum AUC is higher at
each step.

6.6.3 Performance on the test set

To test the effectiveness of this transfer learning pipeline, the performance of the
model before and after transfer learning was compared. Figure 6.10 summarizes
the various metrics. To obtain these numbers, both models were tested on our test
set composed of 19 samples which have never been seen by the model before. The
"enhanced prediction" technique proposed by Song et al. [4] was applied. As a re-
minder, the 19 test samples were augmented 11 times following the usual augmenta-
tion process (see Section 6.3). The model predicted a value for each of the 11 versions
of a sample. These values were then averaged.

As explained in Section 6.1, the primary goal of this technique is to increase the
AUC as much as possible, as it evaluates how well the model can distinguish be-
tween classes. The transfer learning allowed to increase the AUC by approximately
18%, going from 0.68 to 0.80. Armato et al. [7] stated that a less-experienced human
radiologist can reach an AUC of 0.81 and an expert an AUC of 0.91. This perfor-
mance indicates that the model was able to learn low-level features from each body

7]
>
T

accuracy

6.6. Discussion

77

Model performance on the target dataset, with the Decision Maker from DS1

0.75

0.70

0.65 4

0.60 4

0.55 -

— ™

o4

T T T T T
1400 2800 4200 5600 7000
Number of enochs

DS1_Full DS2_Frozen DS2z_Full DS3_Frozen

T
8400

T
9800

DS3_Full

T
11200

DS4_Frozen

T
12600

DS4_Full

FIGURE 6.11: Transfer learning — Global Performance — Validation

AUC

Model performance on the target dataset, with the Decision Maker from DS1

0.70

0.65 4

0.60 4

0.55

0.50

0.45

T T T T T
1400 2800 4200 5600 7000
Number of enochs

DS1_Full DS2_Frozen DS2_Full DS3_Frozen

T
8400

DS3_Full

T
9800

T
11200

DS4_Frozen

T
12600

D54_Full

FIGURE 6.12: Transfer learning — Global Performance — Validation

accuracy

flscore

0.1

Clément

0.5

0.4 1

0.3

0.2

78 Chapter 6. Improving performance using transfer learning

Model performance on the target dataset, with the Decision Maker from DS1

0.6

T T T T T T T T T T
(1] 1400 2800 4200 5600 7000 8400 9800 11200 12600
Number of enochs
DS1_Full DS2_Frozen Ds2_Full DS3_Frozen DsS3_Full DS4_Frozen DS4_Full

FIGURE 6.13: Transfer learning — Global Performance — Validation f1-
score

part in order to generalize. Hence, the fact that this model is close to humans is
promising.

Regarding the other metrics, the values stayed the same. The reason for that is
that the AUC is computed using exact predictions (float values € [0.0,1.0] expressing
the probability that a sample belongs to the positive class), whereas the other metrics
are based on class predictions (either 0 or 1). In other words, the model made the
same predictions but its predictions were a lot more distinct and trustworthy. The
fact that this test set is relatively small can play a role in this outcome, as the valida-
tion metrics were far better during the last training on PROSTATEXx than during the
first one (for instance, the validation accuracy went from 0.6375 to 0.7749 when the
best model was saved, which is clearly visible on Figures 6.11, 6.12 and 6.13 when
comparing "DS1_Full" with "DS4_Full").

6.6.4 Conclusion

This transfer learning approach using frozen and unfrozen parts allowed to increase
the AUC of the model by 18%. It increased the generalization ability of the model
by learning features coming from different body parts. This makes the model more
robust and more likely to classify new unseen data well. As this model reached an
AUC (0.80) similar to the one a less-experienced radiologist can aim for (0.81), the
goal of creating a model which generalizes well is reached. These improvements are
a step forward in a field where the nonavailability of data is a real obstacle that pre-
vents deep learning-based cancer classification systems from making a major break-
through.

79

Chapter 7

Conclusion

7.1 Conclusion

This work presented the process leading to the development of a deep learning sys- Clément
tem to classify potentially cancerous lesions, as well as strategies to overcome field-
related issues such as the lack of data.

The starting point was the reproduction of Song et al.’s experiment [4]. Reaching
good performance in this part despite being able to reproduce every single trick
showed that our processing and training methods worked well. This resulted in
a solid baseline that was exploited in order to take part in the "SPIE-AAPM-NCI
Prostate MR Classification Challenge”, also called PROSTATEXx challenge. Various
hyperparameters and ways of processing the data were tested in order to reach an
AUC of 0.76 on this challenge. This score would have placed the model at the 15"
position out of 71 submissions at the time of the challenge [7], which confirms the
robustness of the latter.

Then, the work focused on overcoming one of the main issues in deep learning;:
the lack of data. To achieve this, transfer learning, as well as more common tech-
niques such as data augmentation, were applied. Our transfer learning implementa-
tion alternated between frozen and unfrozen steps and made use of brain and lung
datasets to increase the model performance on a prostate dataset. During frozen
steps, the first part of the model (the feature extractor) did not update its weights at
all, whereas the second part (the decision maker) did. Experiments showed that our
method allowed to increase the AUC on our test set by approximately 18%, from 0.68
before transfer learning to 0.80 after transfer learning. As a less-experienced radiol-
ogist can aim for an AUC of 0.81 [7], some adjustments (better model architecture,
other processing and augmentation techniques, more data, more time to optimize
the hyperparameters, ...) could produce a trustworthy model capable of helping
diagnose cancer.

Throughout this thesis, various reusable tools were developed: visualization
of medical imaging files, conversion of medical imaging files to PNG, a PyTorch
sampler using undersampling, easy-to-use processing scripts for multiple datasets
(PROSTATEX, Kaggle Brain, Lung CT Challenge), processing verification tools (red
dot images), training verification tools (gradient flow graphs, metrics plots using
Tensorboard), all-in-one training and testing files which can be adapted to new mod-
els and datasets, an end-to-end transfer learning pipeline. All these elements can be
used as a baseline for future works or as additions to existing projects.

Jobin & Clément

80 Chapter 7. Conclusion

7.2 Future Work

This work mainly used a single model architecture based on a VGG-16 network. Try-
ing other architectures with other kernel sizes and a different number of layers can
lead to better performance. Moreover, as MRIs are three-dimensional, using three-
dimensional convolutions could improve the results as MRIs are three-dimensional.
This would also require new processing techniques to generate volumes instead of
two-dimensional images.

However, well-labeled classification datasets can be counted on the fingers of
one hand. As deep learning models need large amounts of training data, the con-
tinuation of the same work is more or less compromised due to the lack of data. On
the other hand, tumor segmentation has become popular over the last years. Cur-
rently, most cancer-related deep learning challenges aim at segmenting tumors in
three-dimensional data, which makes such datasets easy to find. Therefore, the ex-
perience acquired in this work could be transposed to segmentation tasks, which
could even combine segmentation and classification.

Another possibility to deal with the small amount of publicly available datasets
is to develop partnerships with hospitals in order to have access to their data. Obvi-
ously, this raises questions about data confidentiality and ethics regarding how the
latter is used. New platforms ensuring their confidentiality, their public sharing and
their quality have to be developed with the goal of encouraging hospitals to share
them. A lot of work has to be done in this regard. This would allow to build even
better models in an easier way and make research move forward.

81

Bibliography

[1]

2]

[3]

4]

[5]

[6]

[7]

[8]

World Health Organization. Fact Sheet about Cancer. en. URL: https : //wuw .
who.int/news-room/fact-sheets/detail/cancer (visited on 02/06/2020).

Nicholas Petrick et al. “Evaluation of computer-aided detection and diagno-
sis systems”. In: Medical Physics 40.8 (Aug. 2013). ISSN: 0094-2405. DOTI: 10 .
1118/1.4816310. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4108682/ (visited on 02/23/2020).

Jun Gao et al. “Convolutional neural networks for computer-aided detection
or diagnosis in medical image analysis: An overview”. en. In: Mathematical
Biosciences and Engineering 16.6 (2019), pp. 6536-6561. 1SSN: 1551-0018. DOTI:
10.3934/mbe .2019326. URL: http://www.aimspress.com/article/10.3934/
mbe . 2019326 (visited on 02/04/2020).

Yang Song et al. “Computer-aided diagnosis of prostate cancer using a deep
convolutional neural network from multiparametric MRI: PCa Classification
Using CNN From mp-MRI". en. In: Journal of Magnetic Resonance Imaging 48.6
(Dec. 2018), pp. 1570-1577. 1SSN: 10531807. DOI: 10 . 1002/ jmri . 26047. URL:
http://doi.wiley.com/10.1002/jmri.26047 (visited on 01/29/2020).

Saifeng Liu et al. “Prostate cancer diagnosis using deep learning with 3D mul-
tiparametric MRI”. en. In: ed. by Samuel G. Armato and Nicholas A. Petrick.
Orlando, Florida, United States, Mar. 2017, p. 1013428. DOI: 10 . 1117 /12 .
2277121. URL: http://proceedings.spiedigitallibrary.org/proceeding.
aspx?doi=10.1117/12.2277121 (visited on 12/19/2019).

Nathan Lay et al. “A Decomposable Model for the Detection of Prostate Can-
cer in Multi-parametric MRI”. en. In: Medical Image Computing and Computer
Assisted Intervention — MICCAI 2018. Ed. by Alejandro F. Frangi et al. Vol. 11071.
Cham: Springer International Publishing, 2018, pp. 930-939. 1SBN: 978-3-030-
00933-5 978-3-030-00934-2. DOI: 10 . 1007 /978 -3-030- 00934 - 2 _103. URL:
http://link.springer.com/10.1007/978-3-030-00934-2_103 (visited on
01/29/2020).

Samuel G. Armato et al. “PROSTATEx Challenges for computerized classifica-
tion of prostate lesions from multiparametric magnetic resonance images”. In:
Journal of Medical Imaging 5.04 (Nov. 2018), p. 1. ISSN: 2329-4302. DOI: 10.1117/
1.JMI.5.4.044501. URL: https://www.spiedigitallibrary.org/journals/
journal - of -medical - imaging/volume - 5/issue - 04/044501 /PROSTATEx -
Challenges - for - computerized-classification- of - prostate-lesions-
from-multiparametric/10.1117/1.JMI .5 .4 . 044501 . full (visited on
02/05/2020).

Emine Cengil and Ahmet Cinar. “A Deep Learning Based Approach to Lung
Cancer Identification”. en. In: 2018 International Conference on Artificial Intel-
ligence and Data Processing (IDAP). Malatya, Turkey: IEEE, Sept. 2018, pp. 1-
5. ISBN: 978-1-5386-6878-8. DOI: 10.1109/IDAP.2018.8620723. URL: https:
//ieeexplore.ieee.org/document/8620723/ (visited on 01/29/2020).

https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.who.int/news-room/fact-sheets/detail/cancer
http://dx.doi.org/10.1118/1.4816310
http://dx.doi.org/10.1118/1.4816310
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108682/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108682/
http://dx.doi.org/10.3934/mbe.2019326
http://www.aimspress.com/article/10.3934/mbe.2019326
http://www.aimspress.com/article/10.3934/mbe.2019326
http://dx.doi.org/10.1002/jmri.26047
http://doi.wiley.com/10.1002/jmri.26047
http://dx.doi.org/10.1117/12.2277121
http://dx.doi.org/10.1117/12.2277121
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2277121
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2277121
http://dx.doi.org/10.1007/978-3-030-00934-2_103
http://link.springer.com/10.1007/978-3-030-00934-2_103
http://dx.doi.org/10.1117/1.JMI.5.4.044501
http://dx.doi.org/10.1117/1.JMI.5.4.044501
https://www.spiedigitallibrary.org/journals/journal-of-medical-imaging/volume-5/issue-04/044501/PROSTATEx-Challenges-for-computerized-classification-of-prostate-lesions-from-multiparametric/10.1117/1.JMI.5.4.044501.full
https://www.spiedigitallibrary.org/journals/journal-of-medical-imaging/volume-5/issue-04/044501/PROSTATEx-Challenges-for-computerized-classification-of-prostate-lesions-from-multiparametric/10.1117/1.JMI.5.4.044501.full
https://www.spiedigitallibrary.org/journals/journal-of-medical-imaging/volume-5/issue-04/044501/PROSTATEx-Challenges-for-computerized-classification-of-prostate-lesions-from-multiparametric/10.1117/1.JMI.5.4.044501.full
https://www.spiedigitallibrary.org/journals/journal-of-medical-imaging/volume-5/issue-04/044501/PROSTATEx-Challenges-for-computerized-classification-of-prostate-lesions-from-multiparametric/10.1117/1.JMI.5.4.044501.full
http://dx.doi.org/10.1109/IDAP.2018.8620723
https://ieeexplore.ieee.org/document/8620723/
https://ieeexplore.ieee.org/document/8620723/

82 BIBLIOGRAPHY

[9] Samuel G. Armato et al. “LUNGx Challenge for computerized lung nodule
classification”. en. In: Journal of Medical Imaging 3.4 (Dec. 2016). LungCTChal-
lenge dataset, p. 044506. 1SSN: 2329-4302. DOI: 10.1117/1.JMI.3.4.044506.
URL: http://medicalimaging . spiedigitallibrary . org/article . aspx?
doi=10.1117/1.JMI.3.4.044506 (visited on 01/29/2020).

[10] Brain Tumor - Statistics. en. June 2012. URL: https://www.cancer .net/cancer-
types/brain-tumor/statistics (visited on 02/05/2020).

[11] Brain MRI Images for Brain Tumor Detection. en. URL: https : //kaggle . com/
navoneel /brain - mri - images - for - brain - tumor - detection (visited on

02/19/2020).

[12] Priyansh Saxena et al. “Predictive modeling of brain tumor: A Deep learn-
ing approach”. en. In: arXiv:1911.02265 [cs, eess] (Dec. 2019). arXiv: 1911.02265.
URL: http://arxiv.org/abs/1911.02265 (visited on 01/29/2020).

[13] Mohamed Ali Habib. Brain Tumor Detection Using Convolutional Neural Net-
works. en. URL: https : //medium . com/ @mohamedalihabib7 /brain - tumor -
detection-using-convolutional-neural-networks-30ccef6612b0 (visited

on 02/06,/2020).

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 15_DeepLearningBook.pdf.
MIT Press, 2016. URL: http://www.deeplearningbook.org.

[15] Haohan Wang and Bhiksha Raj. “On the Origin of Deep Learning”. en. In: (),
p-71.

[16] Andrew Ng. Deep learning notation. URL: https://drive.google.com/open?
id=1jPHsGU4G4GMnpHwJckSRDWud3z70sW4B.

[17] Michael Nielsen. “Neural Networks and Deep Learning”. en. In: (), p. 224.

[18] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedfor-
ward networks are universal approximators”. en. In: Neural Networks 2.5 (Jan.
1989), pp. 359-366. 1SSN: 08936080. DOI: 10 . 1016 /0893 - 6080 (89) 90020 - 8.
URL: https://linkinghub.elsevier.com/retrieve/pii/0893608089900208
(visited on 01/29/2020).

[19] Thomas Epelbaum. “Deep learning: Technical introduction”. PhD thesis. Sept.
2017.

[20] Ke-Lin Du and M. N. S. Swamy. Multilayer Perceptrons: Architecture and Error
Backpropagation. en. London: Springer London, 2014. 1SBN: 978-1-4471-5570-6
978-1-4471-5571-3. DOI: 10.1007/978-1-4471-5571-3_4. URL: http://link.
springer.com/10.1007/978-1-4471-5571-3_4 (visited on 01/29/2020).

[21] Andrew Ng. “Sparse autoencode”. In: Stanford University. CS294A Lecture
notes 72 (2011), pp. 1-19.

[22] Salma Ghoneim. Accuracy, Recall, Precision, F-Score & Specificity, which to opti-
mize on? en. Apr. 2019. URL: https://towardsdatascience.com/accuracy-
recall-precision-f-score-specificity-which-to-optimize-on-867d3£11124

(visited on 01/29/2020).
[23] Sarang Narkhede. Understanding AUC - ROC Curve. en. June 2018. URL: https:

//towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9ch

(visited on 01/29/2020).

http://dx.doi.org/10.1117/1.JMI.3.4.044506
http://medicalimaging.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JMI.3.4.044506
http://medicalimaging.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JMI.3.4.044506
https://www.cancer.net/cancer-types/brain-tumor/statistics
https://www.cancer.net/cancer-types/brain-tumor/statistics
https://kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
http://arxiv.org/abs/1911.02265
https://medium.com/@mohamedalihabib7/brain-tumor-detection-using-convolutional-neural-networks-30ccef6612b0
https://medium.com/@mohamedalihabib7/brain-tumor-detection-using-convolutional-neural-networks-30ccef6612b0
http://www.deeplearningbook.org
https://drive.google.com/open?id=1jPHsGU4G4GMnpHwJckSRDWud3z7osW4B
https://drive.google.com/open?id=1jPHsGU4G4GMnpHwJckSRDWud3z7osW4B
http://dx.doi.org/10.1016/0893-6080(89)90020-8
https://linkinghub.elsevier.com/retrieve/pii/0893608089900208
http://dx.doi.org/10.1007/978-1-4471-5571-3_4
http://link.springer.com/10.1007/978-1-4471-5571-3_4
http://link.springer.com/10.1007/978-1-4471-5571-3_4
https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124
https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

BIBLIOGRAPHY 83

[24] James Dellinger. Weight Initialization in Neural Networks: A Journey From the
Basics to Kaiming. en. Apr. 2019. URL: https : //towardsdatascience . com/
weight - initialization - in - neural - networks - a - journey - from - the -
basics-to-kaiming-954fb9b47c79 (visited on 01/29/2020).

[25] Author keitakurita. Learning Rate Tuning in Deep Learning: A Practical Guide. en-
US. June 2018. URL: https://mlexplained.com/2018/01/29/1learning-rate-
tuning-in-deep-learning-a-practical-guide/ (visited on 01/29/2020).

[26] itdxer. What is batch size in neural network? URL: https://stats.stackexchange.
com/questions/153531/what-is-batch-size-in-neural -network (visited
on 01/29/2020).

[27] Jason Brownlee. A Gentle Introduction to Transfer Learning for Deep Learning.
en-US. Dec. 2017. URL: https : //machinelearningmastery . com/transfer -
learning-for-deep-learning/ (visited on 01/29/2020).

[28] Douglas Hanahan and Robert A Weinberg. “The Hallmarks of Cancer”. en.
In: Cell 100.1 (Jan. 2000), pp. 57-70. 1SSN: 00928674. DOI: 10 . 1016 / S0092 -
8674(00)81683-9. URL: https://linkinghub.elsevier.com/retrieve/pii/
50092867400816839 (visited on 01/29/2020).

[29] Douglas Hanahan and Robert A. Weinberg. “Hallmarks of Cancer: The Next
Generation”. en. In: Cell 144.5 (Mar. 2011), pp. 646-674. 1SSN: 00928674. DOTI:
10.1016/j.cell.2011.02.013. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0092867411001279 (visited on 01/29/2020).

[30] Stephen B. Edge and American Joint Committee on Cancer, eds. AJCC cancer
staging manual. en. 7th ed. OCLC: ocn316431417. New York: Springer, 2010.
ISBN: 978-0-387-88440-0 978-0-387-88442-4.

[31] Stages of Cancer. en. May 2010. URL: https://www.cancer .net/navigating-
cancer-care/diagnosing-cancer/stages-cancer (visited on 01/29/2020).

[32] A. M. Winkler. The NIFTI file format. en. Library Catalog: brainder.org. Sept.
2012. URL: https://brainder.org/2012/09/23/the-nifti-file-format/
(visited on 03/05/2020).

[33] Geert Litjens et al. “ProstateX Challenge data”. In: The cancer imaging archive ().
PROSTATEXx dataset. DOI: 10.7937/K9TCIA.2017 .MURS5CL.

[34] Geert Litjens et al. “Computer-Aided Detection of Prostate Cancer in MRI”.
In: IEEE Transactions on Medical Imaging 33.5 (May 2014). PROSTATEXx dataset,
pp. 1083-1092. 1sSN: 0278-0062, 1558-254X. DOI: 10.1109/TMI . 2014 .2303821.
URL:http://ieeexplore.ieee.org/document/6729091/ (visited on 01/31/2020).

[35] Kenneth Clark et al. “The Cancer Imaging Archive (TCIA): Maintaining and
Operating a Public Information Repository”. en. In: Journal of Digital Imaging
26.6 (Dec. 2013). PROSTATEX dataset, pp. 1045-1057. 1SSN: 0897-1889, 1618-
727X. DOI: 10.1007/s10278-013-9622-7. URL: http://link.springer.com/
10.1007/s10278-013-9622-7 (visited on 01/31/2020).

[36] b-value diffusion. en. URL: http://mriquestions.com/what-is-the-b-value.
html (visited on 02/20/2020).

[37] TensorBoard. en. URL: https: //www . tensorflow.org/tensorboard?7hl=fr
(visited on 01/31/2020).

[38] Check gradient flow in network - PyTorch Forums. URL: https://discuss.pytorch.
org/t/check-gradient-flow-in-network/15063/10 (visited on 02/20/2020).

https://towardsdatascience.com/weight-initialization-in-neural-networks-a-journey-from-the-basics-to-kaiming-954fb9b47c79
https://towardsdatascience.com/weight-initialization-in-neural-networks-a-journey-from-the-basics-to-kaiming-954fb9b47c79
https://towardsdatascience.com/weight-initialization-in-neural-networks-a-journey-from-the-basics-to-kaiming-954fb9b47c79
https://mlexplained.com/2018/01/29/learning-rate-tuning-in-deep-learning-a-practical-guide/
https://mlexplained.com/2018/01/29/learning-rate-tuning-in-deep-learning-a-practical-guide/
https://stats.stackexchange.com/questions/153531/what-is-batch-size-in-neural-network
https://stats.stackexchange.com/questions/153531/what-is-batch-size-in-neural-network
https://machinelearningmastery.com/transfer-learning-for-deep-learning/
https://machinelearningmastery.com/transfer-learning-for-deep-learning/
http://dx.doi.org/10.1016/S0092-8674(00)81683-9
http://dx.doi.org/10.1016/S0092-8674(00)81683-9
https://linkinghub.elsevier.com/retrieve/pii/S0092867400816839
https://linkinghub.elsevier.com/retrieve/pii/S0092867400816839
http://dx.doi.org/10.1016/j.cell.2011.02.013
https://linkinghub.elsevier.com/retrieve/pii/S0092867411001279
https://linkinghub.elsevier.com/retrieve/pii/S0092867411001279
https://www.cancer.net/navigating-cancer-care/diagnosing-cancer/stages-cancer
https://www.cancer.net/navigating-cancer-care/diagnosing-cancer/stages-cancer
https://brainder.org/2012/09/23/the-nifti-file-format/
http://dx.doi.org/10.7937/K9TCIA.2017.MURS5CL
http://dx.doi.org/10.1109/TMI.2014.2303821
http://ieeexplore.ieee.org/document/6729091/
http://dx.doi.org/10.1007/s10278-013-9622-7
http://link.springer.com/10.1007/s10278-013-9622-7
http://link.springer.com/10.1007/s10278-013-9622-7
http://mriquestions.com/what-is-the-b-value.html
http://mriquestions.com/what-is-the-b-value.html
https://www.tensorflow.org/tensorboard?hl=fr
https://discuss.pytorch.org/t/check-gradient-flow-in-network/15063/10
https://discuss.pytorch.org/t/check-gradient-flow-in-network/15063/10

84

BIBLIOGRAPHY

(39]

Jason Brownlee. How to use Learning Curves to Diagnose Machine Learning Model
Performance. en-US. Feb. 2019. URL: https://machinelearningmastery.com/
learning-curves-for-diagnosing-machine-learning-model-performance/

(visited on 02/02/2020).

Samuel G. Armato et al. “Guest Editorial: LUNGx Challenge for computerized
lung nodule classification: reflections and lessons learned”. en. In: Journal of
Medical Imaging 2.2 (June 2015). LungCTChallenge dataset, p. 020103. I1SSN:
2329-4302. DOI: 10.1117/1.JMI.2.2.020103. URL: http://medicalimaging.

spiedigitallibrary.org/article.aspx?doi=10.1117/1.JMI.2.2.020103
(visited on 01/31/2020).

Samuel G. Armato et al. “SPIE-AAPM-NCI Lung NOdule Classification Chal-
lenge Dataset”. In: The cancer Imaging Archive (). LungCTChallenge dataset.

Brain MRI Images for Brain Tumor Detection. en. Kaggle Brain dataset. URL:
https://kaggle . com/navoneel /brain-mri- images - for - brain - tumor -

detection (visited on 03/03/2020).

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
http://dx.doi.org/10.1117/1.JMI.2.2.020103
http://medicalimaging.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JMI.2.2.020103
http://medicalimaging.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JMI.2.2.020103
https://kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Contributions
	Work repartition

	Literature review
	Prostate – PROSTATEx
	Lung – Lung CT Challenge
	Brain – Kaggle Brain

	Deep learning
	Introduction to deep learning
	Historical background
	What is a neural network?
	Supervised and unsupervised learning

	Neural networks basics
	Notation
	Perceptrons
	Activation functions
	Multilayer perceptrons

	Training a neural network
	Forward propagation
	Loss computation
	Backpropagation
	Metrics
	Data
	Weight initialization
	Hyperparameter tuning

	Convolutional Neural Networks
	Transfer learning

	Medical information
	Cancer
	Basics
	Seriousness

	Types of medical imaging
	DICOM file format
	Origin
	Data format
	Processing images
	Order
	Data manipulation

	NIfTI file format
	Origin
	Data format
	Overview of the header structure

	RAW and MHD file formats
	Visualization tools
	DICOM
	NIfTI
	RAW

	Conversion to PNG
	8-bit conversion

	Research paper experiment reproduction
	Process overview
	Experiment reproduction
	PROSTATEx challenge

	Reproducing the paper experiment
	PROSTATEx: Data processing
	Dataset description
	Methodology
	From DICOM to NumPy arrays
	From NumPy arrays to augmented stacked images
	From NumPy arrays to augmented non-stacked images

	Data processing verification
	Cropping verification using red dots
	Alignment

	Training the neural network
	Architecture
	Script options
	Tensorboard
	Model roulette
	Experimental setup

	Training verification
	Gradient flow visualization

	Results
	Discussion

	SPIE-AAPM-NCI Prostate MR Classification Challenge
	Training the neural network with the whole dataset
	Results on the challenge test set
	Discussion

	Improving performance using transfer learning
	Goal
	Process overview
	Data processing
	PROSTATEx
	LungCTChallenge
	Dataset description
	From DICOM to augmented NumPy arrays

	Kaggle Brain
	Dataset description
	Ground truth creation
	From JPG to NumPy arrays

	Image cropping
	Verification
	Visual checking

	Transfer learning implementation
	Layer freezing
	Conditions to choose the best model
	Script options
	Automated transfer learning
	Manual transfer learning

	Visualization of the impact of the various datasets on the target task
	Experimental setup

	Results
	Discussion
	Training
	DS1
	DS2
	DS3
	DS4

	Visualization of the impact of the various datasets on the target task
	Performance on the test set
	Conclusion

	Conclusion
	Conclusion
	Future Work

	Bibliography

