
GraphEDM: A Graph-Based Approach
to Disambiguate Entities in Microposts

Master Thesis

Prathyusha Nerella

Supervisor

Prof. Dr. Philippe Cudré-Mauroux
Department of Informatics, University of Fribourg

Co-Supervisors

Akansha Bhardwaj
University of Fribourg

Paolo Rosso
University of Fribourg

5.11.2020

Abstract

The use of microblogging platforms such as Twitter has been growing rapidly. With about
500M tweets published per day, tweets are becoming a valuable source of information for several
tasks such as event detection, sentiment analysis, or opinion mining, and are being leveraged
by many prominent organisations.

However, one must first be able to correctly capture the semantic content of a tweet prior to
leveraging it for any automated analysis. Automatically understanding tweets is extremely
challenging, as the information they contain is limited and insufficient for algorithms that
need a larger context. In this work, we propose an approach that extends the context of a
micropost by leveraging graph-based algorithms to further disambiguate the entities present in
it. Our approach, GraphEDM, is divided into two phases. First, we use unsupervised clustering
approaches to regroup tweets in semantic neighborhoods using embedding approaches. Next,
each ambiguous entity in a cluster is iteratively disambiguated by leveraging a graph-based
algorithm. Our experimental results reveal that GraphEDM outperforms the state of the art
in tweet entity disambiguation by up to 15.13% on several gold standard datasets.

i

Table of Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 2
1.3 Thesis objectives . 3
1.4 Thesis outline . 3

2 Background 5
2.1 Terminology . 5
2.2 Natural Language Processing . 6
2.3 Named Entity Extraction and Linking . 6

2.3.1 Named Entity Extraction . 6
2.3.2 Named Entity Disambiguation . 7

2.3.2.1 Entity Linking on Documents and Tables 8
2.3.2.2 Entity Linking on Short, Informal Text 10

2.4 Clustering Methods . 12
2.4.1 K-Means . 13
2.4.2 K-Medoids or K-Medians . 13
2.4.3 Hierarchical Agglomerative Clustering 13
2.4.4 Affinity Propagation . 14
2.4.5 Louvain Clustering . 14
2.4.6 Hybrid Hierarchical K-Means Clustering 14

2.5 Text Vectorization . 15
2.6 Knowledge Bases . 16

2.6.1 Wikidata . 16

3 Methodology 19
3.1 Context Extension . 19

3.1.1 Preprocessing . 19
3.1.2 Vectorization . 20
3.1.3 Clustering . 21

3.2 Entity Disambiguation . 22

4 Experiments & Results 25
4.1 Datasets . 25

ii

4.1.1 Making Sense of Microposts (Micropost 2014) 26
4.1.2 Making Sense of Microposts (Micropost 2016) 26
4.1.3 Brian Collection . 27
4.1.4 Mena Collection . 27

4.2 Dataset Preparation . 28
4.3 Baselines . 29

4.3.1 AIDA . 29
4.3.2 WAT-API . 29
4.3.3 ELTDS . 29

4.4 Experiments . 30
4.5 Research Questions . 31

4.5.1 Results - Q1 . 31
4.5.2 Results - Q2 . 32
4.5.3 Results - Q3 . 33

5 Conclusion 37

A Appendix 39

Bibliography 46

Acronyms 51

List of Figures

2.1 NER Example - Stanford NER tagger . 8
2.2 Data model in Wikidata . 18

3.1 GraphEDM Methodology . 20
3.2 Entity disambiguation - Iterative Method . 23

4.1 Elbow method . 31

iv

List of Tables

1.1 Example of Entity Disambiguation in Tweets . 2

4.1 Database Statistics . 26
4.2 Performance evaluation of GraphEDM against SoTA baselines 32
4.3 GraphEDM - Micropost 2014 Training dataset . 34
4.4 GraphEDM - Micropost 2014 Test dataset . 34
4.5 GraphEDM - Micropost 2016 Training dataset . 35
4.6 GraphEDM - Micropost 2016 Test dataset . 35
4.7 GraphEDM - Micropost 2016 Development dataset 35
4.8 GraphEDM - Brian Collection . 36
4.9 GraphEDM - Mena Collection . 36

A.1 Performance of GraphEDM with K-Means clustering using Embeddings 40
A.2 Performance of GraphEDM with K-Means clustering using TF-IDF 41
A.3 Performance of GraphEDM with K-Mediods clustering using Embeddings 42
A.4 Performance of GraphEDM with K-Mediods clustering using TF-IDF 42
A.5 Performance of GraphEDM with Agglomerative clustering using Embeddings . . . 43
A.6 Performance of GraphEDM with Agglomerative clustering using TF-IDF 44
A.7 Performance of GraphEDM with Hybrid Hierarchical K-Means clustering using

Embeddings . 44
A.8 Performance of GraphEDM with Hybrid Hierarchical K-Means clustering using

TF-IDF . 45
A.9 Performance of GraphEDM along with entity extraction with WAT-API 45

v

Chapter

1
Introduction

1.1 Introduction

Twitter1 is one of the widely used microblogging services that allows users to post personal
messages in real-time. These messages, commonly referred to as tweets, form an important
source of instant information on any topic, including celebrity gossip, entertainment, news, etc.
Tweets as a whole represent a huge amount of unstructured data, which is leveraged by news
agencies for detecting important events, companies for detecting the launch of new products,
for opinion mining, etc. [36]. Consequently, the development of specific techniques for analyzing
tweets has attracted considerable attention in recent years [1]–[3], [46], [59].

One of the important requirements for tweet analysis is understanding a tweet semanti-
cally, which typically involves Entity Disambiguation techniques. Entity Disambiguation is
a sub-field of Information Extraction (IE) in which extracted mentions from the text are
mapped onto existing entities in a reference Knowledge Base (KB). Some of the widely used
Knowledge Bases in this context are Wikidata2, DBpedia3, and YAGO4 [40]. In this work,
we focus on Entity Disambiguation from tweets, with Wikidata as our reference Knowledge Base.

Table 1.1a shows a few examples of tweets with a number of mentions (in bold) that need to be
disambiguated. Entity Disambiguation is challenging for tweets as their content is very short,
and often noisy and ambiguous. Furthermore, as seen in Table 1.1b, each mention in a tweet
typically can be mapped onto multiple candidate entities. Only one of these candidate entities
is the correct Wikidata entity for each mention.

In more detail, two key challenges make it hard to disambiguate entities in tweets:
1https://twitter.com/
2https://www.wikidata.org/
3http://www.dbpedia.org/

1

https://twitter.com/
https://www.wikidata.org/
http://www.dbpedia.org/

2 Chapter 1. Introduction

Example Tweet
NYC police shoot bystanders: New York City police officers trying to subdue an agitated
man Saturday night fir... http://t.co/ozdEZvy2g1
RT @BBCNews: Norwegian police say man arrested at youth camp shooting is linked to
the bombing in #Oslo
Western envoys tout deal on core of U.N. Syria draft; Russia denies: UNITED FNATIONS
(Reuters) - After weeks of... http://t.co/4qALyno3SL
US intelligence on Syria gas attack ’unconvincing’, says Russia http://t.co/RXmiEFBDTd

(a) Tweets with mentions in bold

Mentions Candidate Entities Matching Entity
New York City Q60, Q1200081, Q3339042, Q38754 Q60
BBCNews Q787216, Q1160945, Q4834860 Q1160945
Oslo Q585, Q1794768, Q7107003, Q19321913, Q585
Russia Q34266, Q42195226, Q159, Q7381938 Q159
Syria Q3509007, Q207118, Q21441670, Q858 Q858
UNITED NATIONS Q7888316, Q7888319, Q1065, Q7888314 Q1065
US Q53552040, Q30, Q1456659, Q28775762 Q30

(b) Mentions with their corresponding candidate entities and the correct entity from the Wikidata

Table 1.1: (a) Tweets with mentions are highlighted in bold. Our goal is to annotate each mention
in a tweet with the corresponding entity in the Knowledge Base. (b) Mentions in the tweets may be
ambiguous, which means that each mention in a tweet may have multiple candidate entities in the
Knowledge Base. Matching entities for mentions are shown.

• With a limit of 280 characters, tweets fall into the category of short texts or microposts.
Due to this character limit, users often tweet concisely, giving very little information
about the context. Though often straightforward for human readers to understand, this
makes automatic entity disambiguation very challenging on tweets.

• Tweets are informal in their style. The use of emojis, abbreviations, user names, hashtags
or slang is common, which makes their interpretation difficult. Proper capitalization
or grammatical rules are also not guaranteed, although they are often leveraged by
automated disambiguation approaches.

Overall, context is an essential feature for entity disambiguation, but is often implicit in tweets.
In this work, we propose an Entity Disambiguation approach that extends each tweet’s context
and leverages a graph-based technique to disambiguate mentions more effectively. We make
the following contributions:

1.2 Motivation

Named Entity Disambiguation has been a research area since a long time. Linking is done on
the entities from formal text, Web Tables, short messages and many more. Many supervised,
semi-supervised and unsupervised works have been done providing state of the art systems in
this field.

Named Entity Disambiguation in tweets is a research area in which more work can be done to
increase the performance of overall NEEL process. Correct disambiguation of an entity in a

1.3. Thesis objectives 3

tweet makes a tweet more meaningful and understandable. Good disambiguation techniques
are needed to obtain good performance in NEEL process and in-turn use this information in
other applications.

1.3 Thesis objectives

The objective of this thesis is to propose an entity disambiguation model for tweets. The main
contributions from the thesis are as follows:

– Understand a state-of-the-art entity disambiguation system on Web Tables.
– Modify the algorithm and implement it to be able to use it for disambiguation in Tweets.
– Perform context extension on tweets in a dataset using different unsupervised clustering
techniques and compare performance of disambiguation with these different clustering
methods.

– Apply different text vectorization techniques on tweet texts and compare the performance
of disambiguation with these techniques.

– Acquire seven different gold standard datasets on tweet entity disambiguation and modify
the entities in them to link to the chosen Knowledge Base.

– Evaluate the implemented entity disambiguation systems for tweets with all the datasets.
As part of this thesis, we explore different text clustering techniques and find the technique
that best suites the datasets. We use the clustering techniques with varying features and
verify the generated clusters manually to make sure clustering is performed promptly. We also
perform evaluation on the chosen state-of-the-art baselines with the datasets and compare the
performance of disambiguation with the proposed GraphEDM.

On three datasets, all the variants of the implemented system perform better than the baselines.
On two other datasets, many variants of the implemented method performe better than baseline
methods. On the last two datasets, we observe satisfying results on different variants of the
implemented system.

1.4 Thesis outline

In Chapter 2, we explain the basics of Named Entity Disambiguation. This chapter introduces
Name Entity Extraction and Linking, listing few previous works tackling the same problem.
We also present different clustering and text vectorization techniques that are used as part of
this thesis. Finally, we also decriibe features of Knowledge Bases and provide details on the
Knowledge Base that is used in GraphEDM.

In Chapter 3, we present the proposed graph-based technique - GraphEDM. The chapter
contains the architecture of the proposed method with the detailed explanation about each of
the sub-modules involved in it.

Chapter 4 contains different experiments conducted as part of the thesis with results. This
chapter also details about the datasets used in the empirical evaluation of this thesis and data

4 Chapter 1. Introduction

preparation method used. We also tabulate, analyze and compare the performance of different
variants of the proposed system.

In chapter 5, finally, we conclude our thesis, present some of its limitations, and discuss
potential future work.

Chapter

2
Background

Before developing a tool for disambiguation, it is important to understand the concept of
Named Entity Extraction and Linking (NEEL). This chapter presents some basic terminology
about tweets. This chapter also explains NEEL in detail and present few algorithms from
previous works on NEEL in tweets.

2.1 Terminology

To understand entity disambiguation better, we should clearly distinguish the terms that are
used to describe the process. Below are few terms with definitions:

• Named entity: a real world object that represents a person, organization, location and so
on. An entity is represented with a proper name. This object may or may not have an
entity representing it in a Knowledge Base.

• Entity: An entity represents a real world entity present in a Knowledge Base [52].
• Mention: A word or word phrase occurred in a text document that has the potential to

be mapped to an entity in the Knowledge Base. In other words, a named entity occurred
in a text document that can be linked to an entity.

• Candidate Entity: For a mention, an Entity Linking algorithm considers one or more
entities in the Knowledge Base as potential candidates. Linking algorithm will be applied
on these chosen candidates to map the mention and the mapped entity will be one of the
candidate entities or NIL depending on the result of the algorithm.

Twitter and Tweets
Twitter is an American micro blogging and social networking service on which users post and
interact with messages known as "tweets" [56]. As of 2018, Twitter had more than 321 million
monthly active users [34]. Twitter generates huge amounts of tweet data everyday. This data

5

6 Chapter 2. Background

can be used for research in different areas to produce useful information. This information is in
turn useful in many upstream application domains.

2.2 Natural Language Processing

Natural Language Processing (NLP) is the process of modifying human written data to get
valuable information for computers to understand. Works on NLP has started around 1950s.
There are many NLP techniques most of which use Machine Learning algorithms to process
data. NLP helps to build applications to solve many real world problems. Implementation
of NLP processes is difficult than expected. Human language is generally unstructured and
often abstract or inaccurate. While humans can easily master a language, the ambiguity and
imprecise characteristics of the natural languages are what makes NLP difficult for machines
to implement [16]. The level of ambiguity in few sentences is high making them difficult to
understand even for humans. Below are the examples of such sentences that are ambiguous [37],
[38]

– "The professor said on Monday he would give an exam."
– "The burglar threatened the student with the knife."

In the first sentence, it is difficult to say whether the exam is on Monday or the announcement
regarding the exam was made on Monday. In the second sentence, it is not clear whether the
student or burglar has the knife. Human reasoning can be helpful in the second case, as we
know that the burglar will be in possession of a knife and not the student. These examples
clearly explain the challenge in implementing an NLP system. There are many state-of-the-art
systems for NLP that does sentence segmentation, tokenization, stemming and named entity
recognition. Applications like automated text summarization, extracting sentiments from a text,
word stemming use Natural Language Processing. NLP techniques are also being developed to
work on multiple languages besides English.

2.3 Named Entity Extraction and Linking

Named Entity Extraction and Linking (NEEL) has attracted a lot of researchers from the
beginning of this decade [25], [35], [43], [45], [53]. Many related works have been done on
formal text like web documents and also on informal, short text like tweets and news articles.
As discussed in the previous section, the IE task NEEL includes two sub tasks namely entity
Named Entity Extraction and Named Entity Disambiguation. In the next subsection we shall
see some previous works on NEE and NED.

2.3.1 Named Entity Extraction

Identification of valid mentions in the given text document is Named Entity Extraction (NEE).
NEE algorithms use Ontology that contains semantic information about the entities in the text.
The coverage of the Ontology used should be higher for a better precision in the NEE task.
This task is usually extended. After extracting the entities in the text, they will be classified
into categories. Some of these categories include Person, Organization, and Location. These
tasks are together called Named Entity Recognition (NER) and this is also referred as Named

2.3. Named Entity Extraction and Linking 7

Entity Recognition and Classification (NERC) in few works.

Many algorithms have been designed for NER and some of them are Stanford NER tag-
ger [28], DBpedia Spotlight [31], Zemanta1. Figure 2.1 shows an example NER output with
Stanford NER tagger. These algorithms are considered as the state-of-the-art and attain high
performance for NER on text. The best system for English news articles entering MUC-7
scored an F-measure of 93.39% while human annotators scored 97.60% and 96.95% [18], [29].

Many attempts have also been made for NER in tweets. Ritter et al [47] was one of the
first algorithms for NER in Tweets. The algorithm performs parts-of-speech tagging, parsing
and trains a SVM classifier for predicting effectiveness of capital words in a tweet. It also
trains a CRF model with different features from tweets and mentions that are helpful for NER
task. Different entity types are considered as classes for LabeledLDA classification which uses
Bag-Of-Words (BOW) for entity type and mention in the tweet. The tweets that are used in
this work are published as dataset and the dataset is used as gold standard in later NER research.

A graph based unsupervised algorithm, Twiner [24] uses global and local context for NER in
tweets. The system uses Wikipedia and Web N-gram corpus for generating possible list of NEs
in a tweet. The algorithm then assigns a rank to each candidate NE considering probability
of actually being an entity. NEs with higher ranks have a higher chance of being an actual entity.

Contextual clustering of tweets is leveraged for Named Entity Extraction in jung2012online.
This method uses “temporal associations” and “social associations” along with the tweet text
similarity to guide the extraction. As the names suggest, temporal associations use the times-
tamp at which the tweets are posted, while social associations leverage the relationships between
the Twitter users who post the tweets. The intuition behind this approach is that tweets
published within the same time period and among the same groups share more similarities. In
this thesis instead, the context of the tweets is extracted using multiple tweets by analyzing
their textual content.

2.3.2 Named Entity Disambiguation

Named Entity Disambiguation (NED) involves mapping the mentions to an entity in a Knowl-
edge Base. NED task have been studied separately for formal and informal texts as informal
texts possess more challenges for disambiguation. Many tools that focus exclusively on En-
tity Disambiguation, use state-of-the-art Entity Extraction methods as the first step in their
pipelines hosseini2019implicit, [11], [60]. Some of the recent works on NEEL focus on end
to end process for entity extraction and linking [23].
These approaches have been applied on long documents like web pages and also on informal,
shorter pieces of text like tweets and news articles. In the following, we start by discussing

1http://wandora.org/wiki/Zemanta_extractor

http://wandora.org/wiki/Zemanta_extractor

8 Chapter 2. Background

Figure 2.1: Stanford NER tagger [28] result for Wikipedia article of Obama

the related work on long documents and tables, before focusing on Entity Disambiguation
approaches for short informal text and tweets.

2.3.2.1 Entity Linking on Documents and Tables

NED for formal text like Web Documents is well studied in research. The approaches use
Wikipedia, DBpedia or YAGO knowledge bases for disambiguation. An entity annotation tool
on Web tables is also discussed here.

AIDA
AIDA [60] is an online tool for entity disambiguation in text and tables through YAGO2
Knowledge Base [20]. The tool accepts text to disambiguate as input. AIDA uses Stanford
NER [28] to identify the mentions in the text. Mentions can also be manually flagged in the
text by putting them in double brackets.

AIDA performs disambiguation using a graph based approach. The graph is weighted, undi-
rected and considers mentions and candidate entities as nodes. Mention-Entity edges have a
similarity score which is a linear combination of two factors. The first one is prior probability
of the entity which is collected using anchor texts and link targets in Wikipedia. The second
factor is based on the overlap between contexts of mention and entity. Partial matches are
also considered with a mechanism for penalizing them. The Entity-Entity edges have a weight
which is the semantic relatedness between the entities. This is proportional to the number of
incoming links that are shared between their Wikipedia articles.

After constructing the graph, greedy algorithm is used to reduce this graph to a dense one. In
each iteration, teh method removes an entity node with the least weighted degree from the

2.3. Named Entity Extraction and Linking 9

graph. The final entity node connected to the mention node is the disambiguated entity for
that mention. The tool also provides run-time information and all intermediary results like
similarity and coherence scores.

Annotating Web Tables
DoSeR [61] introduced a compelling global disambiguation approach for Web table entity
disambiguation. The algorithm trains a Word2vec [33] model for all the entities and uses this
model for calculating the similarity between the entities. A k-partite graph is constructed
with all k candidate entities of mentions, with edges representing the similarity between the
embeddings of the entities. Subsequently, PageRank [39] is applied to the graph to get a ranking
of the nodes. The candidate entity with the highest score is considered as the disambiguated
entity for the ambiguous mention under consideration. This approach was also used by [9] in
their work on entity disambiguation in tables.

Eslahi et al. [10] optimized the above approach [61] by introducing an iterative model to
perform the Web table annotation task. This algorithm uses Wikidata Knowledge Base for
disambiguation. These algorithms consider the cosine similarity between the vector representa-
tions of the entities as the similarity between the entities. These vectors are called embeddings
and they represent the semantic correlation between entities in the Knowledge Base. The
algorithm for disambiguation has 2 steps: offline and online step.

In the offline step, the method genertaes a surface form pickle that maps all the entities
in the Wikidata Knowledge Base with the surface forms or known names of the mentions. Thus
the surface form pickle provides us with list of candidate entities for the given mention. Next,
a Word2vec model is trained with all the candidate entities and their vector representations are
stored. The training is done by extrapolating triplets from the Wikidata knowledge graph and
considering each triplet as a sentence. The trained Word2vec model thus provides similarity
between any two entities in the Knowledge Base.

In the online stage, the algorithm uses the Word2vec model and surface form pickles in
the disambiguation process. Web Tables may contain multiple columns and only one column
is considered as a label column. The annotation algorithm considers the values from the
label column as mentions and annotates them with Knowledge Base entities. The iterative
embedding algorithm constructs an initial graph with all the unambiguous candidate entities for
the mentions in the table. Construction of a correct initial graph plays an important role in the
correct disambiguation of the mentions with multiple entity candidates. In each iteration of the
looping algorithm, candidates of one ambiguous mention are considered along with the initial
graph. A k-partite graph is formed with k candidates for the mention considered. The graph
contains no edges connecting the candidate entity nodes for the same mention. The weights
on the edges are calculated using the model trained and PageRank [39] ranking algorithm is
applied on the graph to get the ranking scores. The candidate entity with the highest score is
considered as the disambiguated entity for the ambiguous mention in the loop. This entity
node is then added to the initial graph at the end of the loop. The loop is repeated for all the

10 Chapter 2. Background

ambiguous mentions in the label column of the table. The method uses type checking when
candidate entities have the same ranking score and considers the candidate with most similar
type in the graph is as the entity for the mention. The algorithm also uses other ranking
algorithms along with PageRank to evaluate the method.

The iterative method also uses other columns which are called as Reference columns in
the Web Table to elevate the context. The work also tries to minimize the complexity of the
algorithm by using only one reference column at a time along with the label column in the
table. The looping method using embeddings has shown better performance measures on the
gold standard web table datasets when compared with the state-of-the-art baseline.

2.3.2.2 Entity Linking on Short, Informal Text

Named entity disambiguation is well studied in informal texts like tweets and news articles.
Algorithms for formal text will not work well for short texts. The informal text is difficult to
work with as it may not have more sense or meaning. Different supervised [25], [30], [32], semi
supervised [21] and unsupervised [11], [12], [42] methods have been developed with different
concepts for entity disambiguation in informal texts.

WAT-API
WAT-API is the successor of TageMe [12] a well-known entity disambiguation tool. The disam-
biguation process uses Wikipedia Knowledge Base and has 3 steps: Spotting, Disambiguation
and Pruning.

In the spotting step, the annotator produces a list of mentions from the given text. A
database of all the possible spots from Wikipedia is created beforehand in an offline process.
The database also contains a list of candidate entities for every spot or mention present in the
database. For each mention, the entity candidates are sorted according to the prior probability
of the entity and mention. For each mention, the algorithm uses a diverse set of statistics to
create this database. This data is then used to train a binary classifier – SVM with linear or
RBF kernel. The classifier helps the spotter perform better.

For disambiguation step, WAT provides different disambiguation algorithms which are voting
based and graph based. These algorithms uses context around the mention in the text provided
as input. In the voting algorithm, all the candidate entities for each mention are assigned
a score based on relatedness measure of the entities and prior probability of entity and the
mention. WAT provides three variants in which either (a) trigram-similarity (jaccard) between
the title of the entity and mention, or (b) the number of positive votes (number of times
when the relatedness is greater than 0), or (c) both (a) & (b) indicators are used in addition
to the semantic relatedness as a way to derive a score for the entity [42]. The graph based
disambiguation algorithm uses a weighted undirected graph with mentions and candidate
entities as nodes similar to AIDA as seen in the previous section. The weight of the edges
between mention and its candidate entities is one of identity, commonness or context similarity
values. The weight of the edges between entities is one of four different relatedness measures

2.3. Named Entity Extraction and Linking 11

which included jaccard similarity, LSI vector cosine similarity. After constructing the graph,
ranking algorithm is applied to get a highest weighted edge among all the edges between a
mention and its candidate entities. WAT algorithm uses PageRank, Personalized Page Rank,
HITS and SALSA algorithms for this purpose. This highest weighted edge connects the mention
to its disambiguated entity.

WAT API tries to increase the precision of the algorithm by pruning the non-coherent annota-
tions that are disambiguated in the previous step. The method calculates a synthetic metric
which is the average of link probability of the mention and coherence of the annotation with
the surrounding annotations. This metric of an annotation is compared against a set threshold
value to decide whether to prune it or not. WAT also trains a classifier in this pruning for
better performance.

WAT API also provides a mechanism for D2KB which performs disambiguation for the
manually provided mentions along with text. The algorithm decides whether to perform disam-
biguation for all the mentions in the text or only for mentions passed as input and returns the
disambiguated entities for the mentions. Unlike WAT-API, our approach, GraphEDM builds a
graph with only entities (of mentions in a Knowledge Base) as nodes without considering the
mention text directly. We show that our graph that uses only entities makes the disambiguation
process better.

Entity linking of tweets based on dominant entity candidates
Entity linking of tweets based on dominant entity candidates (ELTDS) [11] is an unsupervised
recent work on entity linking on tweets that has shows better performance on datasets. ELTDS
works on the hypothesis that few and dominant entity candidates can be used for disambiguating
the mentions in the tweets instead of all the available candidates. The algorithm performs 2
steps for annotation: an offline step and an online step.

In the offline step, the algorithm identifies the dominant entity candidates for the ambiguous
mentions. Dominant candidates are the entity candidates for a mention that are frequently
used within certain time period on twitter. The process for finding dominant entity candidates
is divided into 2 steps again. The first step is term cluster detection and the second step is
entity mapping. The algorithm adopts latent hypothesis that states that terms appearing in
the same tweet have related semantics. First, a directed term dependency graph is formed with
the terms from Twitter corpus. The algorithm uses all the n-grams from tweets as terms which
are then considered as nodes of the graph. An edge between two nodes indicates that the terms
have co-occurred in one or more tweets. The weight of an edge indicates conditional dependency
between the terms considered. So, the pair of edges between same pair of nodes may have
different weights. This graph provides a way to identify the terms occurring frequently with the
mention. Considering a tweet with ambiguous mention and the term dependency graph, one can
identify all the terms that are similar to the ambiguous mention using stationary distribution for
the mention. This means that a random walk algorithm helps identify the related terms. After
identifying the related terms, a second graph, which is called context graph for each ambiguous

12 Chapter 2. Background

mention is generated with nodes as the related terms and the edges representing the semantic
relationship between every node in the graph. The graph is then clustered using one of the three
clustering techniques – Louvain, graph based K-means, Hierarchical Agglomerative clustering.
These clustering techniques cluster terms related together. In the next entity mapping step,
the algorithm takes a list of Wikipedia entity candidates for each ambiguous mention in the
tweet. Each generated cluster in the before step, is assigned one Wikipedia Entity from this
list using a similarity score. The terms in the cluster are consolidated as a document and
the summary of the Wikipedia entity candidate page is considered as a second document.
The similarity between these two documents is calculated using one of the three methods-
Words Match similarity, UMBC Phrase similarity, UMBC semantic textual similarity [19]. The
algorithm calculates similarity scores for each cluster with all the candidate entities and assigns
the Wikipedia page with highest similarity score to the cluster. Similar procedure is followed
for assigning a Wikipedia Page to all the clusters of the mention. Two are more clusters with
the same same Wikipedia page are merged to form a single cluster. The Wikipedia entities
assigned to the clusters are the dominant entity candidates for the mention considered. The
work shows that the extraction of these few candidate entities which are dominant are enough
to improve the performance of entity disambiguation. The method uses these dominant entity
candidates in the online step for entity disambiguation in tweets.

The online step involves the actual entity disambiguation process. In this step, the algo-
rithm considers only the dominant entity candidates for the ambiguous mentions in the tweets
for disambiguation. For an ambiguous mention in a tweet, one of the entities from dominant
candidate list is mapped. The mapping is performed based on the similarity score that is
calculated in one of the two ways – Context-based similarity and Collective Similarity. The
context-based similarity is calculated using a document similarity score by considering the tweet
text as the first document and the entity Wikipedia page summary as the second document.
The similarity score is calculated with all the dominant entity candidates and the mention
is mapped to the entity with the highest score. The Collective similarity considers all the
mentions in a tweet together and mapping is done with the objective to select the entities that
are not only similar to the tweet, but also similar to each other. Entities are assigned for all
the mentions such that the similarity between entities of different mentions is also high. In this
way, disambiguation is performed with few candidate entities.

The experiments show that the method reduces entity linking time and also the effective-
ness of dominant candidates in the entity linking process.

2.4 Clustering Methods

In this work, before disambiguation, context extension is performed to form contextual groups
of tweets from the tweets in the dataset. Different clustering techniques are used to cluster the
tweets in an unsupervised fashion. A brief description about each of the clustering techniques
used in this thesis is given below.

2.4. Clustering Methods 13

2.4.1 K-Means

K-Means [27] is the one of the most popular clustering techniques available. K-Means clustering
technique tries to minimize the intra-cluster distances. In other words, the algorithm minimizes
the sum of squares of the distances between the points in the cluster and the centroid of the
cluster. This is also referred as inertia. This algorithm requires specification of the number of
clusters that are expected to be formed by the given dataset which makes it necessary to have
knowledge about the data beforehand.

The K-Means algorithm proceeds as follows:
– Centroids are randomly chosen from the dataset. The number of centroids is equal to the

number of clusters requested.
– The datapoints are assigned to the cluster that has the centroid near them.
– Once all the points are assigned to their nearest centroid clusters, actual centroids are
calculated and reassigned. The distance between the old and new sets of centroids is
calculated.

The last 2 steps are repeated until the change in the objective function between two consecutive
iterations is less than given tolerance value. K-Means algorithm is usually used for large and
medium sized datasets. The algorithm produces even sized clusters.

2.4.2 K-Medoids or K-Medians

K-Medoids clustering technique [22] works similar to K-Means with slight difference. The
K-Means algorithm is sensitive to outliers or extreme values. K-Medoids uses median of the
points as the cluster center whereas K-Means uses means of the points as the cluster centroid.
So, in K-Means cluster center may or may not be the point from the data values but in
K-Medoids center of the cluster is one of the points in the dataset.

K-Medoids technique is robust to outliers than K-Means. This is because the cluster centers
can be formed correctly and thus influencing the overall clustering of data samples.

2.4.3 Hierarchical Agglomerative Clustering

Hierarchical Clustering is a clustering technique that forms clusters by either top down or
bottom up approach. The top down approach starts by considering the whole dataset as a single
cluster and splits them to form more clusters. The bottom up approach starts by considering
each sample in the dataset as a separate cluster and merges the data samples into clusters.

Hierarchical Agglomerative Clustering (HAC) [8] is a bottom up hierarchical clustering tech-
nique. The merge strategy will be based on the linkage criteria used in the algorithm. It is a
minimizing criterion that minimizes one of sum of the squared differences within all clusters,
the maximum distance between observations of pairs of clusters, the average of the distances
between all observations of pairs of clusters or the distance between the closest observations of
pairs of clusters.

14 Chapter 2. Background

This clustering can handle large datasets but may become computationally expensive be-
cause of the sample variance.

2.4.4 Affinity Propagation

Affinity Propagation [14] is a clustering technique that creates clusters by exchange of messages
between pairs of data points. This algorithm does not require the user to specify the number
of clusters to form from the data points. This is a major advantage as previous knowledge on
data is not required to use the algorithm. The algorithm requires a parameter to specify the
number of exemplars to be used.

The affinity propagation algorithm has two types of messages that are passed between the
data points. First a responsibility message is sent from one data point to another which
is an exemplar, specifying that the second data point should be exemplar for the first one.
Second, an availability message from the second point to the first, specifying that the first
point should choose the second as its exemplar. The second message is sent after considering
all the responsibility messages that the exemplar has received. The algorithm repeats till all
the data points are converged.

The algorithm may become complex as the number of samples in the dataset increases.
This is because the number of messages that will be exchanged increases and so the time for
the communication.

2.4.5 Louvain Clustering

Louvain [4] is also a hierarchical clustering algorithm that performs clustering in a bottom-up
fashion. The Louvain clustering is used as a community detection technique in large networks.
This algorithm uses modularity as the optimization function. Modularity is a measure of that
quantifies that assignment of node to a cluster. Modularity values range between -1 and 1.
Higher the modularity of a node with a cluster, there is a greater chance that this node belongs
to the cluster.

The Louvain algorithm proceeds as follows:
– Each node is considered as one community or cluster.
– Remove a node from its community and merge it with the community with which it has
highest modularity gain.

– Repeat the step before until there is no change in the communities.
– Consider each community as a hyper node and repeat the process.

The Louvain algorithm involves calculating modularity gains between nodes and clusters. So,
Louvain method is fast and also complexity grows linearly with number of nodes in the network.

2.4.6 Hybrid Hierarchical K-Means Clustering

As the name suggests, Hybrid Hierarchical K-Means Clustering [7], [15] is a hybrid technique
that uses both hierarchical agglomerative and K-Means Clustering methods. Assigning cluster

2.5. Text Vectorization 15

centroids initially is a major task in K-Means algorithm on which the performance of the
algorithm depends. There exists K-means++ feature in K-Means that assigns initial centroids
randomly. K-Means also offers to repeat the initial centroids assignment multiple times and
select one set of centroids based on the inertia in clustering. This algorithm is used to select
initial centroids without K-Means++.

The algorithm first uses agglomerative clustering to cluster the data points. The clusters
are formed based on the hierarchy. Then centers for these clusters are calculated as the mean
of the data points. These centers are now used as initial centers in K-means clustering method.

2.5 Text Vectorization

Machine learning algorithms need numerical features to perform mathematical operations like
matrix multiplication, factorization and others. Tweet texts are used in the unsupervised
clustering methods and so they need to be converted into vectors in this thesis. Commonly
used methods to convert text to numerical data are:

• TF-IDF
• Embeddings

TF-IDF
TF-IDF [51] is a popular method for term-weighting. Term Frequency – Inverse Document
Frequency (TF-IDF) represents importance of a word in a document in the corpus or dataset.
The two concepts term frequency (TF) and inverse document frequency (IDF) together are
used to obtain TF-IDF.

Term Frequency tells us how frequently a word appears in a document. This is calculated
with respect to the length of the document as different documents have different length. Term
frequency of a word w in a document d is given by

TF (w, d) = Number of times word w appers in document d
Total number of words in the document d

The specificity of a term can be quantified as an inverse function of the number of documents
in which it occurs [55]. Inverse document frequency is used to assign more weight to rarely oc-
curring words and less weights of frequently occurring words in a document. Inverse Document
Frequency of a word in a corpus is given by

IDF (w, C) = log10
Number of Documents in the corpus C

Number of Documents in which the word w is present

Term Frequency - Inverse Document Frequency is the product of Term Frequency and Inverse
Document Frequency.

TF − IDF (w, d, C) = TF (w, d) ∗ IDF (w, C)

16 Chapter 2. Background

The value of TF-IDF for a word in a document is always greater than or equal to 0. TF-IDF
will be high when the term frequency of a word is high in a document and the word appears in
very few documents in the corpus. Therefore TF-IDF will filter out most common terms across
the corpus.

Embeddings
Word embedding is also a popular word representation that represents words in terms of
vectors. Word embeddings capture context of a word in a text document along with semantic
similarity among different words in the document. Word2vec introduced in [33] is one of the
techniques used to learn and generate word embeddings. Word2vec uses neural network to
learn relationship between words in the training corpus. The model is then used to get the
vector representation of words in a document or similarity between the words in a document.

2.6 Knowledge Bases

A Knowledge Base contains number of entities and information about these entities. It also
contains relations between different entities present in it. Entities in one Knowledge Base also
contain information about the same entity in multiple Knowledge Bases. Wikipedia is the most
widely known and used knowledge base. Different Knowledge bases are used for Entity linking
research.

For entity disambiguation process, an ideal Knowledge base should contain the following
properties:

– Availability: Knowledge bases should be publicly available to all so that data can be
accessed without any restrictions.

– Readability: Knowledge bases should be human readable as well as machine readable.
– Authenticity: Entities in a knowledge base should be from a verified human source or a
related valid entity from another knowledge base.

– Multilingual: A knowledge base should support multiple languages in-order to facilitate
or support systems of multiple languages.

We shall now look into Wikidata Knowledge Base in brief as this thesis uses it for Entity
Disambiguation.

2.6.1 Wikidata

Wikidata Knowledge Base was launched in 2012 by Wikimedia Foundations. Wikidata Knowl-
edge Base is a publicly available, multilingual knowledge graph. The data can also be used
by other Wikimedia projects like Wikipedia. Wikidata uses Resource Description Framework
(RDF) data model. Data can be added into Wikidata by both verified users and automated
scripts that directly add data from other Knowledge bases. RDF data model of the Wikidata
makes it easier for the users, Wikis maintained by Wikimedia foundation and other third-party
programs to write, read and process data from the Knowledge base.

2.6. Knowledge Bases 17

Data in Wikidata is focused on items which can be topics, concepts or objects. Informa-
tion about each item is stored in the form of statements. These statements are in the form of
property-value pairs. Following provides description of Wikidata statements, entities, items
and properties retrieved from the Wikidata glossary page [58].

Statements are information about an item stored in the item page that contains key-value
pairs, for property with one or more entity values. It may optionally contain reference or source
for the data and a rank used to distinguish different statements. For example, the informal
English statement "milk is white" would be encoded by a statement pairing the property color
(P462) with the value white (Q23444) under the item milk (Q8495) [57]. Statements are usually
considered as (item, property, value) triplets.

Entity is the data in the Wikidata page which may be an item, a property or a lexeme.
Each entity in the Wikidata is uniquely identified by an identifier which has a prefix based on
the type. For example, items have the prefix ‘Q’ and properties have the prefix ‘P’. Entities can
also be uniquely identified by the combination of label and description in each language. An
entity can also be read or accessed directly using the URI “http://www.wikidata.org/entity/ID”
where ID is the unique identifier.

Item in Wikidata refers to a real world entity, concept or an event. An item is uniquely
identified by an identifier that has a prefix ‘Q’. For example item with the identifier Q145 refers
to the United Kingdom. Each item has a Wikidata page that contains list of statements for
that item. Item can also be identified by a site link to an external site, or by unique com-
bination of multilingual label and description. Item is the subject part of the statement or triplet.

Property in Wikidata refers to the data value of the statement. It is also referred as
attribute value as these are features of the item that they belong to.

Properties have their own pages on Wikidata and are connected to items, resulting in a
linked data structure. Property is the predicate of the statement or triplet. Each property in a
statement will be mapped to a single value, set of values or some relation. Sometimes properties
will have a missing value indicating that there is no value mapped to that property for that item.

Site links in a Wikidata page for an item provides pages for the item in different Knowl-
edge bases like Wikipedia or YAGO, thus connecting Wikidata with other Knowledge Bases.
Data in Wikidata Knowledge Base can be accessed using queries. There are many built-in
tools, external tools and programming interfaces to query Wikidata. SPARQL queries are
widely used to query Wikidata. Among the properties, the property P31, which gives the type
or category of the entity in Wikidata, is mostly queried. The Figure 2.2 shows a Wikidata page
of Douglas Adams with details.

As of now, there are about 89 Million entities in the Wikidata and data dumps will be
updated every week. With increasing amounts of data items and a structured data model,

18 Chapter 2. Background

Wikidata can be considered as a potential Knowledge base for Entity Disambiguation.

Figure 2.2: Data model in Wikidata [13]

Chapter

3
Methodology

This section presents GraphEDM, our Entity Disambiguation framework for microposts. Fig-
ure 3.1 summarizes the method we adopt for entity disambiguation. Our approach is divided
into two main phases: Context Extension and Graph-Based Disambiguation. Context Extension
uses clustering approaches to extend the limited context of microposts, while Graph-Based Dis-
ambiguation disambiguates mentions through a graph-based approach leveraging the extended
context. Each phase is described in more detail below.

3.1 Context Extension

The context required to correctly disambiguate entities in tweets can often be missing as the
text of a tweet can be fragmented, noisy, and very short. To fill this gap, we propose an
unsupervised clustering approach to extend the context by borrowing context from related
tweets. This process takes place in three steps. First, we preprocess the textual contents of
the tweets to align them to the same canonical form. Next, we convert each tweet into a
TF-IDF [51] or embedding representation [33]. These vector representations are finally used to
generate clusters of related tweets. We explain the process in detail below.

3.1.1 Preprocessing

The text of a tweet is limited to 280 characters, and the content is quite often written in an
informal manner with slang, abbreviations, emoticons, URLs, and Hashtags [6], [44]. Thus,
preprocessing is a necessary first step before automatic tweet analysis. Below are removed from
the tweet in preprocessing.

• Emoticons and punctuation: The tone behind an emoticon is difficult to understand and
can be misleading. For clustering the tweets, these emoticons and special character are
of no value. We consider these as noise and remove these from the tweet text.

19

20 Chapter 3. Methodology

Figure 3.1: The complete methodology of our proposed approach, GraphEDM. The approach is
divided into two phases, Context Extension, followed by Entity Disambiguation. The words in bold
are mentions in a tweet.

• Web URLs and HTML references: Many tweets contain an HTML reference to a page
which provides additional information. This reference link may contain an image, a video
or even a website which may or may not be about the topic being discussed in the tweet.
The context extension step does not use these HTML references in the text for clustering
tweets and remove them from the text.

• ‘RT’ in Retweeets: Twitter allows users to tweet on their own previous tweets or tweets
from other people. These tweets are marked with prefix ‘RT’ at the beginning of the text.
In context extension task, there might be a chance that tweets that are retweeted and
have this prefix are clustered together which is not desired. So, the method removes this
from the text.

Next, we tokenize the tweet text by converting each sentence into individual informative tokens.

3.1.2 Vectorization

Tweet text contains numerical values, characters and strings. To cluster tweets, different
types in the tweet text are converted into numerical values. The converted representation
should directly correspond to the actual values or should represent a comparison between the
actual values. Different techniques for text vectorization have been seen in Section 2.5. In

3.1. Context Extension 21

this thesis after preprocessing, Tweets are converted into vectors using TF-IDF and Embeddings.

Tweet TF-IDF
To represent tweets using TF-IDF vectors, we consider each tweet in the dataset as a document
and TF-IDF values are calculated for each word in a tweet. To improve the performance of the
clustering, stop words are removed from the tweet texts. Hence, each tweet in the dataset has
a dimension equivalent to the number of words in the dataset.

Tweet Embeddings
For the embedding representation, a publicly available pre-trained Google Word2vec model
was used 1. The model is trained on the Google news dataset of about 100 billion words, and
each word is represented by a vector of 300 dimensions. After cleaning the tweet text, each
tweet is split into separate words, and the vector representation of each word is loaded as a
vector from the Google pre-trained model. Each tweet is then represented by a vector that is
the average of the vectors of the words present in that particular tweet. So, each tweet in the
dataset is represented by a vector of 300 dimensions.

3.1.3 Clustering

The final step in the process of generating a more meaningful context for a tweet is clustering.
For clustering of tweets, tweet texts are used in the form of vectors generated in the previous
step. In machine learning, clustering text is done in an unsupervised manner. Many text
clustering techniques exist that are proven to be effective. In this work, K-Means, K-Medoids,
Agglomerative, Affinity Propagation, Hybrid Hierarchical K-Means, Louvain clustering tech-
niques are used to cluster the tweets. In K-Means, Agglomerative, HHK-Means clustering,
Euclidean distance metric is used. On the other hand, in K-Medoids and Affinity Propagation
clustering, cosine similarity is used.

Input for different clustering techniques can vary. For K-Means, K-Medoids, Agglomera-
tive, Affinity Propagation, and Hybrid Hierarchical K-Means, each tweet is considered as one
data point for clustering. The output of the clustering is then a set of clusters of semantically
related tweets.

In addition, we use the Louvain clustering [4] method, where a set of words in the dataset are
considered as nodes in the graph. An edge connects two nodes if they occur in the same tweet.
Subsequently, we perform clustering on this graph of words. A tweet is then assigned to the
cluster where the majority of the words appearing in its textual content belong. It is important
to mention here that clustering is performed directly on the text, and no vectorization approach
is used.

Almost all the clustering algorithms require specification of the number of clusters parame-
ter. This feature tells the algorithm the number of clusters to form from the given dataset.

1https://code.google.com/archive/p/word2vec/

 https://code.google.com/archive/p/word2vec/

22 Chapter 3. Methodology

The clustering algorithm is majorly influenced by this factor. Graphical methods like elbow
method, average silhouette method and gap statistic are used to choose the value of this
parameter. The methods decide on the value of the parameter by comparing the effect of
clustering on the given data points. In this thesis, we use elbow method to decide on the feature.

Figure 3.1 illustrates our methodology for Entity Disambiguation with tweets provided as input.
The preprocessing step cleans the tweet text. These preprocessed tweets are then vectorized
into TF-IDF or embedding vectors as explained in Section 4.5.3. Further, we use clustering
techniques to cluster these tweet vectors based on similarity, as shown in the Figure 3.1. Tweets
within the same cluster share semantic similarity. These clusters become the extended context
for each tweet inside it. Specifically, our disambiguation algorithm uses all the mentions present
in tweets within a cluster. For the example shown in Figure 3.1, ‘nyc’ and ‘bbcnews’ are
mentions of the tweets within the same cluster and will be used to generate the graph.

3.2 Entity Disambiguation

After the context extension phase of the system, entity disambiguation is performed using
the previously generated clusters. We perform this task using a graph-based approach. In
the previous step, we obtain clusters of tweets with high semantic similarity within the same
cluster. Next, we perform Entity Disambiguation (as illustrated in Figure 3.1) in the following
way:

1. First, all the mentions from the tweets within a cluster are fetched together into a list.
For each mention in the list, candidate entities are obtained by querying a surface form
index. The surface form is a collection of key-value pairs, where the key is a label, and
the values are Wikidata identifiers. For example, for the label New York City, the surface
form outputs the Wikidata identifiers Q7013143, Q60, Q3875477.

2. An initial graph is built using unambiguous mentions (obtained in the above step) where
all nodes are connected to each other.

3. Considering an ambiguous mention m, a k-partite graph is constructed with all k candidate
entities of the mention m.

4. Ambiguity is resolved for the mention m, and added the initial graph.
5. This process is repeated for each ambiguous mention of the cluster iteratively.

Describing Step 4 in more detail, the process of resolving an ambiguous mention m is explained
now. First, a Word2vec model is trained using all the candidate entities from the Wikidata
Knowledge Base. The Word2vec training dataset is built by extrapolating triplets from the
Wikidata knowledge graph and considering each triplet as a sentence. Subsequently, for the
k-partite graph constructed above in Step 3, each node is represented using the embedding
representation obtained from the trained Word2vec model on Wikidata. For each pair of nodes,
the weight of the edge is given by the similarity computed in Equation 3.1:

weight(v1, v2) = cos (emb (v1) , emb (v2))∑
k cos (emb (v1) , emb (k)) (3.1)

where v1 and v2 are the nodes representing the mentions and k is a node that has an edge from
v1.

3.2. Entity Disambiguation 23

Figure 3.2: Entity disambiguation with our iterative method

The PageRank [39] centrality ranking method is applied to the above graph, and the candidate
node with the highest ranking score is the entity that gets assigned to the mention. This
mapping is considered to be likely correct, and the mapped entity is added to the initial graph
(Step 2 above). The type of the mentions (property: P31) is fetched and the three major types
existing among all the mentions are saved. When the centrality score for two or more nodes
is same, an entity whose type matches one of the top three types is assigned to the mention.
If there are no unambiguous mentions to generate the initial graph, the ambiguous mention
in the first iteration is also disambiguated using this saved type information. The number of
iterations required depends on the number of ambiguous mentions in the list of mentions. The
output of the iterative method is a list of mapped mention-entity pairs.

Figure 3.2 illustrates the iterative method used for disambiguation. The graph contains two
nodes - United Nations and Russia, that are already disambiguated. The current iteration
disambiguates the mention Syria and considers two candidate entities: Syria (Country) and
Syria (Subgenes of insects). The centrality ranking algorithm assigns a high ranking score for
entity Syria with entity type Country, and this entity is assigned to the mention. This entity
is then added to the graph, and the disambiguation process continues with the next ambiguous
mention.

The iterative method maps an entity from the Knowledge Base for each mention in the set.
If this method fails to assign an entity to a mention, then it means that the mention is not
disambiguated in the process. This happens if there is no entity for the given mention in
the Knowledge Base or the page found by the algorithm is either a disambiguation page
or a category page. Thus, the output of the disambiguation algorithm is a list of mapped
mention-entity pairs. This list corresponds to the cluster from which the mentions list is
extracted. So, the number of lists with mention-entity pairs is equal to the number of clusters
generated in the context extension phase.

In each cluster, mentions in the tweets are mapped to corresponding entities only from
the list corresponding to the cluster. This means that the mentions in the tweets from cluster
1 are mapped to entities in the list 1, mentions in the tweets from cluster 2 are mapped to
entities in the list 2 and so on. In this regard, the same mention from 2 different clusters may
be mapped to different entities in looping method, if the context in the two clusters is different.

24 Chapter 3. Methodology

The algorithm assigns an entity to the mention in the tweet in a cluster if a mapping exists for
the mention in the list returned by the looping method. If there is no mapping for the mention
from the looping method, then the mention is not assigned with any entity which means that
entity disambiguation is missing for that mention in the tweet.

Chapter

4
Experiments & Results

In this section, we introduce our datasets, experimental setup, and SoTA baselines. Further,
we raise few research questions followed by their answers in the form of experiments and
evaluations..

4.1 Datasets

In this thesis, seven different datasets are used that are available publicly. The gold standard
datasets used in this thesis are listed below

• Making Sense of Microposts (Micropost 2014) Training set
• Making Sense of Microposts (Micropost 2014) Test set
• Making Sense of Microposts (Micropost 2016) Training set
• Making Sense of Microposts (Micropost 2016) Test set
• Making Sense of Microposts (Micropost 2016) Development set
• Brian Collection
• Mena Collection

These datasets provide Tweet Id and the mentions in the tweet along with the mapped
entity from a Knowledge Base. Tweet texts are not publicly available and so needs to be
extracted using Tweet API. Depending on the user access, Tweet API provides details about
a tweet given a Tweet id. In this thesis, Tweepy Python library [50] is used to extract tweet
texts from Twitter for the Tweet Ids present in the datasets. The corresponding text could not
be extracted for a number of tweets using the Twitter API; The reason behind this was either
that the tweets were deleted from Twitter, or that we could not have access to those due to
privacy reasons.

25

26 Chapter 4. Experiments & Results

Table 4.1 gives key information about the seven publicly available datasets that we used
to evaluate our framework. The table contains the number of tweets, the number of unique
entities, and the total number of entities present in each dataset. Each dataset contains tweet
ids and a corresponding list of mentions.

Table 4.1: Database Statistics

Dataset No. of
Tweets

Unique
Entities

Total
Entities

Micropost2014 Test 698 617 1014
Micropost2014 Training 1518 1522 2938
Micropost2016 Test 296 195 737

Micropost2016 Training 4073 2789 6368
Micropost2016 Development 100 98 253

Brian Collection 1603 384 1231
Mena Collection 162 348 482

4.1.1 Making Sense of Microposts (Micropost 2014)

Making Sense of Microposts 2014 is a Named Entity Extraction and Linking challenge organized
as part of World Wide Web Conference 2014. The challenge involved tasks of Named Entity
Extraction and Linking in Tweets. The statistics on dataset released for the challenge are
described in [5]. These datasets are used as baseline in different Tweet entity linking works
like [11] and [18]. The statistics of training set and test set used in the thesis are given
below. The Micropost 2014 challenge used DBpedia Knowledge Base for entity linking. So the
train and test gold standard datasets have DBpedia entities. These entities are mapped from
DBpedia to Wikidata for using in this thesis. So, in the gold standard dataset, each tweet has
one or more entities with DBpedia page link, whereas the dataset for this thesis contains one
or more entities with Wikidata page ID. If there is no Wikidata Page for a DBpedia page, then
the corresponding mention-entity pair is removed from the dataset.

Training Set
Training set of Micropost 2014 consists of 2,340 tweets out of which 1,518 tweet texts could be
extracted. So, this thesis uses these 1518 tweets for the disambiguation. The dataset contains
6330 tokens. The number of entities in the dataset is 2938 and the number of unique entities is
1522.

Test Set
Test set of Micropost 2014 consists of 1,165 tweets out of which 698 tweet texts could be
extracted. The dataset contains 3443 tokens. The number of entities in the dataset is 1014 and
the number of unique entities is 617.

4.1.2 Making Sense of Microposts (Micropost 2016)

Making Sense of Microposts (Micropost 2016) is also a NEEL challenge held as part of World
Wide Conference 2016. The challenge is on tweets in English language and the dataset contains

4.1. Datasets 27

tweets that are manually annotated. This dataset also has entities mapped from DBpedia
Knowledge Base and for this thesis these are mapped on to the corresponding Wikidata pages.
Similar to the dataset before, if there is no corresponding Wikidata page for the DBpedia page,
the mention-entity pair is removed and not considered for named entity disambiguation. The
statistics on dataset released for the challenge are described in [48].

Training Set
Training set of Micropost 2016 consists of 4,073 tweets out of which all the 4,073 tweet texts
could be extracted. The dataset contains 13,053 tokens. The number of entities in the dataset
is 6368 and the number of unique entities is 2789.

Test Set
Test set of Micropost 2016 consists of 296 tweets out of which all 296 tweet texts could be
extracted. The dataset contains 1,431 tokens. The number of entities in the dataset is 737 and
the number of unique entities is 195.

Development Set
Development set of Micropost 2016 consists of 100 tweets of which tweet texts could be extracted
for all the tweets. The dataset contains 544 tokens. The number of entities in the dataset is
253 and the number of unique entities is 98.

4.1.3 Brian Collection

Brian Collection is used for Named Entity Extraction in [26]. The dataset is extended for
Named Entity Linking for use in [18]. The dataset contains 1,603 tweets that are annotated
manually. The annotation is done using Wikipedia Knowledge Base. Few non-Wikipedia
mention-entity pairs, URLs of websites or related webpages are considered. According to [18],
there are 1585 mentions in the dataset out of which 1,233 entities are from Wikipedia, 274 are
non-Wikipedia entities and the remaining 78 are the mentions with no matching entity.

In this thesis, this dataset is used to assess the performance of the disambiguation algo-
rithm. The dataset used in the thesis contains all the 1,603 tweets from the original dataset.
The dataset contains 4,591 tokens. For this thesis, entities from Wikipedia are only considered
and mapped to the corresponding entities in Wikidata Knowledge Base. Mentions that do not
have any corresponding entity and non-Wikipedia entities are not considered. The mentions
for which Wikipedia entities could not be mapped to a corresponding Wikidata page are also
ignored. The number of entities in the dataset is 1231 and the number of unique entities is 384.

4.1.4 Mena Collection

Mena collection is used in [17] for Named Entity Extraction. The dataset is then used in [18] for
entity Linking. Entity mapping is similar to the Brian dataset. This dataset contains 162 tweets
with 510 mentions. The mentions are mapped to 483 Wikipedia entities, 19 non-Wikipedia
entities and rest 8 are not annotated as given in [18].

28 Chapter 4. Experiments & Results

In this thesis, all the tweets from Mena collection are used for entity disambiguation. The
dataset contains 1,289 tokens from all the tweets. The number of entities in the dataset is 482
and the number of unique entities is 348. Similar to Brian Collection, only Wikipedia entities
are mapped to Wikidata entities and used.

4.2 Dataset Preparation

The seven datasets listed before are used in this thesis for assessing the performance of the
entity disambiguation method. These datasets are taken from different sources and are in
different format. Micropost 2014 and Micropost 2016 gold standard datasets contain details
like tweet id and mention-entity pairs. Micropost 2014 dataset files are tab separated files (tsv)
with each line in the file structured as tweet id, mention1, entity1, mention2, entity2 and so
on each separated by a tab space. A mention and its entity are also separated by a tab space.
Micropost 2016 dataset files are also tab separated files and are different from Micropost 2014
files. In Micropost 2016 dataset files, each mention-entity pair of a tweet is given in a separate
line. So, if there are 3 mentions in a tweet, then the file contains 3 lines with same tweet id
and each with a different mention-entity pair separated by a tab space. For the thesis, Brian
collection and Mena collection datasets are taken from [18] and that work uses the datasets in
XML format. These files contain tweet id, tweet text, mentions and mapped entities as xml tags.

All the datasets needs to be in the same consistent format to use in this thesis. We gen-
erate two files for each dataset and both these files are tab separated files. The first file
contains the tweet details and mentions that are to be mapped in the disambiguation process
and the second file contains the mapped entities. Each line in this file includes a tweet id,
its text belonging to the tweet id and comma separated list of mentions (enclosed in square
brackets) each separated by a tab space. The datasets also contain tweets that have no
mentions in it and for these tweets a “-” is present in place of the list of mentions. The
second file serves as a ground truth file for the disambiguation. Each line in this file includes
a tweet id and comma separated list of entities for the mentions in the tweet from other
file. The entities in the file are Wikidata page ids that start with “Q” and followed by the
page id. For a tweet, the number of mentions in the first file and the number of entities in
the second file are equal. Similar to list of mentions, the list of entities is also enclosed in
square brackets. If the tweet does not have mentions to be mapped, then the tweet is not
present in the ground truth file. This means that the number of tweets in the two files is different.

As stated before, dataset preparation also includes mapping of entities from DBpedia and
Wikipedia Knowledge Bases to Wikidata Knowledge Base. Entities in the Knowledge Base
tend to change frequently. Some of the DBpedia and Wikipedia pages could not be mapped to
corresponding Wikidata pages. Example of one of this case encountered is the DBpedia page "
http://dbpedia.org/resource/A.S._Red_&_Blue". This page does not have a corresponding
Wikidata Page. Mentions like this are removed from the datasets to maintain consistency.

4.3. Baselines 29

4.3 Baselines

We compare the performance of our entity disambiguation framework against three state-of-
the-art baselines – AIDA, WAT-API, and ELTDS. We use standard precision, recall, and F1
scores as evaluation metrics for all methods.

4.3.1 AIDA

AIDA [60] is a state-of-the-art method for entity disambiguation. The online tool disambiguates
entities in the text that is provided to it. AIDA’s performance results for some datasets were
obtained from the Gerbil platform1. The Gerbil benchmarking platform is web-based and
developed as part of [49]. It provides annotation results for different registered annotators for
a predefined list of datasets. Gerbil was used to get the results for the Micropost2014 and 2016
datasets. For the Brian and Mena Collections, experimental results from [18] were used where
experiments are performed on these two datasets with AIDA

4.3.2 WAT-API

WAT-API is another state-of-the-art method that provides better performance than TagMe [12],
a well-known annotator for short-texts. The corresponding API provides multiple services like
NEEL and D2KB computing Entity Relatedness, among other features. To compare WAT-API
to our proposed method, we used the D2KB service of the API. Requests were sent to the
D2KB service with the tweet texts and mentions. The response contained mentions and their
mapped entities along with other information from the disambiguation algorithm of WAT-API.
We report the results obtained using this service in the tables below.

The service provides an URL that needs an access token. The token is issued to a user
when registered to the service. HTTP GET request can be sent using the provided URL and
tweet details for D2KB service. A JSON object with two keys is added to the URL. The first
one is "text" parameter that contains tweet text and the second is "suggested_spans" that
contains the list of mention’s start index and end index. Indices of multiple mentions can be
provided in the JSON object to be sent in the same request. The response contains mentions
and their mapped entities along with other information from disambiguation algorithm of
WAT-API. More information about using this service is provided in [41]. For each tweet in
the dataset, one HTTP GET request is sent and response is obtained. Mention-entity pairs in
response are collected and checked for correctness. Once all the tweets are disambiguated using
this tool, precision, recall and F1 score are calculated for all the tweets in the dataset together.

4.3.3 ELTDS

ELTDS [11] uses a training corpus of almost 8 Million tweets to find the dominant candidates
entities. For each ambiguous mention in the tweets, the algorithm forms term clusters with the
related terms from the tweets and maps each cluster to a candidate entity of the mention. The
candidate entities mapped onto these clusters are identified as the dominant entity candidates

1http://gerbil.aksw.org/gerbil/

http://gerbil.aksw.org/gerbil/

30 Chapter 4. Experiments & Results

and used for disambiguation. We used the publicly available code to obtain the performance of
ELTDS on all our datasets.

The system implementation is in Python and MySQL database is used to store data. Below
are missing from the implementation available and so are created for this thesis baseline.

• Database: As part of the thesis, for this baseline, SQLITE database is opted to use with
the Python code. Changes are made in the code to change MySQL queries to SQLITE
queries. SQLITE database is created for the project and necessary tables are created.
Data needed for the code to run is inserted and consistency is maintained in the database.

• Mention Dictionary: Mention dictionary is needed by the algorithm to identify potential
mentions in the tweets. This is not available with the code. The mention dictionary used
in the paper implementation has about 28000 mentions. For this purpose, a mention
dictionary is created to be used in the implementation that contains about 12000 mentions.

• Related terms file: A file containing list of related words for each mention in the mention
dictionary is also not available. Related terms for a mention are obtained using the term
clusters as described in Section 2.3.2.2. As seen, random walk algorithm is used on the
term cluster graph to get a list of related words for a mention. The file is prepared for
the mentions in the mention dictionary previously created.

The missing parts of the implementation are implemented and the entity disambiguation is
performed on all the tweets in all the datasets. The performance measures, precision, recall
and F1 score are calculated as in the original implementation.

4.4 Experiments

The proposed GraphEDM method is implemented in Python. Experiments are conducted for
all the available datasets for the proposed disambiguation method and baselines.

The tweets texts are converted into vectors using both TD-IDF approach and Embeddings.
For TF-IDF, TfidfVectorizer from scikit-learn is used and for embeddings Word2vec is used.
All the clustering algorithms described in Section 2.4 are used on all the datasets and then
entity disambiguation is performed on the clusters generated. The clustering algorithms from
scikit-learn Python package is used to cluster the tweets. As seen before, the clustering
algorithms need a parameter to be passed that is the number of clusters to generate from the
datasets. This parameter is decided using elbow method for K-Means clustering technique.
The Figure 4.1 is an example of a graph generated by elbow for Micropost 2014 Test dataset
that used embeddings for tweet vectorization. The number of clusters opted for this clustering
technique with the help of elbow method is four. Graphs are generated for all the datasets
similarly.

As in the work [10], Wikidata local endpoint server is setup using Blazegraph to be used
for entity disambiguation. The steps to set up this endpoint are described in [54]. In this thesis,
the Wikidata dump used is the 2019 version.

4.5. Research Questions 31

Figure 4.1: Elbow method for Micropost 2014 Test dataset

4.5 Research Questions

Our empirical validation focuses on three research questions:
• Q1: How does our proposed Entity Disambiguation framework perform when compared

against existing state-of-the-art methods for disambiguating entities in tweets?
• Q2: What is the effect of the various clustering techniques used in the Context Extension

phase on performance?
• Q3: What is the effect of the various vectorization techniques used in the Context

Extension phase on the performance?
We answer each of those questions below.

4.5.1 Results - Q1

Table 4.2 shows the results of our proposed framework GraphEDM compared against state-
of-the-art baselines for Entity Disambiguation. K-Means clustering technique and Word2vec
embeddings for vectorization are used for the results shown in Table 4.2. It is important to
mention in this context that the results from our framework can be improved by varying the
clustering or vectorization methods see below Section 4.5.2 and Section 4.5.3. As observed, our
proposed method outperforms all baseline methods on five datasets and are very competitive
on the other two datasets.
The precision of WAT-API is very high for all datasets compared to other systems. This is
because WAT-API has a separate step for pruning that increases its precision. In this step, the
system removes all the mention-entity pairs that have been disambiguated and are non-coherent
with the tweet or text under consideration. Our method results in a high recall compared to
other methods as the candidate generation method used in this thesis that uses a surface form
index can retrieve more relevant entities.

Below a short analysis on the results for all the datasets individually:

32 Chapter 4. Experiments & Results

• On the Micropost 2014 Training, Test, Micropost 2016 Test, Development and Brian
datasets, our proposed method shows better results than the baselines chosen for com-
parison. Though WAT-API’s precision is high, its low recall results in an overall subpar
F1 score.

• On the Micropost 2016 Training dataset, the F1 metrics of GraphEDM is better than
AIDA and ELTDS. WAT-API performs better when compared to our method for F1. On
this dataset, our approach suffered, as many mentions were not mapped onto an entity.
This is mainly due to the fact that those mentions differ from the surface forms of the
corresponding entities in the Knowledge Base. The recall of our system is better than
that of the baselines while our F1 score is only 3% below that of WAT-API.

• On the Mena collection, the results of our method are better than AIDA and ELTDS. The
F1 score of our approach, which is 76.6% is competitive to the F1 score of the WAT-API
method, which is 77.6%.

Table 4.2: Performance evaluation of GraphEDM against SoTA baselines

Dataset Method Precision Recall F1 score

Micropost2014
Test

AIDA - - 41.2
WAT-API 80.6 31.8 45.6
ELTDS 48.4 32.1 38.6

GraphEDM 53.3 51.8 52.5

Micropost2014
Training

AIDA - - 50.3
WAT-API 83.3 39.2 53.3
ELTDS 54 30.4 38.9

GraphEDM 56.5 55.3 55.9

Micropost2016
Test

AIDA - - 19.2
WAT-API 77.6 28.7 41.9
ELTDS 71.8 48.3 57.8

GraphEDM 61.3 60.5 60.9

Micropost2016
Training

AIDA - - 48.5
WAT-API 81.8 47.5 60.1
ELTDS 47.9 33.4 39.6

GraphEDM 57.4 56.6 57

Micropost2016
Development

AIDA - - 15.3
WAT-API 90.6 32.1 47.4
ELTDS 72.4 50.8 59.7

GraphEDM 62.4 61.7 62

Brian Collection

AIDA 50.05 29.4 37.04
WAT-API 86.4 46 59.2
ELTDS 40.6 40 40.3

GraphEDM 60 59.9 60

Mena Collection

AIDA 72.63 55.69 63.04
WAT-API 92.9 66.6 77.6
ELTDS 79.7 47.9 59.8

GraphEDM 76.6 76.6 76.6

4.5.2 Results - Q2

Experiments are conducted with multiple clustering techniques for the Context Extension stage
of our framework. Tables 4.3 - 4.9 show the results of our GraphEDM framework for each

4.5. Research Questions 33

dataset using various clustering techniques. The clustering techniques used in this sense are
K-Means, K-Medoids, Hierarchical Agglomerative Clustering (HAC), Affinity Propagation,
Hybrid Hierarchical K-Means (HHK-Means), and Louvain Clustering. Below is the analysis of
results with respect to each dataset.

• Micropost 2014 Training dataset: Table 4.3 shows the performance metrics for this
dataset. The F1 score for all the clustering techniques range between 54.6% and 57.8%.
The least score of 54.6 is obtained with Agglomerative clustering and the highest score is
with Louvain clustering technique.

• Micropost 2014 Test dataset: Table 4.4 shows the performance metrics for this
dataset. The F1 score for all the clustering techniques range between 52.1% and 53.1%.
The least score of 52.1 is obtained with hybrid hierarchical K-Means clustering using
embeddings and the highest score is also with the same clustering technique but when
TF-IDF is used to represent tweets.

• Micropost 2016 Training dataset: Table 4.5 shows the performance metrics for this
dataset. The F1 score for all the clustering techniques range between 57.8% and 55.8%.
The best score is obtained from HHK-Means and the least score is from Louvain method.

• Micropost 2016 Test dataset: Table 4.6 shows the performance metrics for this
dataset. The F1 score for all the clustering techniques range between 59.7% and 61.9%.
The best score of 61.9 is obtained when Agglomerative clustering is used with embeddings.
The least score of 59.7% is seen with Affinity propagation technique.

• Micropost 2016 Development dataset: Table 4.7 shows the performance metrics for
this dataset. The F1 score for all the clustering techniques range between 57.7% and
63.2%. The highest and the least scores are obtained with Affinity Propagation and
HHK-Means clustering techniques respectively.

• Brian Collection: Table 4.8 shows the performance metrics for this dataset. The F1
score for all the clustering techniques vary largely ranging between 51% and 64.1%. The
highest score is obtained with K-Means clustering technique and the least score with
Agglomerative clustering method.

• Mena Collection: Table 4.9 shows the performance metrics for this dataset. The F1
score for all the clustering techniques range between 76.3% and 73.9%. K-Means and
Affinity propagation clustering methods both have the same score that is best. The least
score is from HHK-Means clustering method.

All clustering techniques used in this thesis are unsupervised, and single technique may not be
optimal on different datasets. As described above, the performance differ depending on the
data at hand, with HHK-Means, a hybrid clustering technique combining Agglomerative and
K-Means clustering, performing best overall and reaching top scores on two different datasets.

4.5.3 Results - Q3

We experimented with two different vectorization techniques in our method, TF-IDF and
Word2vec-based embeddings. Each clustering technique is used in combination with both
embeddings and TF-IDF vectors. The performance of the system with both vectorization
techniques is reported in Tables 4.3 - 4.9. Louvain clustering is unique as it considers each

34 Chapter 4. Experiments & Results

word in the tweet dataset as a node in the graph, and no vectorization method is used for this
clustering technique.

We observe that the performance of our system varies depending on the vectorization method
used. This was expected as the two method are quite different: Word2vec embeddings are
based on the distributional hypothesis and define words through their linguistic contexts, while
TF-IDF considers the words frequencies in the documents and corpus, hence creating very
different vectors. The number of cluster parameters provided to the clustering techniques is
also different in both cases. Out of the seven datasets, the best score is obtained using TF-IDF
vectors for three datasets. For two other datasets, the clustering methods using embeddings are
best. One dataset shows the same performance with embeddings and TF-IDF vectors, while
Louvain reaches the best score on the last dataset.

On average, our results are better with embeddings. In large datasets, TF-IDF vectors
can be sparse, which leads to affecting the context extension phase negatively. On the other
hand, embeddings are trained on a large amount of dataset and are very effective at representing
the context.

Table 4.3: GraphEDM - Micropost 2014 Training dataset

Clustering Vectorization Pr Re F1

K-Means Embeddings 56.5 55.3 55.9
TF-IDF 55.9 54.8 55.3

K-Medoids Embeddings 57.3 56.2 56.8
TF-IDF 56 54.8 55.3

HAC Embeddings 57.6 56.5 57
TF-IDF 55.5 54.4 55

Affinity - Propagation Embeddings 55.1 54 54.6
TF-IDF - - -

HHK-Means Embeddings 56.6 55.5 56
TF-IDF 55.7 54.6 55.1

Louvain - 57.3 56.2 57.8

Table 4.4: GraphEDM - Micropost 2014 Test dataset

Clustering Vectorization Pr Re F1

K-Means Embeddings 53.3 51.8 52.5
TF-IDF 53.8 52.3 53

K-Medoids Embeddings 53.4 51.9 52.6
TF-IDF 53.5 52.1 52.8

Hierarchical
Agglomerative

Embeddings 53.8 52.3 53
TF-IDF 53.5 52.1 52.8

Affinity Propagation Embeddings 53.1 51.6 52.3
TF-IDF - - -

HHK-Means Embeddings 52.8 51.4 52.1
TF-IDF 53.8 52.4 53.1

Louvain - 53.7 52.2 52.9

4.5. Research Questions 35

Table 4.5: GraphEDM - Micropost 2016 Training dataset

Clustering Vectorization Pr Re F1

K-Means Embeddings 58.3 57.4 57.8
TF-IDF 57.6 56.7 57.2

K-Medoids Embeddings 56.4 55.6 56
TF-IDF 57.6 56.7 57.1

Hierarchical
Agglomerative

Embeddings 57.5 56.6 57.1
TF-IDF 57.7 56.8 57.2

Affinity Propagation Embeddings - - -
TF-IDF - - -

HHK-Means Embeddings 57.9 57 57.5
TF-IDF 58.2 57.3 57.8

Louvain - 56.3 55.4 55.8

Table 4.6: GraphEDM - Micropost 2016 Test dataset

Clustering Vectorization Pr Re F1

K-Means Embeddings 61.3 60.5 60.9
TF-IDF 61.8 61.3 61.6

K-Medoids Embeddings 61.8 61.3 61.6
TF-IDF 61.4 60.9 61.2

Hierarchical
Agglomerative

Embeddings 62.1 61.6 61.9
TF-IDF 59.5 59 59.2

Affinity Propagation Embeddings 59.9 59.4 59.7
TF-IDF - - -

HHK-Means Embeddings 60.3 59.8 60.1
TF-IDF 61.3 60.8 61

Louvain - 61.8 61.3 61.6

Table 4.7: GraphEDM - Micropost 2016 Development dataset

Clustering Vectorization Pr Re F1

K-Means Embeddings 62.4 61.7 62
TF-IDF 60 59.3 59.6

K-Medoids Embeddings 60.4 59.7 60
TF-IDF 61.2 60.5 60.8

Hierarchical
Agglomerative

Embeddings 60 59.3 59.6
TF-IDF 60 59.3 59.6

Affinity Propagation Embeddings 58.4 57.7 58.1
TF-IDF 63.6 62.8 63.2

HHK-Means Embeddings 58 57.3 57.7
TF-IDF 58.4 57.7 58.1

Louvain - 62.8 62.1 62.4

36 Chapter 4. Experiments & Results

Table 4.8: GraphEDM - Brian Collection

Clustering Vectorization Pr Re F1

K-Means Embeddings 60 59.9 60
TF-IDF 64.2 64.1 64.1

K-Medoids Embeddings 59.3 59.2 59.3
TF-IDF 63.5 63.4 63.5

Hierarchical
Agglomerative

Embeddings 61.4 61.3 61.3
TF-IDF 50.9 51 51

Affinity Propagation Embeddings - - -
TF-IDF - - -

HHK-Means Embeddings 59.6 59.5 59.6
TF-IDF 60.9 60.8 60.8

Louvain - 56.6 56.5 56.5

Table 4.9: GraphEDM - Mena Collection

Clustering Vectorization Pr Re F1

K-Means Embeddings 76.6 76.6 76.6
TF-IDF 76.1 76.1 76.1

K-Medoids Embeddings 75.9 75.9 75.9
TF-IDF 75.9 75.9 75.9

Hierarchical
Agglomerative

Embeddings 75.7 75.7 75.7
TF-IDF 74.3 74.3 74.3

Affinity Propagation Embeddings 76.3 76.3 76.3
TF-IDF 75.7 75.7 75.7

HHK-Means Embeddings 73.9 73.9 73.9
TF-IDF 74.3 74.3 74.3

Louvain - 75.7 75.7 75.7

Chapter

5
Conclusion

In this thesis, GraphEDM, an effective framework for entity disambiguation in microposts is
proposed. The proposed method is composed of two phases. To extend the limited context
given by the tweets, clustering techniques are used, to regroup semantically similar messages.
Then, disambiguation of the mentions is performed using an iterative graph-based approach.
Our proposed approach outperforms the SoTA by up to 15.13% on five out of the seven gold
standard datasets in the field of entity disambiguation in tweets.

In future work, we plan to study the effect of the dataset’s size on the clustering and on
the corresponding results. We believe that our clustering could benefit from more content in
order to consolidate the tweets contexts. Also, we would be interested in exploring how our
method could be used to process tweets in real time; Specifically, we plan to experiment with
dynamic clustering methods where a tweet can be dynamically assigned to existing pretrained
clusters to make the disambiguation process more efficient for real-time event detection tasks.
Finally, we would like to selectively enhance the surface form matching (for example by lever-
aging surface forms from additional Knowledge Bases) for the cases where we cannot find any
matching candidates in order to optimize recall.

37

Acknowledgements

Firstly, I would like to thank my husband, my parents and my in-laws for the love and support
throughout my Masters including this Master Thesis.

I would like to sincerely thank my supervisors Akansha Bhardwaj and Paolo Rosso for their
insights, continuous support and feedback throughout my thesis. I would also thank Prof.
Philippe Cudré-Mauroux for providing me an opportunity to do thesis with the Department of
Informatics, University of Fribourg.

Finally I would like to thank my friends for making my masters more fun-filled.

38

Appendix

A
Appendix

The results of all the conducted experiments are tabulated in this section. Each table provides
performance of each clustering technique for each vectorization method for all the datasets.
As seen from the tables, the parameter number of clusters is varied for each dataset. Affinity
Propagation and Louvain clustering methods do not take this number of clusters parameter
as input and the number of clusters depends on the algorithm. So there are no tables for
Affinity Propagation and Louvain clustering methods. Complete Named Entity Extraction
and Linking (NEEL) is performed with the GraphEDM for disambiguation and WAT-API for
entity extraction. The performance of NEEL is tabulated in the Table A.9.

39

40 Chapter A. Appendix

Table A.1: Performance of GraphEDM with K-Means clustering using Embeddings

Dataset No. Of Clusters Precision Recall F1Score

Micropost2014 Test

3 52.99 51.53 52.25
4 53.29 51.82 52.55
5 52.99 51.53 52.25
6 52.89 51.43 52.15

Micropost2014 Training 6 55.21 54.12 54.66
18 56.46 55.34 55.90

Micropost2016 Test
3 61.26 60.52 60.89
4 60.74 60.24 60.49
7 61.01 60.52 60.76

Micropost2016 Training

15 56.87 55.99 56.43
20 57.45 56.56 57.00
50 57.71 56.84 57.28
55 57.76 56.89 57.33
60 58.27 57.40 57.83
65 57.40 56.53 56.96
70 58.21 57.33 57.77
80 57.56 56.69 57.12
100 57.97 57.10 57.53

Micropost2016 Development 3 62.40 61.66 62.03
5 58.40 57.71 58.05

Brain Collection
5 57.69 57.60 57.64
6 52.16 52.07 52.11
15 59.97 59.87 59.92

Mena Collection

2 73.65 73.65 73.65
3 75.73 75.73 75.73
4 76.35 76.35 76.35
5 75.73 75.73 75.73
6 75.10 75.10 75.10
7 76.35 76.35 76.35
8 75.10 75.10 75.10
10 76.56 76.56 76.56
15 75.10 75.10 75.10
20 75.73 75.73 75.73
22 75.93 75.93 75.93

Chapter A. Appendix 41

Table A.2: Performance of GraphEDM with K-Means clustering using TF-IDF

Dataset No. Of Clusters Precision Recall F1Score

Micropost2014 Test
4 53.80 52.32 53.05
6 53.50 52.02 52.75
8 53.09 51.63 52.35

Micropost2014 Training 30 55.56 54.46 55.00
40 55.87 54.77 55.31

Micropost2016 Test 3 61.83 61.33 61.58
4 61.15 60.65 60.90

Micropost2016 Training 70 57.64 56.74 57.19
100 56.53 55.60 56.06

Micropost2016 Development

3 59.60 58.89 59.24
4 58.80 58.10 58.45
5 60.00 59.29 59.64
6 59.20 58.50 58.85
7 59.60 58.89 59.24
20 56.80 56.13 56.46

Brian Collection

3 49.55 49.47 49.51
5 64.20 64.09 64.15
7 49.88 49.80 49.84
15 63.55 63.44 63.50

Mena Collection

3 73.65 73.65 73.65
4 76.14 76.14 76.14
5 73.86 73.86 73.86
6 73.86 73.86 73.86
15 75.10 75.10 75.10
20 75.73 75.73 75.73
25 73.44 73.44 73.44

42 Chapter A. Appendix

Table A.3: Performance of GraphEDM with K-Mediods clustering using Embeddings

Dataset No. Of Clusters Precision Recall F1Score

Micropost2014 Test

4 52.68 51.23 51.95
5 53.09 51.63 52.35
6 53.39 51.92 52.65
8 52.68 51.23 51.95

Micropost2014 Training
5 55.69 54.59 55.14
6 57.33 56.19 56.75
8 55.80 54.70 55.24

Micropost2016 Test

3 61.01 60.52 60.76
4 61.29 60.79 61.04
5 61.83 61.33 61.58
6 61.56 61.06 61.31

Micropost2016 Training 20 56.43 55.55 55.99

Micropost2016 Development

2 58.40 57.71 58.05
3 58.40 57.71 58.05
4 58.40 57.71 58.05
5 60.40 59.68 60.04

Brian Collection

2 47.68 47.60 47.64
3 57.85 57.76 57.80
4 56.55 56.46 56.50
5 50.85 50.77 50.81
6 50.20 50.12 50.16
15 59.32 59.22 59.27
17 54.43 54.35 54.39

Mena Collection

3 75.31 75.31 75.31
4 74.07 74.07 74.07
6 74.27 74.27 74.27
7 75.93 75.93 75.93
8 75.10 75.10 75.10
12 74.90 74.90 74.90

Table A.4: Performance of GraphEDM with K-Mediods clustering using TF-IDF

Dataset No. Of Clusters Precision Recall F1Score
Micropost2014 Test 4 53.50 52.07 52.77

Micropost2014 Training 40 55.90 54.80 55.35
Micropost2016 Test 3 61.42 60.92 61.17

Micropost2016 Training

60 57.02 56.16 56.58
70 57.57 56.71 57.14
75 57.45 56.53 56.99
80 57.00 56.14 56.57

Micropost2016 Development

3 58.40 57.71 58.05
4 60.00 59.29 59.64
5 58.40 57.71 58.05
20 61.20 60.47 60.83
26 56.40 55.73 56.06

Brian Collection
3 48.58 48.50 48.54
4 50.94 50.85 50.89
5 48.90 48.82 48.86

Mena Collection

2 75.93 75.93 75.93
3 75.10 75.10 75.10
4 74.07 74.07 74.07
5 73.65 73.65 73.65

Chapter A. Appendix 43

Table A.5: Performance of GraphEDM with Agglomerative clustering using Embeddings

Dataset No. Of Clusters Precision Recall F1Score

Micropost2014 Test

2 53.19 51.72 52.45
3 53.80 52.32 53.05
4 53.80 52.32 53.05
6 52.79 51.33 52.05

Micropost2014 Training 6 56.25 55.14 55.69
18 57.60 56.47 57.03

Micropost2016 Test

3 59.78 59.29 59.54
4 59.92 59.43 59.67
5 60.05 59.57 59.81
7 62.11 61.60 61.85
9 61.56 61.06 61.31

Micropost2016 Training
15 57.53 56.63 57.08
20 57.40 56.51 56.95
25 56.80 56.13 56.46

Micropost2016 Development

3 58.40 57.71 58.05
4 58.00 57.31 57.65
5 58.40 57.71 58.05
7 58.40 57.71 58.05
15 58.00 57.31 57.65
20 60.00 59.29 59.64
25 56.80 56.13 56.46

Brian Collection

7 57.85 57.76 57.80
6 61.35 61.25 61.30
5 58.10 58.00 58.05
4 50.28 50.20 50.24
15 53.95 53.86 53.90

Mena Collection 4 75.73 75.73 75.73

44 Chapter A. Appendix

Table A.6: Performance of GraphEDM with Agglomerative clustering using TF-IDF

Dataset No. Of Clusters Precision Recall F1Score

Micropost2014 Test

3 53.50 52.07 52.77
4 52.99 51.58 52.27
5 53.09 51.68 52.37
6 52.99 51.58 52.27

Micropost2014 Training 30 55.49 54.39 54.93
Micropost2016 Test 3 59.51 59.02 59.26

Micropost2016 Training 200 53.79 37.64 44.29
300 57.68 56.82 57.25

Micropost2016 Development

3 58.00 57.31 57.65
4 60.00 59.29 59.64
5 58.40 57.71 58.05
15 58.40 57.71 58.05
20 58.80 58.10 58.45
30 58.80 58.10 58.45

Brian Collection

3 50.37 50.28 50.33
4 49.72 49.63 49.67
5 50.12 50.04 50.08
6 50.53 50.45 50.49
7 50.94 50.85 50.89
10 47.52 47.44 47.48
15 50.04 49.96 50.00
30 51.02 50.93 50.98

Mena Collection

4 73.86 73.86 73.86
6 73.24 73.24 73.24
8 74.27 74.27 74.27
10 73.44 73.44 73.44
12 73.86 73.86 73.86

Table A.7: Performance of GraphEDM with Hybrid Hierarchical K-Means clustering using Embeddings

Dataset No. Of Clusters Precision Recall F1Score

Micropost2014 Test 3 52.08 50.69 51.37
4 52.79 51.38 52.07

Micropost2014 Training 18 56.56 55.45 56.00
Micropost2016 Test 3 60.33 59.84 60.08

Micropost2016 Training

40 57.32 56.45 56.88
50 57.91 57.04 57.47
70 57.91 57.04 57.47
75 57.76 56.89 57.33
90 57.81 56.94 57.37

Micropost2016 Development 3 58.00 57.31 57.65
4 58.00 57.31 57.65

Brian Collection
5 49.39 49.31 49.35
8 51.99 51.91 51.95
15 59.64 59.55 59.59

Mena Collection

3 73.86 73.86 73.86
5 76.14 76.14 76.14
6 75.31 75.31 75.31
7 74.69 74.69 74.69

Chapter A. Appendix 45

Table A.8: Performance of GraphEDM with Hybrid Hierarchical K-Means clustering using TF-IDF

Dataset No. Of Clusters Precision Recall F1Score

Micropost2014 Test
3 52.99 51.58 52.27
4 53.80 52.37 53.07
5 53.50 52.02 52.75

Micropost2014 Training 40 55.66 54.56 55.10
Micropost2016 Test 3 55.66 54.56 55.10

Micropost2016 Training 300 58.20 57.32 57.75

Micropost2016 Development
3 58.40 57.71 58.05
2 58.00 57.31 57.65
4 58.40 57.71 58.05

Brian Collection 5 60.86 60.76 60.81

Mena Collection

2 73.86 73.86 73.86
3 74.27 74.27 74.27
4 73.86 73.86 73.86
5 74.07 74.07 74.07

Table A.9: Performance of GraphEDM along with entity extraction with WAT-API

Dataset No. Of Clusters Precision Recall F1Score
MSME 2014 Test 5 59.63 26.67 36.86
MSME 2014 Train 18 59.18 32.63 42.07
MSME 2016 Test 3 52.6 19.61 28.57
MSME 2016 Train 20 59.56 43.1 50.01
MSME 2016 Dev 3 55.06 23.33 32.78
Brian Collection 5 58.64 50.17 54.08
Mena Collection 3 79.8 59.21 67.98

Bibliography

[1] R. Alrashdi and S. O’Keefe, “Automatic labeling of tweets for crisis response using distant
supervision,” in Companion Proceedings of the Web Conference 2020, 2020, pp. 418–425.

[2] F. Atefeh and W. Khreich, “A survey of techniques for event detection in twitter,”
Computational Intelligence, vol. 31, no. 1, pp. 132–164, 2015.

[3] A. Bhardwaj, A. Blarer, P. Cudré-Mauroux, V. Lenders, B. Motik, A. Tanner, and
A. Tonon, “Event detection on microposts: A comparison of four approaches,” IEEE
Transactions on Knowledge and Data Engineering, 2019.

[4] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of
communities in large networks,” Journal of statistical mechanics: theory and experiment,
vol. 2008, no. 10, P10008, 2008.

[5] A. E. Cano, G. Rizzo, A. Varga, M. Rowe, M. Stankovic, and A.-S. Dadzie, “Making
sense of microposts:(# microposts2014) named entity extraction & linking challenge,” in
CEUR Workshop Proceedings, vol. 1141, 2014, pp. 54–60.

[6] S. Carter, W. Weerkamp, and M. Tsagkias, “Microblog language identification: Over-
coming the limitations of short, unedited and idiomatic text,” Language Resources and
Evaluation, vol. 47, no. 1, pp. 195–215, 2013.

[7] B. Chen, P. C. Tai, R. Harrison, and Y. Pan, “Novel hybrid hierarchical-k-means clustering
method (hk-means) for microarray analysis,” in 2005 IEEE Computational Systems
Bioinformatics Conference-Workshops (CSBW’05), IEEE, 2005, pp. 105–108.

[8] L. Despalatović, T. Vojković, and D. Vukicevic, “Community structure in networks:
Girvan-newman algorithm improvement,” in 2014 37th international convention on
information and communication technology, electronics and microelectronics (MIPRO),
IEEE, 2014, pp. 997–1002.

[9] V. Efthymiou, O. Hassanzadeh, M. Rodriguez-Muro, and V. Christophides, “Matching
web tables with knowledge base entities: From entity lookups to entity embeddings,” in
International Semantic Web Conference, Springer, 2017, pp. 260–277.

[10] Y. Eslahi, A. Bhardwaj, P. Rosso, K. Stockinger, and P. Cudré-Mauroux, “Annotating
web tables through knowledge bases: A context-based approach,” in 2020 7th Swiss
Conference on Data Science (SDS), IEEE, 2020, pp. 29–34.

[11] Y. Feng, F. Zarrinkalam, E. Bagheri, H. Fani, and F. Al-Obeidat, “Entity linking of
tweets based on dominant entity candidates,” Social Network Analysis and Mining, vol. 8,
no. 1, p. 46, 2018.

46

Bibliography 47

[12] P. Ferragina and U. Scaiella, “Tagme: On-the-fly annotation of short text fragments
(by wikipedia entities),” in Proceedings of the 19th ACM international conference on
Information and knowledge management, 2010, pp. 1625–1628.

[13] “File:datamodel in wikidata.svg,” [Online]. Available: https://commons.wikimedia.org/
wiki/File:Datamodel_in_Wikidata.svg. (accessed: 03.09.2020).

[14] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,” science,
vol. 315, no. 5814, pp. 972–976, 2007.

[15] A. Ganpati and J. Sharma, “A hybrid implementation of k-means and hac algorithm and
its comparison with other clustering algorithms,”

[16] M. J. Garbade, A simple introduction to natural language processing. [Online]. Avail-
able: https://becominghuman.ai/a- simple- introduction- to- natural- language-
processing-ea66a1747b32.

[17] M. B. Habib and M. Van Keulen, “Unsupervised improvement of named entity extraction
in short informal context using disambiguation clues.,” in SWAIE, 2012, pp. 1–10.

[18] M. B. Habib and M. Van Keulen, “Twitterneed: A hybrid approach for named entity
extraction and disambiguation for tweet,” Natural language engineering, vol. 22, no. 3,
p. 423, 2016.

[19] L. Han, A. L. Kashyap, T. Finin, J. Mayfield, and J. Weese, “Umbc_ebiquity-core: Seman-
tic textual similarity systems,” in Second Joint Conference on Lexical and Computational
Semantics (* SEM), Volume 1: Proceedings of the Main Conference and the Shared Task:
Semantic Textual Similarity, 2013, pp. 44–52.

[20] J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. De Melo, and G. Weikum,
“Yago2: Exploring and querying world knowledge in time, space, context, and many
languages,” in Proceedings of the 20th international conference companion on World wide
web, 2011, pp. 229–232.

[21] H. Huang, Y. Cao, X. Huang, H. Ji, and C.-Y. Lin, “Collective tweet wikification based on
semi-supervised graph regularization,” in Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), 2014, pp. 380–390.

[22] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction to cluster
analysis. John Wiley & Sons, 2009, vol. 344.

[23] N. Kolitsas, O.-E. Ganea, and T. Hofmann, “End-to-end neural entity linking,” arXiv
preprint arXiv:1808.07699, 2018.

[24] C. Li, J. Weng, Q. He, Y. Yao, A. Datta, A. Sun, and B.-S. Lee, “Twiner: Named
entity recognition in targeted twitter stream,” in Proceedings of the 35th international
ACM SIGIR conference on Research and development in information retrieval, 2012,
pp. 721–730.

[25] X. Liu, Y. Li, H. Wu, M. Zhou, F. Wei, and Y. Lu, “Entity linking for tweets,” in
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2013, pp. 1304–1311.

https://commons.wikimedia.org/wiki/File:Datamodel_in_Wikidata.svg
https://commons.wikimedia.org/wiki/File:Datamodel_in_Wikidata.svg
https://becominghuman.ai/a-simple-introduction-to-natural-language-processing-ea66a1747b32
https://becominghuman.ai/a-simple-introduction-to-natural-language-processing-ea66a1747b32

48 Bibliography

[26] B. Locke and J. Martin, “Named entity recognition: Adapting to microblogging,” Senior
Thesis, University of Colorado, 2009.

[27] J. MacQueen et al., “Some methods for classification and analysis of multivariate obser-
vations,” in Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, Oakland, CA, USA, vol. 1, 1967, pp. 281–297.

[28] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky, “The
stanford corenlp natural language processing toolkit,” in Proceedings of 52nd annual
meeting of the association for computational linguistics: system demonstrations, 2014,
pp. 55–60.

[29] E. Marsh and D. Perzanowski, “Muc-7 evaluation of ie technology: Overview of results,”
in Seventh Message Understanding Conference (MUC-7): Proceedings of a Conference
Held in Fairfax, Virginia, April 29-May 1, 1998, 1998.

[30] E. Meij, W. Weerkamp, and M. De Rijke, “Adding semantics to microblog posts,” in
Proceedings of the fifth ACM international conference on Web search and data mining,
2012, pp. 563–572.

[31] P. N. Mendes, M. Jakob, A. García-Silva, and C. Bizer, “Dbpedia spotlight: Shedding
light on the web of documents,” in Proceedings of the 7th international conference on
semantic systems, 2011, pp. 1–8.

[32] R. Mihalcea and A. Csomai, “Wikify! linking documents to encyclopedic knowledge,” in
Proceedings of the sixteenth ACM conference on Conference on information and knowledge
management, 2007, pp. 233–242.

[33] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representa-
tions in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[34] B. Molina. “Twitter overcounted active users since 2014, shares surge on profit hopes.
- usa today.,” [Online]. Available: https://eu.usatoday.com/story/tech/news/2017/
10/26/twitter-overcounted-active-users-since-2014-shares-surge/801968001/.
(accessed: 01.09.2020).

[35] A. D. D. Munoz, R. M. Unanue, A. P. Garcıa-Plaza, and V. Fresno, “Unsupervised
real-time company name disambiguation in twitter,” in ICWSM Workshop on Real-Time
Analysis and Mining of Social Streams, 2012, pp. 25–28.

[36] G. von Nordheim, K. Boczek, and L. Koppers, “Sourcing the sources,” Digital Journalism,
vol. 6, no. 7, pp. 807–828, 2018. doi: 10.1080/21670811.2018.1490658. eprint: https:
//doi.org/10.1080/21670811.2018.1490658. [Online]. Available: https://doi.org/10.
1080/21670811.2018.1490658.

[37] R. Nordquist, Syntactic ambiguity. [Online]. Available: https://www.thoughtco.com/
syntactic-ambiguity-grammar-1692179.

[38] R. Otto, Transfer learning for named entity linking with deep learning, 2018.

[39] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: Bringing
order to the web.,” Stanford InfoLab, Tech. Rep., 1999.

https://eu.usatoday.com/story/tech/news/2017/10/26/twitter-overcounted-active-users-since-2014-shares-surge/801968001/
https://eu.usatoday.com/story/tech/news/2017/10/26/twitter-overcounted-active-users-since-2014-shares-surge/801968001/
https://doi.org/10.1080/21670811.2018.1490658
https://doi.org/10.1080/21670811.2018.1490658
https://doi.org/10.1080/21670811.2018.1490658
https://doi.org/10.1080/21670811.2018.1490658
https://doi.org/10.1080/21670811.2018.1490658
https://www.thoughtco.com/syntactic-ambiguity-grammar-1692179
https://www.thoughtco.com/syntactic-ambiguity-grammar-1692179

Bibliography 49

[40] T. Pellissier Tanon, G. Weikum, and F. Suchanek, “Yago 4: A reason-able knowledge
base,” The Semantic Web, 2020.

[41] F. Piccinno, Wat api documentation. [Online]. Available: https://sobigdata.d4science.
org/web/tagme/wat-api.

[42] F. Piccinno and P. Ferragina, “From tagme to wat: A new entity annotator,” in Proceedings
of the first international workshop on Entity recognition & disambiguation, 2014, pp. 55–
62.

[43] A. Pipitone, G. Tirone, and R. Pirrone, “Named entity recognition and linking in tweets
based on linguistic similarity,” in Conference of the Italian Association for Artificial
Intelligence, Springer, 2017, pp. 101–113.

[44] D. Ramachandran and R Parvathi, “Analysis of twitter specific preprocessing technique
for tweets,” Procedia Computer Science, vol. 165, pp. 245–251, 2019.

[45] C. Ran, W. Shen, and J. Wang, “An attention factor graph model for tweet entity linking,”
in Proceedings of the 2018 World Wide Web Conference, 2018, pp. 1135–1144.

[46] J. Ray Chowdhury, C. Caragea, and D. Caragea, “Keyphrase extraction from disaster-
related tweets,” in The world wide web conference, 2019, pp. 1555–1566.

[47] A. Ritter, S. Clark, O. Etzioni, et al., “Named entity recognition in tweets: An experimental
study,” in Proceedings of the 2011 conference on empirical methods in natural language
processing, 2011, pp. 1524–1534.

[48] G. Rizzo, M. V. Erp, J. Plu, and R. Troncy, “Making sense of microposts (#microp-
osts2016) named entity recognition and linking (neel) challenge,” in #Microposts, 2016.

[49] M. Röder, R. Usbeck, and A.-C. Ngonga Ngomo, “Gerbil–benchmarking named entity
recognition and linking consistently,” Semantic Web, vol. 9, no. 5, pp. 605–625, 2018.

[50] J. Roesslein, “Tweepy,” Python programming language module, 2015.

[51] G. Salton and C. Buckley, “Term-weighting approaches in automatic text retrieval,”
Information processing & management, vol. 24, no. 5, pp. 513–523, 1988.

[52] W. Shen, J. Wang, P. Luo, and M. Wang, “Linden: Linking named entities with knowledge
base via semantic knowledge,” in Proceedings of the 21st international conference on
World Wide Web, 2012, pp. 449–458.

[53] D. Spina, E. Amigó, and J. Gonzalo, “Filter keywords and majority class strategies for
company name disambiguation in twitter,” in International Conference of the Cross-
Language Evaluation Forum for European Languages, Springer, 2011, pp. 50–61.

[54] M. Stanislav, Dupont, and D. James Earl, Wikibase rdf query, 2018. [Online]. Available:
https://github.com/wikimedia/wikidata-query-rdf/blob/master/docs/getting-

started.md.

[55] “Tf–idf - wikipedia,” [Online]. Available: https://en.wikipedia.org/wiki/Tf%E2%80%
93idf. (accessed: 08.09.2020).

[56] “Twitter - wikipedia,” [Online]. Available: https://en.wikipedia.org/wiki/Twitter.
(accessed: 01.09.2020).

https://sobigdata.d4science.org/web/tagme/wat-api
https://sobigdata.d4science.org/web/tagme/wat-api
https://github.com/wikimedia/wikidata-query-rdf/blob/master/docs/getting-started.md
https://github.com/wikimedia/wikidata-query-rdf/blob/master/docs/getting-started.md
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Twitter

50 Bibliography

[57] “Wikidata - wikipedia,” [Online]. Available: https://en.wikipedia.org/wiki/Wikidata\
Property_and_value. (accessed: 03.09.2020).

[58] “Wikidata:glossary,” [Online]. Available: https://www.wikidata.org/wiki/Wikidata:
Glossary. (accessed: 03.09.2020).

[59] C. Xu, J. Li, X. Luo, J. Pei, C. Li, and D. Ji, “Dlocrl: A deep learning pipeline for fine-
grained location recognition and linking in tweets,” in The World Wide Web Conference,
2019, pp. 3391–3397.

[60] M. A. Yosef, J. Hoffart, I. Bordino, M. Spaniol, and G. Weikum, “Aida: An online tool
for accurate disambiguation of named entities in text and tables,” Proceedings of the
VLDB Endowment, vol. 4, no. 12, pp. 1450–1453, 2011.

[61] S. Zwicklbauer, C. Seifert, and M. Granitzer, “Doser-a knowledge-base-agnostic framework
for entity disambiguation using semantic embeddings,” in European Semantic Web
Conference, Springer, 2016, pp. 182–198.

https://en.wikipedia.org/wiki/Wikidata\Property_and_value
https://en.wikipedia.org/wiki/Wikidata\Property_and_value
https://www.wikidata.org/wiki/Wikidata:Glossary
https://www.wikidata.org/wiki/Wikidata:Glossary

Acronyms

BOW Bag-Of-Words.
EL Entity Linking.
HAC Hierarchical Agglomerative Clustering.
IE Information Extraction.
KB Knowledge Base.
NED Named Entity Disambiguation.
NEE Named Entity Extraction.
NEEL Named Entity Extraction and Linking.
NER Named Entity Recognition.
NERC Named Entity Recognition and Classification.
NLP Natural Language Processing.
RDF Resource Description Framework.
TF-IDF Term Frequency – Inverse Document Frequency.

51

	Introduction
	Introduction
	Motivation
	Thesis objectives
	Thesis outline

	Background
	Terminology
	Natural Language Processing
	Named Entity Extraction and Linking
	Named Entity Extraction
	Named Entity Disambiguation
	Entity Linking on Documents and Tables
	Entity Linking on Short, Informal Text

	Clustering Methods
	K-Means
	K-Medoids or K-Medians
	Hierarchical Agglomerative Clustering
	Affinity Propagation
	Louvain Clustering
	Hybrid Hierarchical K-Means Clustering

	Text Vectorization
	Knowledge Bases
	Wikidata

	Methodology
	Context Extension
	Preprocessing
	Vectorization
	Clustering

	Entity Disambiguation

	Experiments & Results
	Datasets
	Making Sense of Microposts (Micropost 2014)
	Making Sense of Microposts (Micropost 2016)
	Brian Collection
	Mena Collection

	Dataset Preparation
	Baselines
	AIDA
	WAT-API
	ELTDS

	Experiments
	Research Questions
	Results - Q1
	Results - Q2
	Results - Q3

	Conclusion
	Appendix
	Bibliography
	Acronyms

