
UNIVERSITY OF FRIBOURG

BACHELOR THESIS

Comparison of Synthetic Time Series Data
Generation Techniques

Author:
Jonas Fontana

Supervisor:
Abdelouahab Khelifati,

Dr. Mourad Khayati,
Prof. Dr. Philippe

Cudré-Mauroux

September 07, 2021

eXascale Infolab
Department of Informatics

Boulevard de Pérolles 90 • 1700 Fribourg • Switzerland
phone +41 (26) 300 84 65 • diuf-secr@unifr.ch • www3.unifr.ch/inf

http://www.unifr.ch
mailto://jonas.fontana@unifr.ch
https://exascale.info/phil
https://exascale.info/phil
https://exascale.info/phil
https://exascale.info/phil
https://www3.unifr.ch/inf/en/exascale-infolab.html
https://www3.unifr.ch/inf/fr/

iii

Abstract

Jonas Fontana

Comparison of Synthetic Time Series Data Generation
Techniques

With the explosion of time series data, numerous studies have focused on de-
veloping tools to analyze them. However, in order to train, improve and evaluate
these methods, a lot of data is necessary. Large datasets are often very homoge-
neous, and in addition for many domain-speci�c application, very few if any data is
available. To this end, various synthetic time series augmentation techniques have
been proposed. Those techniques rely on different principles and aim to achieve dif-
ferent goals when generating new data, which makes it dif�cult to choose the best
technique for a given use-case situation.

In this thesis, we study six augmentation techniques: Anomalies Injection, DBA,
Autoregressive models, GAN, InfoGAN and TimeGAN. We empirically evaluate
these techniques using datasets that exhibit different characteristics (for example,
some of them have very evident cyclical patterns, some others contain anomalies).
In addition, we introduce a new a tool to automate the evaluation, parameterize the
techniques, and visualize the generated time series. From this we will conclude that
in most cases machine learning methods are in many cases the best option, how-
ever simple methods (such as DBA and Anomalies Injection) and methods based on
autoregressive models are also a valid option in some situations.

Keywords: Time Series, Data Augmentation, UCR, Comparation

v

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem De�nition . 1
1.3 Existing Work . 2

2 Background 3
2.1 Time Series Properties and Features . 3

2.1.1 Spectral Entropy . 3
2.1.2 Distribution . 4
2.1.3 Autocorrelation . 4

2.2 Time Series Evaluation Metrics . 4
2.2.1 Mutual Information . 4
2.2.2 Correlation . 5
2.2.3 Root Mean Squared Error (RMSE) 6

3 Time Series Generation Methods 7
3.1 Anomalies Injection . 7
3.2 Dynamic Time Warping Barycenter Averaging (DBA) 8
3.3 Data generation with autoregressive models 9
3.4 Generative Adversarial Networks (GANs) 10

3.4.1 TimeGAN . 10
3.4.2 InfoGAN . 11

4 Experiments 13
4.1 Setup . 13

4.1.1 Machine . 13
4.1.2 Datasets . 13
4.1.3 Metrics . 15

4.2 Results . 16
4.2.1 Statistical metrics . 17
4.2.2 Distribution-based metrics . 18
4.2.3 Information-based metrics . 18
4.2.4 Runtime . 19

4.3 Recommendations . 21

5 Augmentation Framework 25
5.1 Implementation . 25
5.2 Scenarios . 26

6 Conclusion 27

Bibliography 29

vii

List of Figures

2.1 Time Series distribution . 4
2.2 Example of autocorrelation function ([Paige and Trindade, 2010]) . . . 5
2.3 Mutual information ([Mutual Information diagram]) 5
2.4 Examples of correlation . 6
2.5 Root Mean Squared Error . 6

3.1 Anomalies examples . 7
3.2 Difference between Euclidean and DTW distance ([Volny, Novak, and

Zezula, 2012]) . 8
3.3 Example of data generated with DBA ([Forestier et al., 2017]) 9
3.4 Sketch of GAN, TimeGAN and InfoGAN architectures 11

4.1 Datasets plots . 15
4.2 Datasets plots (3 time series each) . 16
4.3 Normalized mean of the considered datasets 17
4.4 Normalized variance of the considered datasets 17
4.5 Correlation of the considered datasets w.r.t. the original data 18
4.6 Distribution of BeetleFly_TEST . 19
4.7 Distribution of Coffee_TEST . 19
4.8 Distribution of Ham_TEST . 20
4.9 Distribution of Lighting7_TEST . 20
4.10 Distribution of Alabama_weather_6k_8k 21
4.11 Distribution of Currency2 . 21
4.12 Autocorrelation of Ham_TEST . 22
4.13 Autocorrelation of Alabama_weather_6k_8k 22
4.14 Autocorrelation of Currency2 . 23
4.15 Entropy of the considered datasets . 23
4.16 Mutual information of the considered datasets w.r.t. the original data . 23
4.17 Recommendations . 24

5.1 Use example: searching for the best algorithm combining the 3 scenarios 26

1

Chapter 1

Introduction

1.1 Motivation

In the last decade, there has been an explosion of time series data. From �nancial
�eld to rivers and sea levels, but also medical data and speech analysis: time series
are everywhere. Every time a sequence of values is recorded in time order they
create a time series. Consequently, a big number of time series analysis methods are
appearing for tasks such as classi�cation, forecasting, anomaly detection, and more.
However, in order to train, improve and evaluate these methods, a lot of data is
necessary. Paradoxically, large datasets are often very homogeneous, which makes
it challenging to train a model. In addition, for many domain-speci�c applications
very few if any data is available. For this reason, new time series augmentation
methods are created as well.

In this thesis, we organize the different methods and propose a way to evaluate
them. We also present a tool to facilitate this task and show an example of how to
use it with different datasets and with different metrics.

1.2 Problem De�nition

In the last years, many time series generation methods have been proposed. These
methods rely on different techniques, and the results differ widely ([Wen et al.,
2020]). Therefore, one question that arises spontaneously is: which method is the
best? Answering this question is not as obvious as it might seem, as it is �rst neces-
sary to determine what characterizes a good generation. How should the generated
data be? Should it be similar to the original data? Or should it rather be different,
but sharing some characteristics? Should one instead focus on the preservation of
some features, and if yes, which?

What makes it challenging to answer those questions is that it highly depends
on the task we have. When generating data to improve classi�cation, we want to
have synthetic data similar to the original one. Instead, if our goal is to improve an
anomaly detection model, we need to have more variegated data. The goal of the
generation depends therefore on the use we want to make of the generated data.
Furthermore, a method satisfying our requirements for one dataset may not do so
for another. The choice of the best technique for a given situation also depends on
the properties of the input dataset (presence of a seasonal pattern, anomalies, etc.).

In this work, we analyze different techniques to generate synthetic data, as well
as to analyze this generation in multiple ways (preservation of features, metrics
score, visual comparison). To do this, we will �rst discuss the main classes used
at the moment (1.3 Related Work). Then, in (2.1 Time Series Properties and Features)

2 Chapter 1. Introduction

and (2.2 Time Series Evaluation Metrics) we will present a way to evaluate time se-
ries, and in (3 Generation Algorithms) we will show some implementations for each
of the discussed classes. The results of the analysis performed are presented in (4
Experiments). Finally, in (5 Generation Tool) we will also present a tool we created
to facilitate the use and the comparison of the techniques considered.

1.3 Existing Work

In the past years, multiple algorithms for time series generation and augmenta-
tion have been implemented. The difference between generation and augmentation
methods is that the latter starts from an initial dataset and create new data to enlarge
it (in this work we will focus on these). Although the ultimate goal is the same for all
of them, namely the creation of synthetic data to improve analysis models, they are
very different from each other. We can distinguish 3 main categories: Simple/Basic
approaches, Model-based approaches, and Machine Learning approaches.

The easiest approach consists in taking an input dataset and generating new data
by modifying/perturbing it. This can go from a simple operation like injecting noise
(for example Gaussian noise, spikes, or trend), to others like window cropping ([Le
Guennec, Malinowski, and Tavenard, 2016]) and Dynamic Time Warping ([Forestier
et al., 2017]). In general, we distinguish two categories: Time Domain transforma-
tions and Frequency Domain transformations. Time Domain transformations are the
most common, and as the name says they operate on the time aspect of time series.
Most of them operate directly on the original time series, however not all of them.
An example of this second case is given in [Gao et al., 2020], where operations on la-
bels are used to improve anomaly detection. On the other hand, Frequency Domain
transformations work on the frequency aspect of time series. An example is given
again by [Gao et al., 2020].

A more elaborated approach to generate time series consists in building a model
from existing data, then generate new data starting from this model ([Chen et al.,
2010], [Talbot et al., 2019]). For example, the work of [Kang, Hyndman, and Li, 2020]
focuses on creating a mixture of autoregressive models to generate time series cov-
ering the entire feature space. More basic examples consist of simple Autoregressive
Models, where each point is considered to be determined by the previous points.
Once the weight of each previous point is determined, this model can be used to
estimate the future values. An article about this is presented from [Brownlee, 2020].

A third category is constituted by (machine) learning methods. These methods
use ML models to learn existing data and then generate similar ones. An exam-
ple is provided by [Laptev, 2018], where Variational Auto Encoders (VAEs) and
Generative Adversarial Network (GANs) are used to generate new data to improve
anomaly detection. VAEs compress the data to a latent space and then reconstruct it.
Randomly sampling from this latent space will then allow to reconstruct synthetic
data. GANs, on the other hand, are composed of two models competing against
each other, one creating synthetic data and the other trying to distinguish original
data from synthetic ones. Other works to better adapt GANs to time series include
[Chen et al., 2016] and [Yoon, Jarrett, and Schaar, 2019].

3

Chapter 2

Background

In this section, we will brie�y discuss the major techniques to evaluate time series.
We will introduce a list of time series features and metrics based on these features,
which we will use to evaluate the generated time series. We will explain how they
work, and discuss why we consider them important.

2.1 Time Series Properties and Features

Time series can be described and classi�ed based on their characteristics. For ex-
ample, a time series representing the temperature recorded each day might have a
"cyclical form" (higher during summer and lower in winter), while at the same time
an increasing tendency (due to climate change). Then it might have a lot of "spikes"
(days with extraordinary high/low values) or, on the contrary, the values might all
be within a small range. All this and many other characteristics can be mathemati-
cally described by a list of features, which are in part summarized in this chapter.

2.1.1 Spectral Entropy

In Information Theory, Shannon's Entropy is the amount of information contained
in a variable ([Vajapeyam, 2014]). An intuitive way to see this is: if I had to store the
information given by the variable, how much storage would I need? For example, if
we need to store the result of a non-biased coin toss, one bit would be enough. This
is because there are only 2 possible results (head and coin), so for example we could
set the bit to 0 in the �rst case and to 1 in the second. Similarly, if we had 8 variables
instead of 2, we would need 3 bits.
But if the variables would not appear with the same frequency? For example, sup-
pose we have 3 variablesa, b and c. If a comes 9 times out of 10, we could decide to
just store a 0 for a. If the variable is a b, then we would store 10, and 11 if it is a c.
In this way, 90% of the time we would only need 1 bit, and 10% of the time 2 bits.
Therefore, on average we need 1.1 bits.
The formula of Shannon's Entropy, therefore, sums all the values with the logarithm
of their frequency (as the log contains a fraction, the value will be negative. For this
reason the result is multiplied by -1).

E = �
n

å
i= 1

pi � log(pi)

Spectral Entropy is a normalized version of Shannon's Entropy (between 0 and
1). We can use it to measure the disorder between a time series, and its forecastability.
The smaller is the Spectral Entropy, the higher the frequency of some values, and
therefore it is easier to "guess" the next value.

4 Chapter 2. Background

2.1.2 Distribution

Another important characteristic of a time series is the way in which its values are
distributed. If the values are distributed in a normal way (Gaussian distribution),
the mean and variance of this distribution are enough to fully describe it. However,
most of the time it is not so. To show the distribution of a time series we can therefore
partition the possible values in sets and count how many points are in each group.
It is then possible to plot the results using a histogram, as shown in Figure 2.1a and
Figure 2.1b.

(A) Example of a time series and the cor-
responding distribution functions 1

(B) Example of time series distribution

FIGURE 2.1: Time Series distribution

2.1.3 Autocorrelation

Given 2 variables (in this case 2 time series), the correlation between them is the
measure of similarity they have. It measure how they vary together. The correlation
function is de�ned as

Corr(x, y) =
Cov(x, y)
s(x)s(y)

where Cov(x, y) is the covariance of x and y, and s(x) is the standard deviation of x.
It can have a value between -1 (perfect negative correlation) and +1 (perfect positive
correlation).

As the name says, the autocorrelation of a time series is its correlation with itself
(shifted by n steps). The autocorrelation function measures its correlation with a
copy of itself shifted by 1 step, by 2 steps, by 3 steps, etc. Figure 2.2 shows an
example of 2 autocorrelation functions

2.2 Time Series Evaluation Metrics

When describing time series on their own, features are very practical. However,
when comparing multiple time series, we have an additional tool: metrics. Metrics
uses the features to describe the relationship between two (or more) time series. In
our case, this is especially useful to evaluate generated data against the original one.

2.2.1 Mutual Information

A �rst important metric used to measure similarity between two sets of data is the
Mutual Information ([Dionisio, Menezes, and Mendes, 2004]). Given two variables

1[Ham, Brackston, and Stumpf, 2019]

2.2. Time Series Evaluation Metrics 5

FIGURE 2.2: Example of autocorrelation function ([Paige and
Trindade, 2010])

v1 and v2, the Mutual Information measures the amount of information we can ob-
tain about v2 by looking at v1 (and the other way around, as it is symmetric).

FIGURE 2.3: Mutual information ([Mutual Information diagram])

In this case, given two time series s1 and s2 (the original one and the synthetic
one), Mutual Information can be used to measure the similarity between them, thus
evaluating the generation algorithm. The Mutual Information (MI) between time
seriesX and Y can be computed as

MI (X,Y) =
jX j

å
i= 1

jYj

å
j= 1

p(i , j) log
�

p(i , j)
p(i)p(j)

�

where p(i , j) =
�
�X i \ Yj

�
� / N is the probability that an object picked at random falls

into both classesX i and Yj ([Scikit-learn: Clustering]), as illustrated by Fig. 2.3.

2.2.2 Correlation

As introduced in 2.1.3, correlation is the measure of similarity between two variables
(in this case, between two time series). It is computed with:

Corr(x, y) =
Cov(x, y)
s(x)s(y)

where Cov(x, y) is the covariance of x and y, and s(x) is the standard deviation of
x. Its value ranges from +1 to -1, where +1 means that x and y vary together, -1 that

6 Chapter 2. Background

they vary perfectly oppositely, and 0 that they vary independently from each other.
Fig. 2.4 shows three examples of correlation.

(A) Perfect positive correlation
(+1)

(B) Very small correlation
(~0.01)

(C) Perfect negative correla-
tion (-1)

FIGURE 2.4: Examples of correlation

2.2.3 Root Mean Squared Error (RMSE)

Another important metric to evaluate a generation model is the Root Mean Squared
Error (or Deviation), shown in Fig. 2.5. Given a model and a time series, the RMSE
sums the squares of the differences between each point of the time series and the
model. Squaring them ensures that the values are positive (otherwise positive and
negative errors would compensate each other), and gives a higher weight to bigger
errors. Taking the root at the end ensures the result to have the same scale of the
data.

FIGURE 2.5: Root Mean Squared Error

7

Chapter 3

Time Series Generation Methods

In this section, for each approach mentioned in 1.3 we will present some concrete
techniques. These are the techniques that will then be used to generate synthetic
data in 4.

3.1 Anomalies Injection

A �rst basic approach is the anomalies injection. This belongs to the data pertur-
bation class. Given an initial time series, it is modi�ed by randomly injecting some
anomalies in order to obtain new data. For example, [Agots] provides four type
of anomalies: "extreme" anomalies, "shift" anomalies, "trend" anomalies, and "vari-
ance" anomalies.
Extreme anomaly: a point is modi�ed to have a much bigger/smaller value than

the original one, thus resulting in a spike when the time series is plotted. An
example is given in Figure 3.1 (A).

Shift anomaly: all the records in a given interval are shifted by a given value, which
is equal in every point. The result is that a part of the time series is shifted up
or down. An example is given in Figure 3.1 (B).

Trend anomaly: a trend is inserted at a given point in the time series, meaning
that an increasing (or decreasing) sequence of values is added to a portion
of the time series. For example, a time series [1,1,1,1,1,1,1,1,1,1] might become
[1,1,1,2,3,4,4,4,4,4]. Notice that after the trend part ([2,3,4]), all the values are
modi�ed in order to continue "directly" from the last point (in this example,
they are all increased by 3). An example is given in Figure 3.1 (C).

Variance anomaly: the variance of a random interval is augmented. Visually, this
results in something similar to a "vibration". An example is given in Figure
3.1 (D).

(A) Example of 3 ex-
treme anomalies

(B) Example of a shift
anomaly

(C) Example of a trend
anomaly

(D) Example of two vari-
anceanomalies

FIGURE 3.1: Anomalies examples

8 Chapter 3. Time Series Generation Methods

Algorithm 1 Pseudocode of AnomaliesInjection

Input: Original dataset
Optional inputs: Nb. anomalies, anomalies probabilities, anomalies max length
cp copy of original dataset
for Nb. anomalies required do

Randomly choose:
TS target . Time Series in which to add the anomaly
Anomaly type
Starting point
Length

Add anomaly to selected TS in cp

Output: cp (Copy of original dataset with anomalies)

3.2 Dynamic Time Warping Barycenter Averaging (DBA)

Another basic approach to generate new data from an initial dataset is DBA. With
DBA, new time series are creating by averaging some of the existing ones using (an
advanced version of) Dynamic Type Warping, a measure of similarity between time
series ([Volny, Novak, and Zezula, 2012]). Figure 3.2 gives a visual explanation of
DTW.

FIGURE 3.2: Difference between Euclidean and DTW distance
([Volny, Novak, and Zezula, 2012])

With this algorithm, a new time series is created as the weighted average of the
already existing time series. The only parametrization is in how the weights are dis-
tributed. A �rst approach is to distribute them randomly across all the available time
series. Theoretically, with this approach it would be possible to generate an in�nite
number of new time series. However, more advanced approaches exist. According
to [Forestier et al., 2017], the best results are obtained when a "main" time series re-
ceives most of the weight, and the remaining is distributed across the other series
according to an exponential function based on their distance. The farther they are
from this main time series, the smaller the weight they receive. Formally, the weight
for time series i is given by

wi = e
ln(0.5)� DTW (Ti ,T

�)
d�

NN (3.1)

where T� is the "main" time series selected and d�
NN is the distance between T�

and its nearest neighbor. Once all the weights have been distributed, the weighted
average of N time series under DTW is the time series that minimizes

arg minT :=
N

å
i= 1

wi DTW2(T, Ti) (3.2)

3.3. Data generation with autoregressive models 9

Fig. 3.3 shows a set of time series (left) and a new time series generated with
DBA starting from this set (right).

FIGURE 3.3: Example of data generated with DBA ([Forestier et al.,
2017])

Algorithm 2 Pseudocode of DBA

Input: Original dataset
for Nb. new time series required do

Randomly select main time series T*
Compute DTW distance to nearest neighbour
Distribute weights wi . Using 3.1
Create new time seriesT . Using 3.2

Output: set of new time series

3.3 Data generation with autoregressive models

The basic model-base approach is the Autoregressive models. This model assumes
that a value y at time t depends on previous values at times t-1,t-2, ...,t-p, plus a
noise #t . Formally,

yt = c+ f 1yt � 1 + f 2yt � 1 + ...+ f pyt � p + #t

where c is a constant. Based on the existing data, the model sets a coef�cient f for
each of the p previous values. Once the model is constructed, it can then be used to
generate new time series, one point by one.

AR models can be extended to more sophisticated models, for example ARMA
(Autoregressive Moving Average), ARIMA (Autoregressive Integrated Moving Av-
erage), or SARIMA (Seasonal Autoregressive Integrated Moving Average). Despite
the increasing number of components, they are all based on the idea that past values
determine the current one.

Algorithm 3 Pseudocode of AR

Input: Original dataset, window size n
for time series t in input dataset do

Find n coef�cients f i for time series t using regression
for length of time series to generate do

Generate new point using coef�cients f

Keep only new points

Output: set of new time series

10 Chapter 3. Time Series Generation Methods

3.4 Generative Adversarial Networks (GANs)

Generative Adversarial Networks were introduced in 2014 by Ian Goodfellow in
[Goodfellow et al., 2014] and have been described by Yann LeCun as "the most inter-
esting idea in the last 10 years in Machine Learning"([Generative Adversarial Network
(GAN)]). It is an architecture to train a Generative model, constituted from two sub-
models: a "generator", in charge of generating synthetic data starting from a random
input vector, and a "discriminator", whose task is to distinguish real data (i.e. from
the original source) from synthetic data. As the name suggests, the two models
compete one against the other. The generator is a generative model which tries to
"foolish" the discriminator, maximizing the probability for it to make a mistake in
the classi�cation. To do this, it receives a vector randomly drawn from a Gaussian
distribution (the seed of the generation), and generates a new sample of the data. On
the other side, the discriminator is a classi�cation model, and it learns to distinguish
real data from fake ones. It receives a sample (either from the original dataset or
from the generator output) and does a binary prediction (real or fake). Formally, the
generator (G) and the discriminator (D) play a minimax game with value function
V (D, G):

min
G

max
D

V (D, G) = Ex� pdata(x) [logD(x)] + Ez� pz(z) [log(1 � D(G(z)))] 1

The training succeeds when the discriminator is wrong about 50% of the time.
At this point, the generator should be able to create synthetic data that is indistin-
guishable from the real one. Fig. 3.4a shows a scheme of a GAN model.

Algorithm 4 Pseudocode of GAN

Input: Original dataset
for Nb. epochs do

r random sample from Gaussian distribution
Generator:

Receiver
Generate fake datadgen

Discriminator:
Receivedgen or sample from original data
Predict class (real or fake)

3.4.1 TimeGAN

GANs were not created speci�cally for time series. Indeed, they are mostly used
with images, and therefore are not particularly good when it comes to properties
speci�c to time series.

For this reason, [Yoon, Jarrett, and Schaar, 2019] developed an alternative called
TimeGAN. The goal of TimeGAN is to capture not only the properties within each
time point, but also across time ([Yoon, Jarrett, and Schaar, 2019]). In other words, it
tries to consider temporal dynamics. To do this, it uses four components (instead of 2):
an embedding function, a recovery function, a sequence generator, and a sequence
discriminator. Training the autoencoding components (�rst two) jointly with the ad-
versarial components (last two), the model should be able to simultaneously learns

1[Goodfellow et al., 2014]

3.4. Generative Adversarial Networks (GANs) 11

FIGURE 3.4: Sketch of GAN, TimeGAN and InfoGAN architectures

to encode features, generate representations, and iterate across time ([Yoon, Jarrett,
and Schaar, 2019]). In this way, the adversarial components act on the latent space
provided by the embedding function, learning the underlying temporal dynamics.
Fig. 3.4b shows a scheme of a TimeGAN model.

3.4.2 InfoGAN

Another evolution of GAN is InfoGAN, presented by [Chen et al., 2016]. The idea
behind InfoGAN is to encourage the model to learn meaningful interpretation([Chen
et al., 2016]) through mutual information maximization and unsupervised disentan-
gled representation. According to the authors, the underlying problem is that GANs
receive no restrictions on how to use the input vector, and might therefore learn a
very entangled representation. However, "many domains naturally decompose into
a set of semantically meaningful factors"([Goodfellow et al., 2014]). For example,
the image of a face can be represented through the eyes color, eyes distance, hairs
length, etc. To encourage this representation, InfoGAN decomposes the input vec-
tor into two parts: a �rst component z, which will be the source of the incompressible
noise, and c, whose structure will enforce learning of the meaningful features. The
Generator thus becomesG(z, c). To ensure that it will not just ignore the c part, Info-
GAN requires G(z, c) to have a high mutual information (see 2.2.1) with c. Fig. 3.4c
shows a scheme of an InfoGAN model.

13

Chapter 4

Experiments

In this chapter, we will evaluate the data generated with the techniques mentioned
in 3. Firstly, we will summarize the speci�cations of the machine we use. After
that, we will present the datasets used in the experiment, as well as the metrics
considered. In a second part, we will then analyze the results obtained, and at the
end of the chapter we will derive a recommendation on which class of techniques to
use in which situation.

4.1 Setup

In this section we will present the setup for our experiment. In particular, we will
indicate the machine used, the dataset considered, and the evaluation methods. The
algorithms used have already been presented in 3 Time Series Generation Methods.

4.1.1 Machine

For the experimental part, we chose to run our code on a linux server with the fol-
lowing speci�cations:

Processor Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
1 physical processor; 4 cores; 8 threads

Machine Type Mini Tower
Operating System Ubuntu 20.04.2 LTS
Kernel Linux 5.4.0-67-generic (x86_64)

4.1.2 Datasets

In this section, we will shortly describe the datasets used to compare the different
generation techniques. These have been chosen to have different characteristics, for
example a greater or smaller number of records, a more o less strong seasonal pat-
tern, presence or absence of anomalies/spikes, and uniformity or variation of the
time series.

BeetleFly (from UCR archive)

The BeetleFly dataset is a 1-D mapping of Beetle's and Fly's images uploaded to the
UCR archive by J. Hills and A. Bagnall. It represents the distance of the outline from
the center of the images. The result is a dataset of time series with a cyclical pattern
and a mean of 0. More about this dataset can be found at [Dataset: BeetleFly].

14 Chapter 4. Experiments

Coffee (from UCR archive)

The Coffee dataset comes from the paper [Briandet, Kemsley, and Wilson, 1996]
about food spectrographs, and has been uploaded to the UCR archive by K. Kemsley
and A. Bagnall. Most of the series in the dataset overlaps, with only some minor
variation. No particular trend or cyclical pattern emerges. More about this dataset
can be found at [Dataset: Coffee].

Ham (from UCR archive)

The Ham dataset is another dataset about food spectrographs (same as 4.1.2 Coffee),
uploaded to the UCR archive by K. Kemsley and A. Bagnall. It represents Spanish
and French dry-cured hams. The result is a dataset with time series containing up to
4/5 spikes each. More about this dataset can be found at [Dataset: Ham].

Lighting7 (from UCR archive)

The Lighting7 dataset contains records of the FORTE satellite about electromagnetic
events associated with lightning. It was uploaded to the UCR dataset by D. Eads.
Similar to the 4.1.2 Ham dataset, most of the values are in a small range, with occa-
sionally some spikes (but rarely more than 1 per time series). More about this dataset
can be found at [Dataset: Lighting7].

Alabama_weather

The Alabama_weather dataset contains longer and more variegated time series w.r.t.
the considered UCR datasets. The time series in the datasets show no particular
trend or seasonality. Some contain noise, others much less. To keep the generation
time reasonable, only a subset has been considered (limiting the number of time
series and their length).

Currency2

As the name says, the Currency2 dataset contains a list of currencies values. Most
of the time series in this dataset have a similar value range, but there are some ex-
ceptions. They do not have any evident cyclical pattern or common trend, and they
tend not to change too abruptly.

Alabama_weather_3072

The major drawback of the BasicGAN implementation found is that it requires a
dataset with a speci�c structure, meaning 3072 time series of length 3072. To obtain
it, we manually created a dataset shifting a 3072-points window over a time series
of length 6143, with a step of 1. As consequence, the resulting dataset is extremely
uniform, but this allows to consider BasicGAN technique as well. The original time
series is from the Alabama_weather dataset.

Summary

Table 4.1 summarize the datasets used. Fig. 4.1 shows them, while Fig. 4.2 shows
the only the �rst 3 time series of each dataset.

	Abstract
	Introduction
	Motivation
	Problem Definition
	Existing Work

	Background
	Time Series Properties and Features
	Spectral Entropy
	Distribution
	Autocorrelation

	Time Series Evaluation Metrics
	Mutual Information
	Correlation
	Root Mean Squared Error (RMSE)

	Time Series Generation Methods
	Anomalies Injection
	Dynamic Time Warping Barycenter Averaging (DBA)
	Data generation with autoregressive models
	Generative Adversarial Networks (GANs)
	TimeGAN
	InfoGAN

	Experiments
	Setup
	Machine
	Datasets
	Metrics

	Results
	Statistical metrics
	Distribution-based metrics
	Information-based metrics
	Runtime

	Recommendations

	Augmentation Framework
	Implementation
	Scenarios

	Conclusion
	Bibliography

