
Evaluating Text Classification
Models on Multilingual

Documents

Master Thesis

Julia Eigenmann

Home University
University of Fribourg

Supervisors:
Ines Arous

Dr. Mourad Khayati
Prof. Dr. Philippe Cudré-Mauroux

eXascale Infolab
Department of Informatics, University of Fribourg

September 02 , 2021

i

Abstract

Machine learning models often require large annotated datasets for training in order
to obtain accurate results. However, the scarcity of the labeled data is a bottleneck
for many applications, including text classification. The problem becomes even more
challenging in the case of multilingual textual documents. In such a case, annotators
are required to be experts in annotating the data in different languages. Existing
methods have limited performance on classifying textual documents by using only
a small set of labeled data.

In this thesis, we propose solving this problem by using heuristic rules to label
a large set of multilingual documents and apply different classification models to
them. We compare language-dependent with language-independent classification
approaches and report the results of our comparison. Our results show that:

• Language-independent classifiers perform overall better than the language-
dependent ones for underrepresented languages; this is probably due to their
small training dataset. Language-dependent classifiers with large training dataset
might outperform the language-independent classifiers with training dataset
of comparable size.

• Linear SVC, Random Forest, FastText, Logistic Regression and DistilBert are
well-performing classification models, whereas Multinomial Naive Bayes achieves
only satisfying performance results. DistilBert performs best.

ii

Acknowledgements

I want to thank all the people involved in the work of this thesis, in particular,
highly-experienced PhD student Ines Arous, for her continuous assistance and pa-
tient coaching. She significantly contributed to the process of this master thesis,
whose realization would not have been possible without her expertise and help.

Many thanks to Prof. Dr. Philippe Cudré-Mauroux and Dr. Mourad Khayati for
their organization and kind support.

And, of course, special thanks to the computer engineering company Softcom
Technologies SA for offering this fruitful opportunity and for their generous coopera-
tion, notably to Laure Zurkinden and Pascal Meyrat, who meticulously gathered the
first labeled data.

Thanks to my friends and family which supported and accompanied me through
the challenges during the thesis work.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

2 Background 3
2.0.1 Term Frequency - Inverse Dense Frequency (TF-IDF) 3
2.0.2 FastText as word embedding algorithm 3
2.0.3 Bert as word embedding algorithm (the pre-training Bert model) 5

2.1 Text classification algorithms . 7
2.1.1 Logistic Regression Classification (logit, MaxEnt) 7
2.1.2 Random Forest Classification . 9
2.1.3 Linear Support Vector Classification 10
2.1.4 Naive Bayes classifier for multinomial models 12
2.1.5 FastText as a text classification algorithm 14
2.1.6 Bert as text classification algorithm (the fine-tuned Bert model) 15

3 Method 17
3.1 Data collection and labeling . 17
3.2 Fine-tuning and multilingualism . 17

4 Experiments 21
4.1 Methods . 21
4.2 Dataset properties . 22
4.3 Experimental Setup: . 22

4.3.1 Fine-tuning the hyperparameters 22
4.3.2 Language-dependent task . 23

4.4 Metrics . 23
4.4.1 Confusion Matrix . 23
4.4.2 Accuracy . 24
4.4.3 Precision . 24
4.4.4 Recall . 24
4.4.5 F1-score . 24
4.4.6 AUROC (or AUC) and the ROC curve 25
4.4.7 AUPRC and the PR curve . 25

4.5 Results . 26
4.5.1 Hyperparameter fine-tuning results 26
4.5.2 Language-dependent results . 27
4.5.3 Analysis of the results . 28

5 Conclusion 32
5.1 Summary . 32

iv

Bibliography 33

v

List of Figures

4.1 AUPRC scores after German-dependent and -independent, after French-
dependent and -independent, after Italian-dependent and -independent,
and after English-dependent and -independent classification. MNB:
Multinomial Naive Bayes. LSCV: Linear SCV. RF: Random Forest. FT:
FastText. LR: Logistic Regression. DB: DistilBert 28

1

Chapter 1

Introduction

Supervised learning techniques build an accurate prediction model by learning from
a large amount of labeled data. The labeling process is not an easy task: Sometimes,
it needs domain-specific expert knowledge while the data are labeled by hand. In
text classification, the language and the specificity of domains are another burden for
gathering large amounts of data, labeled or unlabeled. Most languages are under-
resourced to train a successful prediction model, or the resources are not evenly
available in all domains. Moreover, the languages and domains are permanently
evolving. Therefore, multilingual classification methods are of particular interest.

A practical use case is provided by the computer engineering company Softcom
Technologies SA. This company searches for potential clients by scanning through
the work projects advertised by the government procurement of Switzerland. These
announced projects are published on the online platform simap.ch and represent
textual data in different languages. The scanning process of Softcom consists of the
following two steps: First, an employee manually studies each single project descrip-
tion on simap.ch that recently has been tendered. Then, a group of experts reviews
the projects received from the first step, filtering a second time. Only a small per-
centage among the invitations to tender published on simap.ch are saved (perceived
5%), and for these, Softcom considers applying for the invitation to tender. However,
this scanning process might miss potentially interesting projects. Further, manually
scanning through the entire website is time-consuming and is even more challeng-
ing due to the multilingual aspect of the data. A convenient automatic scanning
system simplifies this workload and delivers a more accurate detection of interest-
ing projects.

Most existing methods do not distinguish between different languages within a
dataset. Some techniques are multilingual by design, such as the multilingual Bert
(Devlin et al., 2019; Tanskanen, 2020; Liu et al., 2020; Pires, Schlinger, and Garrette,
2019). The latter learns word embedding that generalizes across multiple languages.
These cross-lingual word embeddings are learned in a shared vector space for sev-
eral languages. Cross-lingual word embeddings are less accurate for some language
combinations such as English and Japanese.

In this thesis, we compare six different classification models to provide Softcom
with tendering documents describing services that match their expertise. The mod-
els aim more concretely at classifying accurately the projects from simap.ch into
interesting and not interesting. A project is considered as interesting for the com-
pany Softcom if the demand matches with their services. For developing the models,
Softcom kindly provided us with a dataset of some ground-truth labeled project ex-
amples. These examples have been labeled twice; once by the employee during the
first step and once by the experts in the second step. The appended label criteria ad-
ditionally help understand their label decision. By intuitively analyzing the dataset
with criteria supplied by Softcom, we create a labeling procedure that annotates the

simap.ch
simap.ch
simap.ch
simap.ch

Chapter 1. Introduction 2

rest of the unlabeled data to extend the amount of labeled data. By combining ex-
isting text representation algorithms with existing text classification algorithms, we
configure the classification models. With a large amount of labeled data and the
classification models, we proceed in two main folds. First, we fine-tune the hyper-
parameters of the models. Second, with the tuned hyperparameters, the models
undergo two different language-related classification approaches to handle the mul-
tilingual aspect of the dataset: language-dependently and -independently. This mas-
ter thesis provides a comparison and analysis of the six tuned models and the two
language-related classification techniques. As a result, we conclude that language-
independent classifiers perform overall better than the language-dependent ones,
especially for underrepresented languages, and Linear SVC, Random Forest, Fast-
Text, Logistic Regression and DistilBert are all well-performing classification mod-
els. DistilBert performs best. The language-dependent approach might outperform
the language-independent approach when the training dataset is large enough.

This thesis is structured as follows: Chapter 2 introduces the algorithms used for
the experiments, chapter 3 presents the steps of our work methodology within this
thesis, chapter 4 shows the experiments and their results as well as an analysis of the
results, chapter 5 gives a conclusive summary of the entire thesis.

3

Chapter 2

Background

In this chapter, we introduce the text representation and classification algorithms
that have been used in the experiments. A text representation algorithm translates
text documents into numerical word features. A text classification algorithm autom-
atizes the classification of textual data. We clarify the functioning of the algorithms,
present their training objective and classifier formula.

2.0.1 Term Frequency - Inverse Dense Frequency (TF-IDF)

The Term Frequency-Inverse Dense Frequency (TF-IDF) algorithm (Sammut and
Webb, 2010) is a text representation algorithm that determines the weight of a word
in a particular document within the collection of documents. This is done by com-
bining the Term Frequency TF (Luhn, 1958) of a vocabulary word with its Inverse
Document Frequency IDF (Jones, 1972). The TF of a word describes its frequency in
a document, and the IDF expresses its frequency within a collection of documents.
The TF of a word t in document d is computed as follows:

TF(t, d) =
frequency of t in d

length of d
(2.1)

And we calculate the IDF of a word t within a collection D with following formula:

IDF(t, D) = log
D
Dt

(2.2)

Where Dt represents the number of documents where the word t occurs. The TF-IDF
of a word t is then expressed as follows:

TFIDF(t, d, D) = TF(t, d) · IDF(t, D) (2.3)

A document is represented as a V-sized vector of TF-IDF scores, where each score
corresponds to a vocabulary word. The V is the vocabulary size.

Since the TF-IDF represents the weight of importance of words within a docu-
ment, this helps to compare the similarity between the documents. However, with
TF-IDF we cannot compare the similarity between the words; it gives no information
on the semantics of the words as with word embeddings.

2.0.2 FastText as word embedding algorithm

FastText (Bojanowski et al., 2016; Joulin et al., 2016) is a method that works as a word
embedding algorithm or as a text classification algorithm. In this section, we are

Chapter 2. Background 4

going to introduce the two Word2Vec neural network models for learning word rep-
resentations in FastText: the skip-gram and CBOW (Mikolov et al., 2013a; Mikolov
et al., 2013b). These models are trained by considering each word’s context within a
sentence.

The skip-gram model predicts the neighboring words given the word in the mid-
dle, while the CBOW model predicts the word in the middle given the neighboring
words. Their ultimate goal is to optimize the weight matrices, which are the word
representations, by training an accurate prediction model.

In FastText, the skip-gram model and CBOW model are extended such that they
can consider the subword information of a word. The models learn word embed-
dings such that each word embedding is computed as the sum of the word’s char-
acter n-grams embeddings. This helps to represent better rare words or morpholog-
ically rich languages like German. Training FastText for word embeddings tends,
therefore, to be slower and requires more memory than training Word2Vec (Di,
Bhardwaj, and Wei, 2018). Even though FastText is trained while considering each
word’s neighboring words within a sentence, it is said to be non-contextual, mean-
ing that there is only one embedding for one word no matter its context; e.g., the
word bank as a seat or as money deposit has the exactly same embedding.

The training objective of the skip-gram model is to maximize the probability of
predicting correctly or minimize the probability of predicting each word context for
a given target word wrongly by optimizing its weight matrices: The input weight
matrix Wi and the output weight matrix Wo. The input weight matrix Wi is the one
that encodes the word representations that we are looking for. Let’s have a context
window of size c and the input target word wt. Then the c next neighbors to the
left as well as to the right from the target word in a text are considered as the context
words of the target word (i.e. from wt−1 to wt−c and from wt+1 to wt+c). Based on this
window panel, we compose training samples to feed the neural network. A training
sample is defined by the target word (input) and a context word (output), such that
all context words appear once together with the target word within the set of train-
ing samples. Therefore, for each target word, we create 2 · c = C training samples.
While training, the window panel shifts from target word to target word through all
training documents. Each word token in the documents is therefore handled once as
a target word. Suppose that all training documents together contain in total T word
tokens. Then we can formulate the skip-gram model’s training objective as follows
(Bojanowski et al., 2016; Mikolov et al., 2013a; Nalisnick and Ravi, 2017)1:

arg min
Wi ,Wo

[
−

T

∑
t=1

∑
−c≤j≤c,j 6=0

wt+j log p(wt+j|wt)

]
(2.4)

At each training iteration, i.e., with each training sample, we do the following: The
input is a V-sized one-hot encoded vector representing the target word wt, where
V is the vocabulary size. The input is multiplied by the input weight matrix Wi
of size V × D to project the target word embedding vector of size D, where D is
the dimension hyperparameter (see section 4.5.1). The input weight matrix Wi acts
like a look-up table for word embeddings: Each row represents the word embed-
ding vector for a particular word in the vocabulary. The D-sized vector output is,
therefore, the word embedding for the target word wt. The projected target word
embedding is then multiplied by the output weight matrix Wo of size D × V out-
putting a V-sized vector. The latter in turn is fed into a softmax function to predict a

1The cost function has been translated into cross-entropy loss function

Chapter 2. Background 5

probability distribution over the vocabulary p(wt+j|wt); for each word in the vocab-
ulary is computed the probability for being the context word wt+j of wt. We take the
difference between the predicted probability distribution p(wt+j|wt) and the actual
probability distribution wt+j, where the latter is represented as a V-sized one-hot
vector. This difference we call the prediction error. We then update the weights Wi
and Wo through backpropagation such that the prediction error is minimized (Kim
et al., 2017; Kim, 2019a; Kim, 2019b).

The training objective of the CBOW model is to maximize the probability of pre-
dicting correctly or to minimize the probability of predicting wrongly the word in
the middle (the target word), given the neighboring words, by optimizing its weight
matrices. A training sample consists of the sum of all context words (input) and the
target word (output). Therefore for each target word we create 1 training sample.
We can formulate the CBOW model’s training objective as follows (Nalisnick and
Ravi, 2017)2:

arg min
Wi ,Wo

[
−

T

∑
t=1

wt log p(wt|wt−c, ..., wt+c)

]
(2.5)

The training procedure of the CBOW model is similar to the skip-gram model. At
each training iteration, i.e. with each training sample, we do the following: The in-
put is the sum of all C context words, where each context word is represented as
a V-sized one-hot vector. The input is multiplied by the input weight matrix Wi of
size V × D to project the sum of the word embeddings of the context vectors, which
is a single D-sized vector. The D-sized vector output is divided by the number of
context words C to output an averaged word embedding. This averaged D-sized
word embedding is multiplied by the output matrix Wo of size D × V to output
a V-sized vector. The latter is fed into a softmax function to predict a probability
distribution over the vocabulary p(wt|wt−c, ..., wt+c); For each word in the vocabu-
lary is computed the probability for being the target word wt of the context words
wt−c, ..., wt+c. We take the difference between the predicted probability distribution
p(wt|wt−c, ..., wt+c) and the actual probability distribution wt, where the latter is rep-
resented as a V-sized one-hot vector. We then update the weights Wi and Wo through
backpropagation such that the prediction error is minimized (Sahil, 2021).

2.0.3 Bert as word embedding algorithm (the pre-training Bert model)

The Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al.,
2019; Vaswani et al., 2017) is a method that generates word embeddings in the pre-
training phase as well as performs downstream natural language processing (NLP)
tasks such as text classification in the fine-tuning phase. In this section, we introduce
the pre-training Bert model.

Bert has pre-trained word embeddings already for more than 70 different lan-
guages based on unlabeled plain texts. The vocabulary of Bert for the English lan-
guage is the WordPiece vocabulary with 30’000 words that have been pre-trained by
texts from the BooksCorpus and English Wikipedia. Bert’s vocabulary consists of
words and subwords. Its WordPiece tokenizer splits words like playing into play and
##ing (Jindrich, 2019; TensorFlow, 2021; Wikipedia, 2021a).

Bert pre-trains contextual, more exactly, deeply bidirectional representations: While
reading sentences, the representation of a particular (sub-)word depends on its left-
and on its right context (referring to bidirectional) combined and not independently

2The cost function has been translated into cross-entropy loss function

Chapter 2. Background 6

from each other (referring to deep). For the exact same word, a different left- and
right-context might produce a different word embedding. That means the same
word can adopt different meanings depending on its context (e.g., The word bank
as a seat or as money deposit) (Google, 2020). This deep bidirectionality is enabled
by employing the masked language model (MLM) objective, referred to as the first
pre-training task: Given a sentence, some words are randomly masked, and the ob-
jective is to predict the masked words. However, for Bert, the masking task has
been slightly extended: During pre-training, Bert’s task is to predict randomly cho-
sen words (15%) within a sentence such that 80% from them are masked, 10% are
replaced by another word, and 10% keep the original word. This extended masking
procedure ensures that Bert optimizes representations not only for masked words
but also for non-masked words by predicting if a word is correct or not. Bert will
not be informed which of the words in the sentence are the randomly chosen ones
and so under prediction examination; this leads to the optimization of the embed-
dings for each word token. Besides the MLM pre-training task, Bert also makes next
sentence predictions (NSP), referred to as the second pre-training task. While pre-
training, Bert gets fed by sequences that are single sentences or pairs of sentences.
With pairs of sentences, Bert’s second pre-training task consists in predicting if the
second sentence is the correct next sentence of the first one. Half of the pairs have
the correct next sentences. The purpose of that pre-training task is to teach Bert to
understand sentence relationships, which is useful for downstream NLP tasks such
as question answering. Bert, therefore, performs during pre-training in complete
two tasks: the MLM and the NSP, while minimizing their combined loss function
(Horev, 2018; Devlin et al., 2019; Montantes, 2021).

Let’s denote an embedded sequence of size E ≤ 512 as T = (C, T1, T2, ..., TE−1).
The C and Ti are H-sized hidden vectors of real numbers. The H is the dimension
of the embeddings (see section 4.5.1). The C represents the whole sequence and is
used for the NSP classification and 15% of Ti are used for the MLM classification.
Let N be the total number of input sequences. Training the MLM classifier can be
expressed with the cross-entropy loss function as follows (Horev, 2018; Devlin et al.,
2019; Montantes, 2021)3:

LMLM = arg min
W

[
− 1

N

N

∑
n=1

E

∑
i=1

yni Mni log(softmax(Tni ·WMLM))

]
(2.6)

Where Mni = 1 if Tni belongs to the 15% of picked out tokens for MLM and Mni = 0
otherwise. The WMLM is a task-specific weight matrix of size V × H where V is the
size of Bert’s (sub-)word token vocabulary. The softmax(Tni ·W) predicts a probabil-
ity distribution over the V (sub-)words for being the token Tni. The yni is a V-sized
one-hot vector representing the actual (sub-)word token. The weights W are perma-
nently updated such that the difference between softmax(Tni ·W) and yni is mini-
mized. Training the NSP classifier can be similarly expressed with the cross-entropy
loss function as follows (Horev, 2018; Devlin et al., 2019; Montantes, 2021)4:

LNSP = arg min
W

[
− 1

N

N

∑
n=1

yn log(softmax(Cn ·WNSP))

]
(2.7)

The WNSP is the task-specific weight matrix of size 2× H. The softmax(Cn ·W) pre-
dicts the probability over the classes (is next sentence or is not next sentence) and the yn

3The function has been computed based on the given references
4The function has been computed based on the given references

Chapter 2. Background 7

here represents the actual class as a 2-sized one-hot vector. Likewise, the weights W
are permanently updated such that the difference between softmax(Cn ·W) and yn
is minimized. The overall training procedure of the pre-training Bert model consists
in training the NSP and MLM classifier together, minimizing their combined cross-
entropy loss (Montantes, 2021; Devlin et al., 2019):

LNSP + LMLM (2.8)

Bert’s pre-training model architecture is a Transformer encoder with a classifier
layer on the top. The original Transformer architecture has an encoder and a decoder
part (Vaswani et al., 2017). Bert has the advantage to pre-train different embeddings
for the same word, depending on the word’s context, by working in a deep bidi-
rectional manner. This makes the pre-training Bert model very accurate. Due to its
complex Transformer architecture and bidirectionality, however, Bert is highly com-
putationally expensive (this can be alleviated by training on TPU or GPU instead of
CPU) (Devlin et al., 2019; Google, 2020; Khan, 2019).

2.1 Text classification algorithms

2.1.1 Logistic Regression Classification (logit, MaxEnt)

Logistic Regression (Cox, 1958) is a classification algorithm that predicts the prob-
ability estimation of data for several possible class labels (e.g., 0 and 1) through an
optimal hyperplane that is determined through the sum of all training hyperplanes.
For example, it predicts that a given data will be classified as 1 with a probability of
65% and classified as 0 with a probability of 35%.

Let’s have a dataset {xi, yi} ∈ D ready, where each data i is supplied by a V-sized
feature vector xi of real numbers (which are the TF-IDF scores in our case) and by a
binary class label yi. The class label yi is either 1 or -1. The dataset D is divided into
a training set Dtrain of size n and into a testing set Dtest of size m.

Geometrically speaking, during the training procedure we aim at fitting a line or
a plane, also called the decision boundary, that linearly classifies the training dataset
as accurately as possible into the classes. A trained decision boundary hyperplane
can be defined as follows (Pothabattula, 2019; Banerjee, 2020):(n

∑
i=1

V

∑
j=1

wij · xij

)
+ b (2.9)

Where the w are the learned weights, the x are the features, and b is a constant repre-
senting the bias. The w and b of the hyperplane have to be computed while training
on the training set Dtrain. By feeding the trained hyperplane into the softmax func-
tion, we obtain a probability distribution over the classes. For binary classification
problems, we can use the sigmoid function instead, which outputs a single prob-
ability value. Suppose we finished training a Logistic Regression classifier on our
training data Dtrain and we want to predict for the i-th testing data {xi, yi} ∈ Dtest
the probability for being classified as 1. This can be represented as follows (Google,
2021):

Chapter 2. Background 8

Classifier(xi) = sigmoid(w · xi + b)

=
1

1 + e−(w·xi+b)

= P(yi = 1)

(2.10)

We evaluate the classifier’s performance by comparing the predicted class probabil-
ity P(yi = 1) with the actual class probability yi given by Dtest.

For a given training data {xi, yi} ∈ Dtrain, if yi is +1 and w · xi > 0, or if yi is -1
and w · xi < 0, then xi is on the correct class-side. If yi is +1 and w · xi < 0 or if yi is -1
and w · xi > 0, then the xi has been separated by the plane into the wrong class-side.
We therefore want to choose w (and b) to build the hyperplane such that the most
possible training data are correctly classified (Banerjee, 2020):

arg max
w,b

n

∑
i=0

yi(w · xi) + b (2.11)

In other words, formula 2.11 expresses the training procedure for the Logistic Re-
gression classifier. It can be also translated into misclassifying the least possible of
training data by using the logistic loss function and the regularization term λ · ‖w‖
(Pothabattula, 2019):

arg min
w,b

n

∑
i=0

log (1 + e−(yi(w·xi)+b)) + λ · ‖w‖ (2.12)

The ‖w‖ is the weight vector distance describing the regularizer or penalty, and
is used as hyperparameter to be set as L1 or L2 regularisation (see section 4.5.1). The
regularisation avoids overfitting by penalizing some outlier weight values, in par-
ticular large weight values. For that, we need to calculate the weight vector distance
either through the Euclidean norm for the L2 regularisation or through the Manhat-
tan norm for the L1 regularisation. The L2 regularisation norm for w, denoted as
‖w‖2, is defined as the sum of the square weights as follows:

‖w‖2 =
n

∑
i=0

w2
i (2.13)

For faster computation we can remove the square root function from the Euclidean
norm. The L1 regularisation norm for w, denoted as ‖w‖1, is defined as the sum of
the absolute weights as follows:

‖w‖1 =
n

∑
i=0
|wi| (2.14)

The advantage of applying L1 is the sparsity. The weight vector w is sparse when
most of its values are zero. With L1 the weight values that are less important become
zero, while with L2 they become smaller or zero. Therefore, L1 is advantageous for
feature selection in the case of a large set of features. The λ is the regularization
strength and is a hyperparameter too; we can also refer to it as the alpha or C pa-
rameter (see section 4.5.1). The C is more exactly the inverse regularization strength,
i.e. C = 1/λ = 1/alpha. The regularization strength hyperparameter controls, as
its name suggests, the strength of the regularization. The lower the λ value (or the
higher the C parameter value), the lower the training error but, the higher the gen-
eralization error (overfitting). The higher the λ value (or, the lower the C parameter

Chapter 2. Background 9

value), the higher the training error (underfitting) but, the lower the generalization
error. Also, the higher the λ value, the more sparse becomes the weight vector w
when using L1 (Paul, 2018; Melcher, 2018; Tyagi, 2021).

Logistic Regression classifier is a simple algorithm as it simply fits the sum of
all training hyperplanes. This makes it quick in classifying new data. Also, the
learned weights directly give information about the importance of the features. Its
quite simple architecture however makes it difficult to compute more complex re-
lationships. Logistic Regression assumes linearity of the training data which is not
always guaranteed. This assumption in turn can be eased through regularization
which also helps against overfitting. It can tend to overfitting namely when having
lots of features but few training data (miyaRanjanRout, 2020; Grover, n.d.).

2.1.2 Random Forest Classification

Random Forest (Ho, 1995; Breiman, 2001) is an ensemble classification (or regres-
sion) algorithm predicated on the bootstrap aggregating or bagging and feature-bagging
technique. The class label of a data is predicted by training a range of learning al-
gorithms on bootstrapped training sets while using only a subset of the features,
aggregating the class predictions obtained from each learning algorithm and finally
returning the ultimate prediction through majority class voting (or by averaging for
regression). The learning algorithms here are the decision trees.

Given a dataset {xi, yi} ∈ D, where each data i is supplied by a V-sized feature
vector xi of real numbers and by a binary class label yi. The dataset D is divided into
a training set Dtrain of size N and a testing set Dtest of size Q.

Suppose we finished training a Random Forest model on our training data Dtrain
and we want to predict the class label of the i-th testing data {xi, yi} ∈ Dtest. The
Random Forest classifier can be then expressed as follows (Wikipedia, 2021c; Hastie,
Tibshirani, and Friedman, 2001):

Classifier(xi) = majority vote over Tb(xi) = ŷi

where b = 1, ..., B
(2.15)

The Tb represents a trained decision tree in Random Forest, and B is the number of
decision trees. We evaluate the classifier’s performance by comparing the predicted
class label ŷi with the actual class label yi given by Dtest.

Bootstrap aggregating or bagging yields B new training sets Db of same size n by
randomly sampling with replacement from the training dataset Dtrain, i.e. some
training data from Dtrain may appear multiple times in a training set Db. In Ran-
dom Forest, the training sets Db are bootstrapped: The new training sets Db are of
the same size as the original training dataset Dtrain, i.e., n = N, and for large N the
sets contain around 63.2% of unique training samples whereas the other samples
are duplicates. Then, on each training set Db is trained a proper decision tree Tb
(Wikipedia, 2021b).

A decision tree consists of nodes and branches. A node of a trained decision
tree represents a feature variable. Each node is split by if-branches into subtrees.
An if-branch accepts a specific possible feature value or a range of possible feature
values that the actual feature value has to match with. In Random Forest, a node is
partitioned into two subtrees where the if-branch conditions are determined through
threshold values (i.e., higher or lower than some value). Random Forest chooses the
next feature node such that it divides the dataset into two parts of the possible equal
size. A terminal node of a completely trained decision tree represents a classification
outcome (Breiman et al., 1984; Hastie, Tibshirani, and Friedman, 2001).

Chapter 2. Background 10

The training procedure of a Random Forest decision tree differs from the general
decision tree learning algorithm: At each node split, (i) m features variables are ran-
domly selected from the V features variables, where m ≤ V. Typically m =

√
V for

classification problems. This process can be referred to as feature bagging or random
subspace method. The next steps similarly occur in the general decision tree learning
algorithm, which consists in (ii) choosing the best feature variable among the m fea-
ture variables as a node and (iii) splitting the node into two children nodes. These
three steps (i, ii and iii) are repeated at each node split until reaching the minimum
node size of the decision tree. The size of a node describes the number of training
data associated with that node. The terminal node of a tree with the smallest node
size is referred to as the minimum node size. Algorithm 1 below describes the train-
ing procedure of the Random Forest model (Wikipedia, 2021c; Hastie, Tibshirani,
and Friedman, 2001):

Algorithm 1 Training procedure of a Random Forest model

Require: Training data-set Dtrain,
Ensure: Trained Random Forest model {Tb}B

1

1: for b = 1, ..., B:
2: (a). Randomly sampling with replacement from
3: the training data-set Dtrain, generating Db
4: (b). While training the decision tree Tb on Db,
5: recursively iterate over following steps at each
6: node split until the minimum node size is attained.
7: i. Choose randomly m feature variables from the V feature variables
8: ii. Select the best feature variable among the m feature variables as node
9: iii. Split node into two children nodes

10: end for
11: return {Tb}B

1

Random Forest makes use of a set of decision trees trained on bootstrapped train-
ing samples, where each tree is trained with a different subset of features. This
makes Random Forest less prone to overfitting and more adapted to training dataset
with many features. In contrast, rare training data are less well represented. Also,
building a Random Forest is complex and computationally expensive, but it tends
to output more accurate classification results than Logistic Regression, for example,
(Team, 2020; Pradhan, Mamgain, and Colleen Farrelly Colleen Farrelly, 2020).

2.1.3 Linear Support Vector Classification

The Linear Support Vector classifier (LSVC) is a binary classification algorithm of
Support Vector Machines (Cortes and Vapnik, 1995) which predicts the class label of
a data through the optimal hyperplane that is determined through the best margin.

Let’s have a dataset {xi, yi} ∈ D ready, where each data i is supplied by a V-sized
feature vector xi of real numbers and by a binary class label yi. The class label yi is
either 1 or -1. The dataset D is divided into a training set Dtrain of size n and a testing
set Dtest of size m.

Chapter 2. Background 11

While training we aim at fitting a hyperplane (see section 2.1.1). Let’s define the
trained optimal hyperplane classifier for LSVC as follows:

w0 · x + b0 = 0 (2.16)

Suppose we finished training a Linear Support Vector classifier on our training data
Dtrain and we want to predict the class label of the i-th testing data {xi, yi} ∈ Dtest.
This can be represented as follows (Cortes and Vapnik, 1995; Manning, Raghavan,
and Schütze, 2008a):

Classifier(xi) = sgn(w0 · xi + b0) = ŷi (2.17)

The sign function sgn predicts the class label of the testing data xi ∈ Dtest as 1 if
w · xi + b ≥ 0 and as -1 if w · xi + b ≤ 0. We evaluate the classifier’s performance by
comparing the predicted class label ŷi with the actual class label yi given by Dtest.

Suppose the training dataset Dtrain is perfectly linearly separable. The optimal
hyperplane divides the training dataset into two classes such that the distance be-
tween the nearest training data points xi from either class-side and the optimal hy-
perplane is at maximum. These nearest training data points we call support vectors.
The optimal hyperplane is computed by fitting two hyperplanes that are parallel to
each other, and the optimal hyperplane lies in the middle between them. We call
the region between the two parallel hyperplanes as margin. The support vectors lie
within the two parallel hyperplanes, and it is them who determine the margin. The
goal is, therefore, to determine the support vectors such that the margin is maxi-
mized. The two parallel hyperplanes can be expressed by following equations:

w · xi + b = 1
w · xi + b = −1

(2.18)

For the i-th training data point {xi, yi} ∈ Dtrain, if yi is +1 and w · xi ≥ 1, or if yi is -1
and w · xi ≤ −1, then the training data point xi is on the correct class-side, outside
from the margin. This can be summarized for all training data points by a single
condition as follows:

∀iyi(w · xi + b) ≥ 1 (2.19)

The distance between the two parallel hyperplanes, which determine the margin, is
defined through the optimal hyperplane as follows:

2
‖w0‖

(2.20)

We choose w (and b) to build the optimal hyperplane such that the distance between
the two parallel hyperplane, or the margin, is maximized and all training data are

Chapter 2. Background 12

correctly classified, outside from the margin:

arg max
w,b

1
‖w0‖2

=

arg min
w,b

‖w0‖2 =

arg min
w,b

w0w0

s.t. ∀i yi(w0xi + b0) ≥ 1

(2.21)

We applied the Euclidean norm respectively the L2 norm for w0, denoted as ‖w0‖2, to
compute the distance. Formula 2.21 represents the training procedure of the Linear
Support Vector classifier (Cortes and Vapnik, 1995; Schölkopf and Smola, 2002).

Now suppose we allow the training dataset not to get perfectly linearly sepa-
rated and allow some training errors. The optimal hyperplane is therefore said to be
constructed under soft constraints. We want to minimize the training errors repre-
sented by so-called slack variables ξi. We re-write formula 2.21 with soft constraints
accordingly (Cortes and Vapnik, 1995; Sontag, 2014):

arg min
w,b,ξ

‖w0‖+
1
λ

n

∑
i=1

ξi

s.t. ∀i yi(w0xi + b0) ≥ 1− ξi

∀i ξ ≥ 0

(2.22)

The training formula with soft constraints 2.22 can also be translated into (hinge)
loss function and regularization term λ‖w0‖ (Wikipedia, 2021d; Sontag, 2014):

arg min
w,b,ξ

n

∑
i=1

ξi + λ‖w0‖ =

arg min
w,b,ξ

n

∑
i=1

max[1− yi(wT
0 xi + b0), 0] + λ‖w0‖

(2.23)

The ‖w0‖ is the penalty hyperparameter (here we applied L2) and the λ is the reg-
ularization strength parameter; the latter is also referred to as as alpha or C (see
sections 2.1.1 and 4.5.1 for more details).

Linear Support Vector machine fits the optimal hyperplane by maxizimizing the
margin defined by support vectors. It is more complex than Logistic Regression
and gives more accurate classification results; this makes the algorithm however
more prone to overfitting. It provides in turn a regularization parameter which
helps against overfitting. It works well for rather small training dataset with lots
of features. It is less adapted for large dataset since it would significantly extend the
training time (Du, 2020; Ray, 2017a).

2.1.4 Naive Bayes classifier for multinomial models

The Multinomial Naive Bayes classifier (Maron, 1961) is a probabilistic classification
algorithm. It predicts the class label of a given data by computing the probability of
each label for that data and returning the class label with the highest probability. It
relies on the naive assumption that the features are independent of each other and
considers a multinomial probability distribution for each feature.

Chapter 2. Background 13

Let’s have a dataset {xi, yi} ∈ D ready, where each data i is supplied by a V-sized
feature vector xi of real numbers and by a binary class label yi. The class label yi is
either 1 or -1. The dataset D is divided into a training set Dtrain of size n and into a
testing set Dtest of size m.

While training we aim at fitting a hyperplane (see section 2.1.1). Suppose we fin-
ished training a multinomial Naive Bayes classifier on our training data Dtrain and
we want to predict the class label of the i-th testing data {xi, yi} ∈ Dtest (Weinberger,
2017):

Classifier(xi) = sgn(w · xi + b)
= arg max

y
P(y|xi) = ŷi

(2.24)

We evaluate the classifier’s performance by comparing the predicted class label ŷi
with the actual class label yi given by Dtest. It predicts the class label with the highest
probability. We compute the probability for each class label based on the Bayes’ rule
(Bayes, 1763) and with the feature independence principle as follows (Fan, 2018;
Weinberger, 2017):

P(y|xi) = P(y)
d

∏
j=1

P(xij|y) (2.25)

The P(y|xi) is called the posterior probability, P(xi|y) is the likelihood, P(y) is the
prior probability of the class label. By computing the the prior probability and the
likelihood for each class label y ∈ {+1,−1} and taking the difference, we determine
the w and b of the decision boundary hyperplane (Rennie et al., 2003; Weinberger,
2017; Teufel, 2014):

w =
d

∑
j=1

(w+1j − w−1j) =
d

∑
j=1

(
log P(xij|+1)− log P(xij|-1)

)
b = b+1 − b−1 = log P(+1)− log P(−1)

(2.26)

The class prior P(y) is calculated by counting the number of training data xi that are
assigned to class label y, denoted as ny, divided by the total amount of training data
n (Teufel, 2014; Manning, Raghavan, and Schütze, 2008b):

P(y) =
ny

n
(2.27)

The conditional probability P(xij|y) is computed by summing up the values of fea-
ture j through all training data belonging to class label y, denoted as Fyj, divided by
the total sum of all values of each feature across all training data with class label y,
i.e., ∑d

j=1 Fyj. To avoid a zero probability estimate for P(xij|y) in case that a feature
value xij doesn’t appear in class y within the training data at all, we apply a regular-
izing method: We add pseudo-occurrences αj to each feature j. Commonly αj = 1
for each feature, then we call the method Laplace smoothing (Rennie et al., 2003;
Manning, Raghavan, and Schütze, 2008b):

P(xij|y) =
Fyj + αj

∑d
j=1(Fyj + αj)

=
Fyj + 1

∑d
j=1(Fyj + 1)

(2.28)

Below we represent the training of the multinomial Naive Bayes model in form of
an algorithm (Weinberger, 2017; Manning, Raghavan, and Schütze, 2008b):

Chapter 2. Background 14

Algorithm 2 Training procedure of a multinomial Naive Bayes model

Require: Training dataset (xi, yi) ∈ Dtrain,
Set of class labels Y=(+1,-1),

Ensure: Trained multinomial Naive Bayes model (w, b)

1: n+1 ← number of training data xi ∈ Dtrain
2: that belong to class label +1
3: n−1 ← number of training data xi ∈ Dtrain
4: that belong to class label −1
5: n← size of Dtrain
6: for each y ∈ Y = (+1, -1):
7: P1(y)← ny/n
8: for each j = 1, ..., V
9: Fyj ← sum of values of feature j within training data of class y

10: P2(xij|y)←
Fyj + 1

∑(Fyj + 1)

11: w← ∑d
j=1

(
log P2(xij|+1)− log P2(xij|-1)

)
12: b← log P1(+1)− log P1(−1)
13: return (w, b)

In Naive Bayes, the features are uncorrelated. If the features of our training data
are highly correlated between them, then Naive Bayes would achieve poor classifica-
tion results. The algorithm gives, however satisfying classifying results even though
the independence assumption doesn’t perfectly hold. This independence between
the features makes the algorithm also simple and quick in training (Ray, 2017b).

2.1.5 FastText as a text classification algorithm

FastText (Bojanowski et al., 2016; Joulin et al., 2016) is a method that works as word
embedding (i.e. text representation) algorithm or as text classification algorithm. In
this section we are going to introduce the FastText for text classification.

In FastText, a text document is represented as a bag of n-gram words. The n-gram
words allow to consider the word order and are used as features for that document.
These features are embedded, and the FastText classifier takes the average of these
feature embeddings to represent the whole text document as a single embedding.
The text document embedding, also called the hidden layer, is then fed to a linear
classifier. The FastText classifier predicts the probability estimation of several possi-
ble class labels (e.g., 1 and 0) for unseen data. For example, it predicts that a given
data will be classified as 1 with a probability of 65% and classified as 0 with a prob-
ability of 35%.

Let’s have a dataset of text documents D ready, where each data i is supplied
by a normalized bag of V n-gram word features xi and a C-sized one-hot vector yi
representing the class label. The dataset D is divided into a training set Dtrain of size
n and testing set Dtest of size m.

While training, we aim at fitting a hyperplane (see section 2.1.1). Suppose we
finished training the FastText classifier on our training data Dtrain and we want to
predict for the i-th testing data {xi, yi} ∈ Dtest the probability distribution over the

Chapter 2. Background 15

C class labels. The trained FastText classifier can be represented as follows (Joulin
et al., 2016):

Classifier(xi) = softmax(BA · xi + b) = ŷi (2.29)

We evaluate the classifier’s performance by comparing the predicted probability dis-
tribution over the classes ŷi with the actual probability distribution yi given by Dtest.
The A and B are the weight matrices. A is a look-up table over the feature embed-
dings of size V × H where H is the dimension hyperparameter of the embeddings
(see section 4.5.1). B is a linear output transformation matrix of size H × C (Bhat-
tacharjee, 2018; Google, nd). For each of the V features from xi, we read from the
look-up table A to match the corresponding embedding to it. Then, these matched
feature embeddings are averaged to produce a single text document embedding ai,
also called the hidden variable (Bhattacharjee, 2018):

ai =
1
V

V

∑
j=1

A · xij (2.30)

When training on {xi, yi} ∈ Dtrain, we want to choose the weights A and B and the
bias b to build the hyperplane classifer while minimizing as much as possible the
training errors. The training procedure of the FastText classifier can be expressed by
following cross-entropy loss function (Joulin et al., 2016; Bhattacharjee, 2018):

arg min
B,A,b

[
− 1

n

n

∑
i=1

yi log(softmax(BAxi + b))
]

(2.31)

While training, the weights A and B are repetitively adjusted such that the difference
between the two predicted probability distribution softmax(BAxi) and the actual
probability distribution yi is minimized.

The FastText classifier is a simple neural network with just one hidden layer and
a linear classifier on the top (Joulin et al., 2016; Bhattacharjee, 2018). Its simple ar-
chitecture makes it faster to train than other deep learning classifiers. Deep learning
classifiers in general have the advantage of performing feature engineering by them-
selves compared to linear classifiers such as Logistic Regression (Shchutskaya, 2018).
The FastText classifier cleverly takes word order into account in an computationally
economically manner by using bag of n-gram words as features (Joulin et al., 2016).
Also the mapping of the n-grams is quick through the so-called hashing trick (Wein-
berger et al., 2009). When having many class labels or an imbalanced dataset, the
FastText classifier reduces the complexity by using the hierarchical softmax and the
Huffman tree algorithm respectively (Joulin et al., 2016). The simplicity and quick-
ness of the FastText classifier makes it handle easily large dataset with many class
labels (Joulin et al., 2016); however, this also makes it less accurate than other more
complex, e.g. Transformer-based, classifier.

2.1.6 Bert as text classification algorithm (the fine-tuned Bert model)

The Bidirection Encoder Representations from Transformers (BERT) (Devlin et al.,
2019; Vaswani et al., 2017) is a method that generates word embeddings in the pre-
training phase as well as performs downstream natural language processing (NLP)
tasks such as text classification in the fine-tuning phase.

Chapter 2. Background 16

With the word embeddings provided by the pre-training Bert model, we can
keep them unchanged as they are and employ them directly to downstream tasks,
which is the feature-based approach. Or, while training the downstream task with
our labeled training dataset, we optimize the pre-trained word embeddings which
is the fine-tuning approach. Fine-tuning makes the word embeddings more adapted
to our specific downstream task (Peters, Ruder, and Smith, 2019). While fine-tuning,
only the pre-trained embeddings of words that also appear in our training data are
actually updated through backpropagation (Jindrich, 2019). When Bert encounters
a word from our labeled training data that doesn’t appear in its pre-trained vocabu-
lary, the WordPiece tokenizer splits the word such that the generated subwords oc-
cur in its vocabulary (Noe, 2020). However, there exist methods to add new words to
the vocabulary as well (Guillou, 2021). Bert can be used for both approaches (Peters,
Ruder, and Smith, 2019), but in this section, we describe Bert’s fine-tuning approach.

At the beginning of the training, the fine-tuning Bert model is initialized with the
vocabulary of pre-trained embeddings. While training, the fine-tuning Bert model
is fed by sequences that are single sentences or pairs of sentences from the training
data. Considering a classification task as downstream task, let’s denote an embed-
ded sequence of size E ≤ 512 as T = (C, T1, T2, ..., TE−1). The C and Ti are H-sized
hidden vectors of real numbers. The H is the dimension of the embeddings (see sec-
tion 4.5.1). The C represents the whole sequence and is used for the classification
task. Let N be the total number of input sequences. While training, the fine-tuning
Bert model aims at minimizing the cross-entropy loss as follows (Devlin et al., 2019;
Montantes, 2021)5:

arg min
W

[
− 1

N

N

∑
n=1

yn log(softmax(Cn ·W))

]
(2.32)

The W is the task-specific weight matrix of size K × H where K is the number of
class labels. The softmax(Cn ·W) predicts the probability over the K classes, and the
yn here represents the actual class as a K-sized one-hot vector. The weights W are
permanently updated such that the difference between softmax(Cn ·W) and yn is
minimized.

Bert’s fine-tuning model architecture is a Transformer encoder with a classifier
layer on the top (like Bert’s pre-training model). The original Transformer architec-
ture has an encoder and a decoder part (Vaswani et al., 2017). The fine-tuning Bert
adapts the pre-trained embeddings to the specific downstream task while training
on the training data. This makes Bert’s downstream task very accurate. The fine-
tuning Bert model is computationally inexpensive compared to pre-training Bert
(Devlin et al., 2019; Google, 2020).

5The standard classification loss has been translated into a cross-entropy loss function

17

Chapter 3

Method

This chapter introduces the significant steps in this thesis work: Data collection, data
labeling, fine-tuning, and language-related steps. The data collection and labeling
processes correlate with each other. The labeling consists of heuristic rules based
on an intuitive analysis of the first labeled data provided by Softcom. The rules rely
a lot on the data structure; hence, the data must be crawled such that their struc-
ture is accessible to the rules. Irregularity within the textual data and their source
code can make these steps challenging. Fine-tuning the models’ hyperparameters is
crucial for modeling a successful prediction tool. A multilingual dataset inevitably
brings up the question of how much the language of a dataset has an impact on the
classification results.

3.1 Data collection and labeling

To build an accurate prediction model, we need a large amount of labeled data. Soft-
com kindly provided us with a set of first labeled data along with label criteria. These
data have been labeled in two steps (i.e., yes-no or yes-yes), first by an employee and
then by a group of experts. To collect more labeled data, we crawled 62’302 textual
data from simap.ch and labeled them through heuristic rules that are based on our
intuitive analysis of the first labeled data with criteria provided by Softcom.

The data have been crawled with Python’s library BeautifulSoup. The crawled
data have been saved into json format. We crawled data that have been published
within a certain period that is determined by a starting and ending date.

The raw data have to be downloaded and saved into a most possible evenly or-
ganized form such that the heuristic rules of the labeling algorithm can perform on
them adequately. In other words, the labeling algorithm and the raw data’s organi-
zation have to conform with each other. The textual data on simap.ch are multilin-
gual, among the data and sometimes within the data, and their content is divided
into only passably equable sections. Moreover, their source-code configuration can
differ from one data to another and is in part irregular within a single data.

The heuristic rules of the labeling algorithm consist in detecting particular words
or subwords with their particular neighboring (sub-)words within precise areas of
the data. These areas are notably accessed through the section titles. The heuristic
rules take into account the different languages of the dataset.

3.2 Fine-tuning and multilingualism

Once we have collected a large set of labeled data, we proceed in two main folds.
First, we apply on the labeled data different classification models while tuning their
hyperparameters and compare the adjusted models with each other. Each model

simap.ch
simap.ch

Chapter 3. Method 18

is composed of a text representation algorithm and a text classification algorithm.
Second, we compare the performance of the tuned models on a multilingual level:
We compare between a language-independent and language-dependent classification
methodology. Below we demonstrate more in detail this working procedure in the
form of an algorithm that we call the Multilingual Text Classification Problem algo-
rithm. The outputs of this algorithm are the results of both folds. It also contains
a second algorithm, the Run Model algorithm, that describes for a particular model
the translation from text into features, the training and testing steps, and outputs the
classification results.

We composed overall six different classification models, each consisting of a text
representation algorithm and a text classification algorithm. The text representation
algorithm TF-IDF has been combined with the Logistic Regression classifier, Linear
Support Vector classifier, Random Forest classifier, and the Naive Bayes classifier
for multinomial models, respectively. The FastText’s word embeddings have been
combined with the FastText classifier, and Bert’s word embeddings have been com-
bined with Bert’s fine-tuning model. When classifying language independently, the
model has been trained on a multilingual dataset. A language-dependent classifica-
tion methodology, however, implies a model that has been trained on a dataset of a
single language.

Chapter 3. Method 19

Algorithm 3 Multilingual Text Classification Problem

Input: Set of (unprocessed) labeled simap projects labeled_data, Set of models models
each consisting of a text representation algorithm repralgo and text classification
algorithm classalgo

Output: Tuning results (model, best parameters, results) and
Multilingualism results (model, language, language-dependent results,
language-independent results)

1: procedure MTCP(labeled_data, models)
2: labeled_data← Pre-process labeled_data
3: *** handle first fold***
4: models_argscombs_set← Define tuning arguments for models
5: for model, argscombs in models_argscombs_set do
6: trainset_indicies, validationset_indicies← split labeled_data into train
7: and validation set indicies
8: for argscomb in argscombs do
9: result← RUN_MODEL(model, argscomb, labeled_data,

10: trainset_indicies, validationset_indicies)
11: argscomb_result_set← Append argscomb, result
12: best_argscomb← Extract arguments with best result
13: from argscomb_result_set
14: trainset_indicies, validationset_indicies, testset_indicies←
15: split labeled_data into train, validation and test set indicies
16: f inal_result← RUN_MODEL(model, best_argscomb, labeled_data,
17: trainset_indicies, validationset_indicies, testset_indicies)
18: tuning_results← Append model, best_argscomb, f inal_result
19: *** handle second fold***
20: languages← Define set of languages
21: for model, best_argscomb, _ in tuning_results do
22: for language in languages do
23: for k times do
24: dep_trainset_indicies, testset_indicies← Take from labeled_data
25: only samples in language. Split these samples into train and
26: test set indicies.
27: indep_trainset_indicies← Append to dep_trainset_indicies all
28: indicies of samples from labeled_data that belong to all
29: languages except of language.
30: dep_result← Add RUN_MODEL(model, best_argscomb,
31: labeled_data, dep_trainset_indicies, testset_indicies)
32: indep_result← Add RUN_MODEL(model, best_argscomb,
33: labeled_data, indep_trainset_indicies, testset_indicies)
34: multilingualism_results← Append model, language, dep_result/k,
35: indep_result/k
36: return tuning_results, multilingualism_results
37: end procedure

Chapter 3. Method 20

Algorithm 4 The Run Model algorithm

Input: Model model consisting of a text representation repralgo and a classification
algorithm classalgo, Single combination of arguments argscomb, Set of (pre-
processed) labeled data labeled_data, Train set indicies trainset_indicies, Valida-
tion set indicies, Test set indicies testset_indicies (if available)

Output: Metric result result

1: procedure RUN_MODEL(model, argscomb, labeled_data, trainset_indicies,
validationset_indicies, testset_indicies)

2: repralgo, classalgo← model
3: repralgo_args, classalgo_args← argscomb
4: f eatures← Transform labeled_data with repralgo and repralgo_args
5: if testset_indicies is not available:
6: trainset, validationset← Split features into train and validation set with
7: trainset_indicies and validationset_indicies
8: else:
9: trainset, validationset, testset← Split features into train, validation

10: and test set with trainset_indicies, validationset_indicies and
11: testset_indicies
12: trained_model← Train classalgo with classalgo_args and trainset
13: predictions_1← Evaluate trained_model with validationset based on
14: optimal threshold
15: if testset_indicies is available:
16: predictions_2← Test trained_model with testset based on
17: same optimal threshold
18: result← Compare predictions_2 with labels of testset by using metrics
19: else:
20: result← Compare predictions_1 with labels of validationset by
21: using metrics
22: return result
23: end procedure

21

Chapter 4

Experiments

In this chapter, we show the classification results of the experiments. The experi-
ments consist of tuning the classification models for classifying multilingual textual
data and evaluate their performance based on two different language-related clas-
sification methodologies. We also introduce the properties of the dataset and the
metrics that we used for the evaluation of the models. In the end, we present a
detailed analysis of the classification results1.

4.1 Methods

We shortly describe the algorithms that have been used for the experiments (see
Chapter 3 for more details):

• TF-IDF is a text representation algorithm that represents each document as a
vector. Each element of the vector stands for a vocabulary word and assigns a
weight that represents the importance of that word within the document.

• FastText as a text representation algorithm is a machine learning algorithm that
embeds a word as a sum of the word’s character n-grams while considering the
word’s neighboring words during training.

• Bert as a text representation algorithm (pre-training Bert) is a Transformer-
based machine learning algorithm that learns several embeddings for the exact
same word depending on its context. For example, the word bank can be rep-
resenting money deposit or a seat depending on the context.

• Multinomial Naive Bayes is a probabilistic classification algorithm that relies on
the naive assumption that the features are independent of each other.

• Random Forest is an ensemble classification (or regression) algorithm where the
class label of data is predicted by training a range of decision trees on boot-
strapped training sets while using only a subset of the features.

• Linear SVC is a binary classification algorithm of Support Vector Machines that
predicts the class label of data through the optimal hyperplane classifier that is
determined through the best margin.

• Logistic Regression is a classification algorithm that predicts for a data a proba-
bility distribution over several possible class labels with the help of an optimal
hyperplane that is determined through the sum of all training hyperplanes.

1The code and the datasets are available here: https://github.com/julul/softcom_simap

https://github.com/julul/softcom_simap

Chapter 4. Experiments 22

• FastText as the classifier is a machine learning classifier that takes word order
into account by using a bag of n-gram words as features.

• Bert as a classifier (fine-tuning Bert) is a Transformer-based machine learning
classifier that fine-tunes the vocabulary words while training for a specific clas-
sification task.

For the experiments, we combined the TF-IDF text representation algorithm with
Multinomial Naive Bayes, Random Forest, Linear SVC, and Logistic Regression. The
FastText for word embeddings is combined with the FastText classifier, and the Bert
for word embeddings is combined with the Bert classifier. More exactly, we chose
a lighter version of Bert, named DistilBert (Sanh et al., 2019) for faster computation
with comparable performance.

4.2 Dataset properties

We collected a set of 62’302 labeled textual documents. These documents are written
in five different languages: 38’524 have been detected as German (61.83%), 21’203 as
French (34.03%), 1729 as Italian (2.78%), 841 as English (1.35%), and only 5 as Span-
ish (0.01%). Some documents, however, are actually written in multiple languages:
A data is divided into sections, and sometimes, for example, the section titles are
written in one language and the section contents in another. The section structur-
ing can differ from one data to another, independently from the language. 57’316
documents have been labeled as not interesting (0 or no) (92%) and 4986 have been
labeled as interesting (1 or yes) (8%). 4117 German samples are labeled as interesting
(11%) and 34407 are labeled as not interesting (89%). 731 French samples are labeled
as interesting (3%) and 20472 French samples are labeled as not interesting (97%). 64
Italian samples are labeled as interesting (4%) and 1665 Italian samples are labeled
as not interesting (96%). 74 English samples are labeled as interesting (9%) and 767
English samples are labeled as not interesting (91%). 0 Spanish samples are labeled
as interesting (0%) and 5 Spanish samples are labeled as not interesting (100%).

4.3 Experimental Setup:

While fine-tuning, the whole dataset is split up for all models except for Bert into
80% training set and 20% validation set; for the evaluation of Bert, the dataset is
split up into 90% training set and 10% validation set to reduce the computational
load of Bert (Kumar, 2021). Once the best hyperparameter values for each model are
fixed, we re-split the dataset into a balanced training dataset of 7’976 samples (80%),
a balanced validation dataset of 996 samples (10%) and a balanced testing dataset of
996 samples (10%). Each model is then trained, validated, and tested. Each model is
tuned once, and we evaluate the tuned model’s performance based on two different
language-related classification methodologies once as well.

4.3.1 Fine-tuning the hyperparameters

Each model goes through a tuning process where we select the hyperparameter val-
ues achieving the best classification results. At each iteration during tuning, the
dataset is split up into the same training and validation set. The validation set is
reduced such that there are equally many data labeled as 0 (not interesting) as data

Chapter 4. Experiments 23

labeled as 1 (interesting). At each tuning iteration, we apply a different set of hyper-
parameter values, calculate the optimal decision threshold (i.e., the threshold with
the highest f1-score in the precision-recall curve), and predict the labels of the vali-
dation set based on the calculated optimal decision threshold. The prediction results
are evaluated through a range of different metrics. We choose the AUPRC metric as
the tuning metric. For our classification problem, we consider the AUPRC metric as
the most representative one for two main reasons: The AUPRC score measures the
performance of a classification model independently of the chosen decision thresh-
old and is more indicative of the performance in imbalanced datasets. We are inter-
ested in identifying the positive samples, which are underrepresented in our dataset
and therefore the AUPRC is appropriate for our case. After the tuning procedure,
with the hyperparameter values achieving the best AUPRC values, we train again
each model with the balanced training dataset, validate and test and finally report
the results.

4.3.2 Language-dependent task

After fine-tuning the hyperparameters, we evaluate the performance of the tuned
models on two different language-related classification methodologies: dependently
and independently of the language. For each tuned model and for each language
among German, French, English, and Italian, we do the following steps five times,
taking German as an example:

• Extract all samples in German from the dataset. Shuffle these German samples
randomly and split them into 80% training and 20% validation sets. Then,
reduce the validation set such that the class labels are balanced.

• Language-dependent set up: Train on the 80% German train set. Evaluate the
20% German validation set.

• Language-independent set up: Extract all other samples from the dataset, and
train on 100% of Italian, 100% of French, 100% of English, the same 80% Ger-
man set all together at once. Test on the same 20% German test set.

After the five runs, we compute the average classification results for both language-
related approaches. For Bert, the dataset is split up into 90% training and 10% vali-
dation set for faster computation (Kumar, 2021).

4.4 Metrics

In this section, we give an insight into various metrics that we used in our experi-
ments to evaluate the classification results.

4.4.1 Confusion Matrix

A confusion matrix visualizes the performance of a classification model by a table.
Each column of the table represents the samples of the predicted label, whereas each
row represents the samples of the actual label (or inversely). In our case, since we
have two labels, the confusion matrix has two columns and rows, each for positive
and negative samples. The positive samples which have been correctly classified by
the model as positive are called true positives (TP). The positive samples which have
been erroneously classified as negative are named false negatives (FN). The negative

Chapter 4. Experiments 24

samples which have been correctly labeled as negative belong to the true negatives
(TN). Finally, the negative samples which have been wrongly marked as positive are
referred to as false positives (FP). Table 4.1 demonstrates such a confusion matrix of a
binary classification model.

(+)

(−)

(+) (−)
predicted

actual

TP FP

FN TN

TABLE 4.1: Confusion matrix of a binary classification model. P =
Positive. N = Negative. TP = True Positive. FN = False Negative. FP

= False Positive. TN = True Negative

4.4.2 Accuracy

Accuracy gives information on how close are the classification model’s predictions
to the actual values. Accuracy is the ratio of the number of correct predictions to the
total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

4.4.3 Precision

Precision, also known as Positive Predictive Value (PPV), tells how many of the sam-
ples that have been predicted as positive are truly positive and thus have been cor-
rectly classified.

Precision =
TP

TP + FP
(4.2)

4.4.4 Recall

Recall, also known as Sensitivity, True Positive Rate (TPR) or Hit Rate, tells how
many of the samples that are actually positive have been correctly classified.

Recall =
TP

TP + FN
(4.3)

4.4.5 F1-score

F1-score measures the accuracy of a model, foregrounding the commonly less repre-
sented positive class. It is formulated as the harmonic mean of Precision and Recall
(see sections 4.4.3 and 4.4.4). F1-score is a metric for expressing the ability of a model

Chapter 4. Experiments 25

to detect correctly positive samples. F1-score is a good choice when there is an im-
balanced class distribution over the dataset (Koehrsen, 2018; Huilgol, 2019).

F1-score =

(
Recall−1 + Precision−1

2

)−1

= 2 ∗ Precision ∗ Recall
Precision + Recall

(4.4)

4.4.6 AUROC (or AUC) and the ROC curve

A ROC (Receiver Operating Characteristic) curve is a graph that presents perfor-
mance results of a classification model based on different classification thresholds.
The purpose of such a graph is to find the optimal classification threshold. The y-
axis of the graph represents the True Positive Rate (TPR) and the x-axis represents
the False Positive Rate (FPR). Any point on the curve represents the performance
result, i.e. the ratio between TPR and FPR, at a certain threshold. The optimal classi-
fication threshold would maximize the TPR and minimize the FPR. It can be found
by computing the Geometric Mean of TPR (also called Sensitivity) and 1-FPR (also
called Specificity) at each threshold and picking out the one with the highest G-mean
value.

The AUC (area under the curve) or more exactly the AUROC (area under the
ROC curve) represents as its name suggests the area under the ROC-curve and is
a metric to measure the prediction performance of the classification model on its
whole, including all decision thresholds. The bigger the area, the higher the AUC
score, the higher the ability of the classification model of classifying the actually
positive samples as positive as well as classifying the actually negative samples as
negative. The AUC score is helpful to compare the ROC curves of different classifica-
tion models (e.g. one ROC curve represents the performance of Logistic Regression,
another is for Random Forest).

4.4.7 AUPRC and the PR curve

A PR (Precision-Recall) curve is a graph that presents the performance results of
a classification model based on different classification thresholds. The purpose of
such a graph is to find the optimal classification threshold. The y-axis of the graph
represents the Precision and the x-axis represents the Recall. Any point on the curve
represents the performance result, i.e. the ratio between Precision and Recall, at a
certain threshold. The optimal classification threshold would maximize the Preci-
sion as well as maximize the Recall, keeping them balanced. It can be found by com-
puting the Geometric Mean of Precision and Recall or by computing the F1-score
of Precision and Recall at each threshold and picking out the one with the highest
G-mean value or F1-score respectively.

The AUPRC (area under the PR-curve) represents as its name suggests the area
under the PR-curve and is a metric to measure the prediction performance of the
classification model on its whole, including all decision thresholds. The bigger the
area, the higher the AUPRC score, and the higher the ability of the model of classify-
ing the actually positive samples as positive as well as correctly predicting a sample
as positive. The AUPRC score is helpful to compare the PR curves of different classi-
fication model (e.g. one PR curve represents the performance of Logistic Regression,
another is for Random Forest).

Chapter 4. Experiments 26

4.5 Results

4.5.1 Hyperparameter fine-tuning results

We present in table 4.2 the classification results after training with the best achieved
hyperparameter values on a balanced dataset of 7’976 samples (80%), validating on
a balanced dataset of 996 samples (10%) and testing on a balanced dataset of 996
samples (10%).

Model
Metrics
Accuracy Precision Recall F1- score AUC AUPRC

Multinomial Naive Bayes 0.73 0.74 0.73 0.73 0.82 0.84
Linear SVC 0.85 0.83 0.86 0.85 0.92 0.92

Random Forest 0.85 0.85 0.85 0.85 0.93 0.94
FastText 0.87 0.87 0.88 0.88 0.95 0.95

Logistic Regression 0.90 0.88 0.92 0.90 0.96 0.97
DistilBert 0.93 0.95 0.91 0.93 0.98 0.98

TABLE 4.2: Classification results after training with the best achieved
hyperparameter values on a balanced dataset (80%), validating on a

balanced dataset (10%) and testing on a balanced dataset (10%).

The hyperparameters have been fine-tuned based on the optimal decision thresh-
old (the threshold with the highest f1-score in the precision-recall curve) and accord-
ing to the AUPRC score. The classification results overall tend to improve from the
Multinomial Naive Bayes model to the DistilBert model. The AUC and AUPRC met-
rics achieve the best results among the metrics. Overall the results are good for each
model, except for the Multinomial Naive Bayes model, notably from Accuracy to
F1-score.

Below we show the values of the most common hyperparameters of the TF-IDF
text representation algorithm after fine-tuning in table 4.3; those of the word embed-
ding algorithms are shown in table 4.4 and those of the text classification algorithms
are presented in table 4.5.

Model
TF-IDF parameters
min df max df

MNB
RF
LR
LSVC

0.001
0.001
0.001
0.01

0.85
0.95
0.9
0.8

TABLE 4.3: Values of the most important hyperparameters of the TF-
IDF algorithm after fine-tuning. MNB: Multinomial Naive Bayes. RF:

Random Forest. LR: Logistic Regression. LSVC: Linear SVC.

Chapter 4. Experiments 27

Model
Word Embeddings parameters
dim minn maxn epoch lr

FT 50 2 6 2 0.07
DB 768 - - 1 0.00004

TABLE 4.4: Values of the most common hyperparameters of the word
embedding algorithms. FT: FastText. DB: DistilBert.

The min df and max df both represent the proportions of the documents. The
purpose is to remove the vocabulary words that appear in less than min df ·100
percent of all documents and those that appear in more than max df ·100 percent of
all documents. The dim stands for the dimension of the embeddings. The minn is
the minimum size of the character n-grams, and maxn is the maximum size of the
character n-grams. The epoch defines the number of times we loop over the training
dataset. The lr stands for the learning rate, which controls the speed of updating
the model’s weights while training. Both, the epochs and learning rate, are at risk of
overfitting.

Model
Classifier parameters
C penalty epoch lr

LR
LSVC
FT
DB

10
0.1
-
-

l1
l2
-
-

-
-
38
4

-
-
0.09
0.00005

TABLE 4.5: Tuning results of most common hyperparameters of text
classification algorithms. MNB: Multinomial Naive Bayes. RF: Ran-
dom Forest. LR: Logistic Regression. LSVC: Linear SVC. FT: FastText.

DB: DistilBert.

The C and the penalty have a regularizing role to prevent overfitting (See in sec-
tions 2.1.1 for more details).

4.5.2 Language-dependent results

After fine-tuning the models, we evaluate their performance on two different language-
related classification methodologies (dependently and independently of the language)
for each language. Figure 4.1 demonstrates the averaged AUPRC results of the two
methodologies2.

2The results might show overfitting tendencies

Chapter 4. Experiments 28

0

25

50

75

100

German

87
94 96 98 98 99

84
94 96 98 98 99

A
U

PR
C

sc
or

e
in

%

French

85
92 93 93 96 97

84
91 92 95 96 99

Dependent
Independent

M
N

B

LS
C

V R
F FT LR D
B

0

25

50

75

100

Italian

67
78 84

74

90
7780 79 81 81

93 94

A
U

PR
C

sc
or

e
in

%

M
N

B

LS
C

V R
F FT LR D
B

English

57

77
92

70

88
7777 78

93 92 94 98

FIGURE 4.1: AUPRC scores after German-dependent and -
independent, after French-dependent and -independent, after Italian-
dependent and -independent, and after English-dependent and -
independent classification. MNB: Multinomial Naive Bayes. LSCV:
Linear SCV. RF: Random Forest. FT: FastText. LR: Logistic Regres-

sion. DB: DistilBert

4.5.3 Analysis of the results

Reading the fine-tuning results from the table 4.2, classification results overall tend
to improve from the Multinomial Naive Bayes model to the DistilBert model. The
AUC and AUPRC metrics achieve the best results among the metrics. The results
of the other metrics (Accuracy, Precision, Recall, F1-score) tend to be overall close
per model. Altogether the results are good (≥ 0.8) for each model, except for the
Multinomial Naive Bayes model, notably from Accuracy to F1-score.

Bert obtained the best results. It produces several embeddings for the exact same
word depending on the word’s context that are fine-tuned while training for a spe-
cific classification task, which leads to very accurate embeddings for a particular
task. Additionally, we applied the multilingual Bert, which learns cross-lingual
word embeddings for several languages; the German, French, English, and Italian
languages are included.

Logistic Regression and Linear SVC have similar training objectives and there-
fore are supposed to achieve similar classification results. Logistic Regression fits

Chapter 4. Experiments 29

more for simple rule-based classifications, whereas the Linear SVC better fits the
classifications based on more complex connections. Our labeling algorithm is rule-
based, which might explain why Logistic Regression achieves better results than
Linear SVC.

The FastText performance is comparable with Bert’s performance. The FastText
model has a simple architecture compared to Bert, which usually leads to less accu-
rate results. Deep learning algorithms, in general, tend to outperform other machine
learning algorithms when a large amount of data is available due to its self-learning
capabilities (Pham et al., 2021). Logistic Regression is competing with them in our
classification problem, probably due to our rule-based labeled dataset.

Random Forest also achieves good classification results through the training of
multiple decision trees. However, each decision tree trains on a bootstrapped and
feature bagged training set: Only a subset of training samples are chosen. From
which, only a subset of training features are considered while training a decision
tree. These properties tend to prevent overfitting but are disadvantageous in case
the features are highly correlated. The features of our classification problem have
some correlation, which explains the low performance of Random Forest compared
to FastText, Logistic Regression, Distilbert. Random Forest and Linear SVC have
overall very close classification results.

The Naive Bayes for multinomial models is based on the naive assumption that
the features are completely independent from each other. As with Random Forest,
the low performance of the Naive Bayes model let us suggest that the features of our
classification problem are correlated.

Reading the results of the two language-related methodologies from figure 4.1,
following observations are summarized below:

• German: Among all models, there is no significant difference between classify-
ing German samples in a dependently and independently manner, according
to the AUPRC score. The Multinomial Naive Bayes model shows only 3%
higher results for the language-dependent approach. The classification results
of both approaches in German are good (≥ 80%) for all models; the results
improve from Multinomial Naive Bayes to DistilBert.

• French: Among all models, there is no significant difference between classify-
ing French samples in a dependently and independently manner, according to
the AUPRC score. Multinomial Naive Bayes, Linear SVC, and Random For-
est are only 1% better in each language-dependent approach. FastText and
DistilBert are better in the language-independent approach for only 2% each.
Same as for German, the classification results of both approaches in French are
suitable for all models; the results improve from Multinomial Naive Bayes to
DistilBert.

• Italian: Multinomial Naive Bayes and Distilbert show a significant difference
between classifying Italian samples in a dependently and independently man-
ner, according to the AUPRC score, where the independent manner leads to
better outcomes (13% and 17% of differences respectively). FastText too works
better for 7% language-independently. Logistic Regression and the Linear SVC
are also better in the language-independent approach, but for 3% and 1% only
respectively, and the Random Forest works better language-dependently for
3% only. The Logistic Regression model performs well in both approaches.
The DistilBert model performs well in the language-independent approach

Chapter 4. Experiments 30

and satisfying (≥ 70% and < 80%) in the language-dependent approach. Ran-
dom Forest performs well in both approaches. FastText performs satisfying in
the language-dependent approach and good in the language-independent ap-
proach. The Linear SVC performs satisfying in both approaches. The Multino-
mial Naive Bayes model performs poorly (< 70%) in the language-dependent
approach and just good (80%) in the language-independent approach.

• English: Multinomial Naive Bayes, FastText, and Distilbert show a significant
difference between classifying English samples in a dependently and indepen-
dently manner, according to the AUPRC score, where the independent man-
ner achieves better results (20%, 22%, and 21% of differences respectively).
Same for Logistic Regression with 6% better performance in the language-
independently approach. Linear SCV and Random Forest work also better
language-independently but only for 1% each. The Logistic Regression model
performs well in both approaches. The DistilBert model performs well in
the language-independent approach and satisfying (≥ 70% and < 80%) in
the language-dependent approach. Random Forest performs well in both ap-
proaches. FastText performs satisfying in the language-dependent approach
and good in the language-independent approach. The Linear SVC performs
satisfying in both approaches. The Multinomial Naive Bayes model performs
poorly (< 70%) in the language-dependent approach and satisfying in the
language-independent approach.

Recall that 61.83% of the samples are German, 34.03% are French, 2.78% are Ital-
ian, and 1.35% are English (0.01% are Spanish). 4117 German samples are labeled
as interesting (11%), and 34407 are labeled as not interesting (89%). 731 French sam-
ples are labeled as interesting (3%), and 20472 French samples are labeled as not
interesting (97%). 64 Italian samples are labeled as interesting (4%), and 1665 Ital-
ian samples are labeled as not interesting (96%). 74 English samples are labeled as
interesting (9%), and 767 English samples are labeled as not interesting (91%).

The performance tendencies of the two language-related approaches in German
are similar to those in French. Likewise, the performance results of the two language-
related approaches in Italian adopt similar tendencies over the models as in English.
There are more differences between both approaches in Italian and English than
in German and French. It seems that languages that are less well represented in
a dataset (Italian and English in our case) tend to show more differences between
both approaches than languages that are well represented (German and French in
our case). It seems evident the difference in performance tends to be higher between
a model that learned from a dataset of 1.35% English samples (and been tested on
100% English samples) and another model which learned from a dataset of 100%
English samples (and been tested on the same 100% English samples), than between
a model that learned from a dataset of 62% English samples and a model that has
learned from a dataset of 100% English samples.

In German and French, the performance improves from the Multinomial Naive
Bayes model to the DistilBert model based on the same assumptions mentioned at
the top of this section. E.g., the low performance of Multinomial Naive Bayes com-
pared with the other models can be explained by its naive assumption that the fea-
tures are completely independent of each other; the features of our classification
problem, however, are correlated. The dependent approach in German and French
achieves slightly better results for the Multinomial Naive Bayes model, probably
also due to the independence principle; features of different languages may rely
more on the correlation between them than the features of the same language. In

Chapter 4. Experiments 31

Italian and English, it is the inverse; the Multinomial Naive Bayes performs poorly in
the language-dependent approach compared to the language-independent approach
and other models in the language-dependent approach. The reason here might be
the small training dataset in the language-dependent approach; the Multinomial
Naive Bayes model probably needs particularly more training data than other mod-
els. Since it doesn’t consider the correlations between the features, even though the
features are actually correlated, the model needs more training data to achieve better
performance. The training datasets in the language-dependent approach in Italian
and English are very small. These small training datasets lower the performance
results also for the other models but are less substantial than for Multinomial Naive
Bayes model.

A model that has been trained on a large dataset but is tested on a language that
is underrepresented in the training set clearly achieves low performance compared
with a model that has been trained on a large dataset and is tested on a language
that is well represented in the training set. However, a model trained on a training
set of one language but of small size (and tested on that same language) seems to
have a lower performance.

Probably a model that is trained on a large dataset of one language (and tested on
that same language) would outperform a model that is trained on a comparable large
dataset of different languages (and tested on the same set). This assumption is based
on the results for German and French, where there is almost no difference between
the two methodologies even though the training dataset in the language-dependent
approach is still much smaller than the training dataset in the language-independent
approach.

The language-independent approach works better when the training dataset of
the language-dependent approach is too small, i.e., for languages that are underrep-
resented over the entire dataset.

32

Chapter 5

Conclusion

5.1 Summary

During the realization of the project within this master thesis, we went through sev-
eral challenges: The data collection where we collected data from simap.ch and
labeled it. The implementation of text representation and text classification algo-
rithms, as well as other machine learning methods, evaluating the performance of
the tuned classification models in two different aspects.

This master thesis conveys a comparison of six different classification models
as well as a performance evaluation on a language-oriented level. We conclude that
language-independent classifiers perform overall better than the language-dependent
ones for underrepresented languages; this is probably due to their too small training
dataset. Language-dependent classifiers with large training dataset might outper-
form the language-independent classifiers with training dataset of comparable size.
Linear SVC, Random Forest, FastText, Logistic Regression and DistilBert are well-
performing classification models, whereas Multinomial Naive Bayes achieves only
satisfying performance results. DistilBert performs best.

A future work can be the collection of more labeled data with the help of more
classification examples from Softcom or downloading more data from simap.ch to
label them. More labeled data could be collected through existing weak supervision
methods such as few-shot learning techniques (Ozsubasi, 2021).

simap.ch
simap.ch

33

Bibliography

Banerjee, Writuparna (2020). Train/Test Complexity and Space Complexity of Logistic Re-
gression. https://levelup.gitconnected.com/train-test-complexity-and-
space-complexity-of-logistic-regression-2cb3de762054.

Bayes, T. (1763). “An essay towards solving a problem in the doctrine of chances”.
In: Phil. Trans. of the Royal Soc. of London 53, pp. 370–418.

Bhattacharjee, Joydeep (2018). fastText Quick Start Guide. Packt Publishing Ltd.
Bojanowski, Piotr et al. (2016). Enriching Word Vectors with Subword Information. cite

arxiv:1607.04606Comment: Accepted to TACL. The two first authors contributed
equally. URL: http://arxiv.org/abs/1607.04606.

Breiman, L. et al. (1984). Classification and Regression Trees. Monterey, CA: Wadsworth
and Brooks.

Breiman, Leo (2001). “Random forests”. In: Machine learning 45.1, pp. 5–32.
Cortes, C. and V. Vapnik (1995). “Support Vector Networks”. In: Machine Learning

20, pp. 273–297. URL: http://image.diku.dk/imagecanon/material/cortes_
vapnik95.pdf.

Cox, David R. (1958). “The Regression Analysis of Binary Sequences (with Discus-
sion)”. In: J Roy Stat Soc B 20, pp. 215–242.

Devlin, Jacob et al. (June 2019). “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding”. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: As-
sociation for Computational Linguistics, pp. 4171–4186. DOI: 10.18653/v1/N19-
1423. URL: https://www.aclweb.org/anthology/N19-1423.

Di, Wei, Anurag Bhardwaj, and Jianing Wei (2018). In: Deep Learning Essentials. Chap. 5,
p. 141. ISBN: 9781785880360.

Du, Haitao (2020). SVM vs Logistic Regression [duplicate]. https://stats.stackexchange.
com/questions/443351/svm-vs-logistic-regression.

Fan, Shuzhan (2018). Understanding the mathematics behind Naive Bayes. https://
shuzhanfan.github.io/2018/06/understanding-mathematics-behind-naive-
bayes/.

Google (2020). What is Bert? https://github.com/google-research/bert.
— (2021). Logistic Regression: Calculating a Probability. https://developers.google.

com/machine-learning/crash-course/logistic-regression/calculating-
a-probability.

— (nd). Text Classification with fastText. https://colab.research.google.com/
github/NaiveNeuron/nlp- excercises/blob/master/tutorial2- fasttext/
Text_Classification_fastText.ipynb.

Grover, Khushnuma (n.d.). Advantages and Disadvantages of Logistic Regression. https:
//iq.opengenus.org/advantages-and-disadvantages-of-logistic-regression/.

Guillou, Pierre (2021). NLP | How to add a domain-specific vocabulary (new tokens) to
a subword tokenizer already trained like BERT WordPiece. https://medium.com/
@pierre_guillou/nlp-how-to-add-a-domain-specific-vocabulary-new-
tokens-to-a-subword-tokenizer-already-trained-33ab15613a41.

https://levelup.gitconnected.com/train-test-complexity-and-space-complexity-of-logistic-regression-2cb3de762054
https://levelup.gitconnected.com/train-test-complexity-and-space-complexity-of-logistic-regression-2cb3de762054
http://arxiv.org/abs/1607.04606
http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf
http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://stats.stackexchange.com/questions/443351/svm-vs-logistic-regression
https://stats.stackexchange.com/questions/443351/svm-vs-logistic-regression
https://shuzhanfan.github.io/2018/06/understanding-mathematics-behind-naive-bayes/
https://shuzhanfan.github.io/2018/06/understanding-mathematics-behind-naive-bayes/
https://shuzhanfan.github.io/2018/06/understanding-mathematics-behind-naive-bayes/
https://github.com/google-research/bert
https://developers.google.com/machine-learning/crash-course/logistic-regression/calculating-a-probability
https://developers.google.com/machine-learning/crash-course/logistic-regression/calculating-a-probability
https://developers.google.com/machine-learning/crash-course/logistic-regression/calculating-a-probability
https://colab.research.google.com/github/NaiveNeuron/nlp-excercises/blob/master/tutorial2-fasttext/Text_Classification_fastText.ipynb
https://colab.research.google.com/github/NaiveNeuron/nlp-excercises/blob/master/tutorial2-fasttext/Text_Classification_fastText.ipynb
https://colab.research.google.com/github/NaiveNeuron/nlp-excercises/blob/master/tutorial2-fasttext/Text_Classification_fastText.ipynb
https://iq.opengenus.org/advantages-and-disadvantages-of-logistic-regression/
https://iq.opengenus.org/advantages-and-disadvantages-of-logistic-regression/
https://medium.com/@pierre_guillou/nlp-how-to-add-a-domain-specific-vocabulary-new-tokens-to-a-subword-tokenizer-already-trained-33ab15613a41
https://medium.com/@pierre_guillou/nlp-how-to-add-a-domain-specific-vocabulary-new-tokens-to-a-subword-tokenizer-already-trained-33ab15613a41
https://medium.com/@pierre_guillou/nlp-how-to-add-a-domain-specific-vocabulary-new-tokens-to-a-subword-tokenizer-already-trained-33ab15613a41

Bibliography 34

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2001). The Elements of Sta-
tistical Learning. Springer Series in Statistics. New York, NY, USA: Springer New
York Inc. Chap. 15, pp. 587–604.

Ho, Tin Kam (1995). “Random Decision Forests”. In: Proceedings of the Third Inter-
national Conference on Document Analysis and Recognition (Volume 1) - Volume 1.
ICDAR ’95. M: IEEE Computer Society, pp. 278–282. ISBN: 0-8186-7128-9.

Horev, Rani (2018). BERT Explained: State of the art language model for NLP. https:
//towardsdatascience.com/bert-explained-state-of-the-art-language-
model-for-nlp-f8b21a9b6270.

Huilgol, Purva (2019). Accuracy vs. F1-score. https : / / medium . com / analytics -
vidhya/accuracy-vs-f1-score-6258237beca2.

Jindrich (2019). How are the TokenEmbeddings in BERT created? https://stackoverflow.
com/questions/57960995/how-are-the-tokenembeddings-in-bert-created.

Jones, Karen Spärck (1972). “A statistical interpretation of term specificity and its
application in retrieval”. In: Journal of Documentation 28, pp. 11–21.

Joulin, Armand et al. (2016). Bag of Tricks for Efficient Text Classification. arXiv: 1607.
01759 [cs.CL].

Khan, Suleiman (2019). BERT Technology introduced in 3-minutes. https://towardsdatascience.
com/bert-technology-introduced-in-3-minutes-2c2f9968268c.

Kim, Augustine Yongwhi et al. (2017). Automated Text Analysis Based on Skip-Gram
Model for Food Evaluation in Predicting Consumer Acceptance. Tech. rep.

Kim, Eric (2019a). Demystifying Neural Network in Skip-Gram Language Modeling. https:
//aegis4048.github.io/demystifying_neural_network_in_skip_gram_
language_modeling.

— (2019b). Optimize Computational Efficiency of Skip-Gram with Negative Sampling.
https://aegis4048.github.io/optimize_computational_efficiency_of_
skip-gram_with_negative_sampling.

Koehrsen, Will (2018). Beyond Accuracy: Precision and Recall. https://towardsdatascience.
com/beyond-accuracy-precision-and-recall-3da06bea9f6c.

Kumar, Ajitesh (2021). Machine Learning – Training, Validation and Test Data Set. https:
//vitalflux.com/machine-learning-training-validation-test-data-set/.

Liu, Chi-Liang et al. (2020). “What makes multilingual BERT multilingual?” In: CoRR
abs/2010.10938. arXiv: 2010.10938. URL: https://arxiv.org/abs/2010.10938.

Luhn, H. P. (Apr. 1958). “The Automatic Creation of Literature Abstracts”. In: IBM J.
Res. Dev. 2.2, 159–165. ISSN: 0018-8646. DOI: 10.1147/rd.22.0159. URL: https:
//doi.org/10.1147/rd.22.0159.

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008a). Intro-
duction to Information Retrieval. Cambridge University Press. Chap. 15.

— (2008b). Introduction to Information Retrieval. Cambridge University Press. Chap. Text
classification & Naive Bayes.

Maron, M.E. (1961). Automatic indexing: an experimental inquiry.
Melcher, Kathrin (2018). Regularization for Logistic Regression: L1, L2, Gauss, or Laplace?

https://dzone.com/articles/regularization-for-logistic-regression-
l1-l2-gauss.

Mikolov, Tomas et al. (2013a). “Distributed Representations of Words and Phrases
and their Compositionality”. In: Advances in Neural Information Processing Sys-
tems. Ed. by C. J. C. Burges et al. Vol. 26. Curran Associates, Inc. URL: https://
proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-
Paper.pdf.

Mikolov, Tomas et al. (2013b). Efficient Estimation of Word Representations in Vector
Space. cite arxiv:1301.3781. URL: https://arxiv.org/pdf/1301.3781.pdf.

https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://medium.com/analytics-vidhya/accuracy-vs-f1-score-6258237beca2
https://medium.com/analytics-vidhya/accuracy-vs-f1-score-6258237beca2
https://stackoverflow.com/questions/57960995/how-are-the-tokenembeddings-in-bert-created
https://stackoverflow.com/questions/57960995/how-are-the-tokenembeddings-in-bert-created
https://arxiv.org/abs/1607.01759
https://arxiv.org/abs/1607.01759
https://towardsdatascience.com/bert-technology-introduced-in-3-minutes-2c2f9968268c
https://towardsdatascience.com/bert-technology-introduced-in-3-minutes-2c2f9968268c
https://aegis4048.github.io/demystifying_neural_network_in_skip_gram_language_modeling
https://aegis4048.github.io/demystifying_neural_network_in_skip_gram_language_modeling
https://aegis4048.github.io/demystifying_neural_network_in_skip_gram_language_modeling
https://aegis4048.github.io/optimize_computational_efficiency_of_skip-gram_with_negative_sampling
https://aegis4048.github.io/optimize_computational_efficiency_of_skip-gram_with_negative_sampling
https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c
https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c
https://vitalflux.com/machine-learning-training-validation-test-data-set/
https://vitalflux.com/machine-learning-training-validation-test-data-set/
https://arxiv.org/abs/2010.10938
https://arxiv.org/abs/2010.10938
https://doi.org/10.1147/rd.22.0159
https://doi.org/10.1147/rd.22.0159
https://doi.org/10.1147/rd.22.0159
https://dzone.com/articles/regularization-for-logistic-regression-l1-l2-gauss
https://dzone.com/articles/regularization-for-logistic-regression-l1-l2-gauss
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://arxiv.org/pdf/1301.3781.pdf

Bibliography 35

miyaRanjanRout (2020). Advantages and Disadvantages of Logistic Regression. https:
//www.geeksforgeeks.org/advantages-and-disadvantages-of-logistic-
regression/.

Montantes, James (2021). BERT Transformers — How Do They Work? https://becominghuman.
ai/bert-transformers-how-do-they-work-cd44e8e31359.

Nalisnick, Eric and Sachin Ravi (2017). Learning the Dimensionality of Word Embed-
dings. arXiv: 1511.05392 [stat.ML].

Noe (2020). How pre-trained BERT model generates word embeddings for out of vocabulary
words? https://datascience.stackexchange.com/questions/85566/how-pre-
trained-bert-model-generates-word-embeddings-for-out-of-vocabulary-
words.

Ozsubasi, Izgi Arda (2021). Few-Shot Learning (FSL): What it is and its Applications.
https://research.aimultiple.com/few-shot-learning/.

Paul, Michael (2018). Regularization. https://cmci.colorado.edu/classes/INFO-
4604/files/slides-6_regularization.pdf.

Peters, Matthew E., Sebastian Ruder, and Noah A. Smith (Aug. 2019). “To Tune or
Not to Tune? Adapting Pretrained Representations to Diverse Tasks”. In: Pro-
ceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019).
Florence, Italy: Association for Computational Linguistics, pp. 7–14. DOI: 10 .
18653/v1/W19-4302. URL: https://www.aclweb.org/anthology/W19-4302.

Pham, Binh Thai et al. (2021). “Can deep learning algorithms outperform bench-
mark machine learning algorithms in flood susceptibility modeling?” In: Journal
of Hydrology 592, p. 125615. ISSN: 0022-1694. DOI: https://doi.org/10.1016/
j.jhydrol.2020.125615. URL: https://www.sciencedirect.com/science/
article/pii/S0022169420310763.

Pires, Telmo, Eva Schlinger, and Dan Garrette (2019). “How multilingual is Multilin-
gual BERT?” In: CoRR abs/1906.01502. arXiv: 1906.01502. URL: http://arxiv.
org/abs/1906.01502.

Pothabattula, Santosh Kumar (2019). A complete understanding of how the Logistic Re-
gression can perform classification? https://medium.com/analytics-vidhya/a-
complete-understanding-of-how-the-logistic-regression-can-perform-
classification-a8e951d31c76.

Pradhan, Dilip, Sunakshi Mamgain, and Profile photo for Colleen Farrelly Colleen
Farrelly (2020). What are the advantages and disadvantages for a random forest algo-
rithm? https://www.quora.com/What-are-the-advantages-and-disadvantages-
for-a-random-forest-algorithm.

Ray, Sunil (2017a). Understanding Support Vector Machine(SVM) algorithm from exam-
ples (along with code). https://www.analyticsvidhya.com/blog/2017/09/
understaing-support-vector-machine-example-code/.

— (2017b). What are the advantages and disadvantages of Naive Bayes for classification?
https://www.quora.com/What-are-the-advantages-and-disadvantages-of-
Naive-Bayes-for-classification.

Rennie, Jason D et al. (2003). “Tackling the poor assumptions of naive bayes text
classifiers”. In: Proceedings of the 20th international conference on machine learning
(ICML-03), pp. 616–623.

Sahil (2021). Word Embedding: CBOW and Skip-gram. https://medium.datadriveninvestor.
com/word-embedding-cbow-skip-gram-8262e22fa7c.

“TF–IDF” (2010). In: Encyclopedia of Machine Learning. Ed. by Claude Sammut and
Geoffrey I. Webb. Boston, MA: Springer US, pp. 986–987. ISBN: 978-0-387-30164-8.
DOI: 10.1007/978-0-387-30164-8_832. URL: https://doi.org/10.1007/978-
0-387-30164-8_832.

https://www.geeksforgeeks.org/advantages-and-disadvantages-of-logistic-regression/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-logistic-regression/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-logistic-regression/
https://becominghuman.ai/bert-transformers-how-do-they-work-cd44e8e31359
https://becominghuman.ai/bert-transformers-how-do-they-work-cd44e8e31359
https://arxiv.org/abs/1511.05392
https://datascience.stackexchange.com/questions/85566/how-pre-trained-bert-model-generates-word-embeddings-for-out-of-vocabulary-words
https://datascience.stackexchange.com/questions/85566/how-pre-trained-bert-model-generates-word-embeddings-for-out-of-vocabulary-words
https://datascience.stackexchange.com/questions/85566/how-pre-trained-bert-model-generates-word-embeddings-for-out-of-vocabulary-words
https://research.aimultiple.com/few-shot-learning/
https://cmci.colorado.edu/classes/INFO-4604/files/slides-6_regularization.pdf
https://cmci.colorado.edu/classes/INFO-4604/files/slides-6_regularization.pdf
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
https://www.aclweb.org/anthology/W19-4302
https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.125615
https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.125615
https://www.sciencedirect.com/science/article/pii/S0022169420310763
https://www.sciencedirect.com/science/article/pii/S0022169420310763
https://arxiv.org/abs/1906.01502
http://arxiv.org/abs/1906.01502
http://arxiv.org/abs/1906.01502
https://medium.com/analytics-vidhya/a-complete-understanding-of-how-the-logistic-regression-can-perform-classification-a8e951d31c76
https://medium.com/analytics-vidhya/a-complete-understanding-of-how-the-logistic-regression-can-perform-classification-a8e951d31c76
https://medium.com/analytics-vidhya/a-complete-understanding-of-how-the-logistic-regression-can-perform-classification-a8e951d31c76
https://www.quora.com/What-are-the-advantages-and-disadvantages-for-a-random-forest-algorithm
https://www.quora.com/What-are-the-advantages-and-disadvantages-for-a-random-forest-algorithm
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://www.quora.com/What-are-the-advantages-and-disadvantages-of-Naive-Bayes-for-classification
https://www.quora.com/What-are-the-advantages-and-disadvantages-of-Naive-Bayes-for-classification
https://medium.datadriveninvestor.com/word-embedding-cbow-skip-gram-8262e22fa7c
https://medium.datadriveninvestor.com/word-embedding-cbow-skip-gram-8262e22fa7c
https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1007/978-0-387-30164-8_832

Bibliography 36

Sanh, Victor et al. (2019). “DistilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter”. In: ArXiv abs/1910.01108.

Schölkopf, Bernhard and Alex Smola (2002). Learning with Kernels. Support Vector
Machines, Regularization, Optimization and Beyond. Cambridge, MA: MIT Press.

Shchutskaya, Valeryia (2018). Deep Learning: Strengths and Challenges. https://indatalabs.
com/blog/deep-learning-strengths-challenges?cli_action=1622636755.
034.

Sontag, David (2014). Support vector machines (SVMs), Lecture 2. https://people.
csail.mit.edu/dsontag/courses/ml14/slides/lecture2.pdf.

Tanskanen, Aapo (2020). How to classify text in 100 languages with a single NLP model.
https://gofore.com/en/how-to-classify-text-in-100-languages-with-a-
single-nlp-model/.

Team, Great Learning (2020). Random Forest Algorithm- An Overview. https://www.
mygreatlearning.com/blog/random-forest-algorithm/.

TensorFlow (2021). Tokenization. https://hub.tensorflow.google.cn/google/
experts/bert/wiki_books/1.

Teufel, Simone (2014). Lecture 7: Text Classification and Naive Bayes. https://www.cl.
cam.ac.uk/teaching/1314/InfoRtrv/lecture7.pdf.

Tyagi, Neelam (2021). L2 and L1 Regularization in Machine Learning. https://www.
analyticssteps.com/blogs/l2-and-l1-regularization-machine-learning.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates,
Inc.

Weinberger, Kilian (2017). Bayes Classifier and Naive Bayes. https://www.cs.cornell.
edu/courses/cs4780/2018fa/lectures/lecturenote05.html.

Weinberger, Kilian et al. (2009). “Feature Hashing for Large Scale Multitask Learn-
ing”. In: Proceedings of the 26th Annual International Conference on Machine Learn-
ing. ICML ’09. Montreal, Quebec, Canada: Association for Computing Machin-
ery, 1113–1120. ISBN: 9781605585161. DOI: 10 . 1145 / 1553374 . 1553516. URL:
https://doi.org/10.1145/1553374.1553516.

Wikipedia (2021a). BERT (language model). https://en.wikipedia.org/wiki/BERT_
(language_model).

— (2021b). Bootstrap aggregating. https://en.wikipedia.org/wiki/Bootstrap_
aggregating.

— (2021c). Random Forest. https://en.wikipedia.org/wiki/Random_forest.
— (2021d). Support-vector machine. https://en.wikipedia.org/wiki/Support-

vector_machine.

https://indatalabs.com/blog/deep-learning-strengths-challenges?cli_action=1622636755.034
https://indatalabs.com/blog/deep-learning-strengths-challenges?cli_action=1622636755.034
https://indatalabs.com/blog/deep-learning-strengths-challenges?cli_action=1622636755.034
https://people.csail.mit.edu/dsontag/courses/ml14/slides/lecture2.pdf
https://people.csail.mit.edu/dsontag/courses/ml14/slides/lecture2.pdf
https://gofore.com/en/how-to-classify-text-in-100-languages-with-a-single-nlp-model/
https://gofore.com/en/how-to-classify-text-in-100-languages-with-a-single-nlp-model/
https://www.mygreatlearning.com/blog/random-forest-algorithm/
https://www.mygreatlearning.com/blog/random-forest-algorithm/
https://hub.tensorflow.google.cn/google/experts/bert/wiki_books/1
https://hub.tensorflow.google.cn/google/experts/bert/wiki_books/1
https://www.cl.cam.ac.uk/teaching/1314/InfoRtrv/lecture7.pdf
https://www.cl.cam.ac.uk/teaching/1314/InfoRtrv/lecture7.pdf
https://www.analyticssteps.com/blogs/l2-and-l1-regularization-machine-learning
https://www.analyticssteps.com/blogs/l2-and-l1-regularization-machine-learning
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote05.html
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote05.html
https://doi.org/10.1145/1553374.1553516
https://doi.org/10.1145/1553374.1553516
https://en.wikipedia.org/wiki/BERT_(language_model)
https://en.wikipedia.org/wiki/BERT_(language_model)
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Support-vector_machine

	Abstract
	Acknowledgements
	Introduction
	Background
	Term Frequency - Inverse Dense Frequency (TF-IDF)
	FastText as word embedding algorithm
	Bert as word embedding algorithm (the pre-training Bert model)

	Text classification algorithms
	Logistic Regression Classification (logit, MaxEnt)
	Random Forest Classification
	Linear Support Vector Classification
	Naive Bayes classifier for multinomial models
	FastText as a text classification algorithm
	Bert as text classification algorithm (the fine-tuned Bert model)

	Method
	Data collection and labeling
	Fine-tuning and multilingualism

	Experiments
	Methods
	Dataset properties
	Experimental Setup:
	Fine-tuning the hyperparameters
	Language-dependent task

	Metrics
	Confusion Matrix
	Accuracy
	Precision
	Recall
	F1-score
	AUROC (or AUC) and the ROC curve
	AUPRC and the PR curve

	Results
	Hyperparameter fine-tuning results
	Language-dependent results
	Analysis of the results

	Conclusion
	Summary

	Bibliography

