
UNIVERSITY OF FRIBOURG

BACHELOR THESIS

Comparison of Synthetic Time Series Data
Generation Techniques

Author:
Jonas Fontana

Supervisor:
Abdelouahab Khelifati,

Dr. Mourad Khayati,
Prof. Dr. Philippe

Cudré-Mauroux

September 07, 2021

eXascale Infolab
Department of Informatics

Boulevard de Pérolles 90 • 1700 Fribourg • Switzerland
phone +41 (26) 300 84 65 • diuf-secr@unifr.ch • www3.unifr.ch/inf

http://www.unifr.ch
mailto://jonas.fontana@unifr.ch
https://exascale.info/phil
https://exascale.info/phil
https://exascale.info/phil
https://exascale.info/phil
https://www3.unifr.ch/inf/en/exascale-infolab.html
https://www3.unifr.ch/inf/fr/

iii

Abstract

Jonas Fontana

Comparison of Synthetic Time Series Data Generation
Techniques

With the explosion of time series data, numerous studies have focused on de-
veloping tools to analyze them. However, in order to train, improve and evaluate
these methods, a lot of data is necessary. Large datasets are often very homoge-
neous, and in addition for many domain-specific application, very few if any data is
available. To this end, various synthetic time series augmentation techniques have
been proposed. Those techniques rely on different principles and aim to achieve dif-
ferent goals when generating new data, which makes it difficult to choose the best
technique for a given use-case situation.

In this thesis, we study six augmentation techniques: Anomalies Injection, DBA,
Autoregressive models, GAN, InfoGAN and TimeGAN. We empirically evaluate
these techniques using datasets that exhibit different characteristics (for example,
some of them have very evident cyclical patterns, some others contain anomalies).
In addition, we introduce a new a tool to automate the evaluation, parameterize the
techniques, and visualize the generated time series. From this we will conclude that
in most cases machine learning methods are in many cases the best option, how-
ever simple methods (such as DBA and Anomalies Injection) and methods based on
autoregressive models are also a valid option in some situations.

Keywords: Time Series, Data Augmentation, UCR, Comparation

v

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 1
1.3 Existing Work . 2

2 Background 3
2.1 Time Series Properties and Features . 3

2.1.1 Spectral Entropy . 3
2.1.2 Distribution . 4
2.1.3 Autocorrelation . 4

2.2 Time Series Evaluation Metrics . 4
2.2.1 Mutual Information . 4
2.2.2 Correlation . 5
2.2.3 Root Mean Squared Error (RMSE) 6

3 Time Series Generation Methods 7
3.1 Anomalies Injection . 7
3.2 Dynamic Time Warping Barycenter Averaging (DBA) 8
3.3 Data generation with autoregressive models 9
3.4 Generative Adversarial Networks (GANs) 10

3.4.1 TimeGAN . 10
3.4.2 InfoGAN . 11

4 Experiments 13
4.1 Setup . 13

4.1.1 Machine . 13
4.1.2 Datasets . 13
4.1.3 Metrics . 15

4.2 Results . 16
4.2.1 Statistical metrics . 17
4.2.2 Distribution-based metrics . 18
4.2.3 Information-based metrics . 18
4.2.4 Runtime . 19

4.3 Recommendations . 21

5 Augmentation Framework 25
5.1 Implementation . 25
5.2 Scenarios . 26

6 Conclusion 27

Bibliography 29

vii

List of Figures

2.1 Time Series distribution . 4
2.2 Example of autocorrelation function ([Paige and Trindade, 2010]) . . . 5
2.3 Mutual information ([Mutual Information diagram]) 5
2.4 Examples of correlation . 6
2.5 Root Mean Squared Error . 6

3.1 Anomalies examples . 7
3.2 Difference between Euclidean and DTW distance ([Volny, Novak, and

Zezula, 2012]) . 8
3.3 Example of data generated with DBA ([Forestier et al., 2017]) 9
3.4 Sketch of GAN, TimeGAN and InfoGAN architectures 11

4.1 Datasets plots . 15
4.2 Datasets plots (3 time series each) . 16
4.3 Normalized mean of the considered datasets 17
4.4 Normalized variance of the considered datasets 17
4.5 Correlation of the considered datasets w.r.t. the original data 18
4.6 Distribution of BeetleFly_TEST . 19
4.7 Distribution of Coffee_TEST . 19
4.8 Distribution of Ham_TEST . 20
4.9 Distribution of Lighting7_TEST . 20
4.10 Distribution of Alabama_weather_6k_8k 21
4.11 Distribution of Currency2 . 21
4.12 Autocorrelation of Ham_TEST . 22
4.13 Autocorrelation of Alabama_weather_6k_8k 22
4.14 Autocorrelation of Currency2 . 23
4.15 Entropy of the considered datasets . 23
4.16 Mutual information of the considered datasets w.r.t. the original data . 23
4.17 Recommendations . 24

5.1 Use example: searching for the best algorithm combining the 3 scenarios 26

1

Chapter 1

Introduction

1.1 Motivation

In the last decade, there has been an explosion of time series data. From financial
field to rivers and sea levels, but also medical data and speech analysis: time series
are everywhere. Every time a sequence of values is recorded in time order they
create a time series. Consequently, a big number of time series analysis methods are
appearing for tasks such as classification, forecasting, anomaly detection, and more.
However, in order to train, improve and evaluate these methods, a lot of data is
necessary. Paradoxically, large datasets are often very homogeneous, which makes
it challenging to train a model. In addition, for many domain-specific applications
very few if any data is available. For this reason, new time series augmentation
methods are created as well.

In this thesis, we organize the different methods and propose a way to evaluate
them. We also present a tool to facilitate this task and show an example of how to
use it with different datasets and with different metrics.

1.2 Problem Definition

In the last years, many time series generation methods have been proposed. These
methods rely on different techniques, and the results differ widely ([Wen et al.,
2020]). Therefore, one question that arises spontaneously is: which method is the
best? Answering this question is not as obvious as it might seem, as it is first neces-
sary to determine what characterizes a good generation. How should the generated
data be? Should it be similar to the original data? Or should it rather be different,
but sharing some characteristics? Should one instead focus on the preservation of
some features, and if yes, which?

What makes it challenging to answer those questions is that it highly depends
on the task we have. When generating data to improve classification, we want to
have synthetic data similar to the original one. Instead, if our goal is to improve an
anomaly detection model, we need to have more variegated data. The goal of the
generation depends therefore on the use we want to make of the generated data.
Furthermore, a method satisfying our requirements for one dataset may not do so
for another. The choice of the best technique for a given situation also depends on
the properties of the input dataset (presence of a seasonal pattern, anomalies, etc.).

In this work, we analyze different techniques to generate synthetic data, as well
as to analyze this generation in multiple ways (preservation of features, metrics
score, visual comparison). To do this, we will first discuss the main classes used
at the moment (1.3 Related Work). Then, in (2.1 Time Series Properties and Features)

2 Chapter 1. Introduction

and (2.2 Time Series Evaluation Metrics) we will present a way to evaluate time se-
ries, and in (3 Generation Algorithms) we will show some implementations for each
of the discussed classes. The results of the analysis performed are presented in (4
Experiments). Finally, in (5 Generation Tool) we will also present a tool we created
to facilitate the use and the comparison of the techniques considered.

1.3 Existing Work

In the past years, multiple algorithms for time series generation and augmenta-
tion have been implemented. The difference between generation and augmentation
methods is that the latter starts from an initial dataset and create new data to enlarge
it (in this work we will focus on these). Although the ultimate goal is the same for all
of them, namely the creation of synthetic data to improve analysis models, they are
very different from each other. We can distinguish 3 main categories: Simple/Basic
approaches, Model-based approaches, and Machine Learning approaches.

The easiest approach consists in taking an input dataset and generating new data
by modifying/perturbing it. This can go from a simple operation like injecting noise
(for example Gaussian noise, spikes, or trend), to others like window cropping ([Le
Guennec, Malinowski, and Tavenard, 2016]) and Dynamic Time Warping ([Forestier
et al., 2017]). In general, we distinguish two categories: Time Domain transforma-
tions and Frequency Domain transformations. Time Domain transformations are the
most common, and as the name says they operate on the time aspect of time series.
Most of them operate directly on the original time series, however not all of them.
An example of this second case is given in [Gao et al., 2020], where operations on la-
bels are used to improve anomaly detection. On the other hand, Frequency Domain
transformations work on the frequency aspect of time series. An example is given
again by [Gao et al., 2020].

A more elaborated approach to generate time series consists in building a model
from existing data, then generate new data starting from this model ([Chen et al.,
2010], [Talbot et al., 2019]). For example, the work of [Kang, Hyndman, and Li, 2020]
focuses on creating a mixture of autoregressive models to generate time series cov-
ering the entire feature space. More basic examples consist of simple Autoregressive
Models, where each point is considered to be determined by the previous points.
Once the weight of each previous point is determined, this model can be used to
estimate the future values. An article about this is presented from [Brownlee, 2020].

A third category is constituted by (machine) learning methods. These methods
use ML models to learn existing data and then generate similar ones. An exam-
ple is provided by [Laptev, 2018], where Variational Auto Encoders (VAEs) and
Generative Adversarial Network (GANs) are used to generate new data to improve
anomaly detection. VAEs compress the data to a latent space and then reconstruct it.
Randomly sampling from this latent space will then allow to reconstruct synthetic
data. GANs, on the other hand, are composed of two models competing against
each other, one creating synthetic data and the other trying to distinguish original
data from synthetic ones. Other works to better adapt GANs to time series include
[Chen et al., 2016] and [Yoon, Jarrett, and Schaar, 2019].

3

Chapter 2

Background

In this section, we will briefly discuss the major techniques to evaluate time series.
We will introduce a list of time series features and metrics based on these features,
which we will use to evaluate the generated time series. We will explain how they
work, and discuss why we consider them important.

2.1 Time Series Properties and Features

Time series can be described and classified based on their characteristics. For ex-
ample, a time series representing the temperature recorded each day might have a
"cyclical form" (higher during summer and lower in winter), while at the same time
an increasing tendency (due to climate change). Then it might have a lot of "spikes"
(days with extraordinary high/low values) or, on the contrary, the values might all
be within a small range. All this and many other characteristics can be mathemati-
cally described by a list of features, which are in part summarized in this chapter.

2.1.1 Spectral Entropy

In Information Theory, Shannon’s Entropy is the amount of information contained
in a variable ([Vajapeyam, 2014]). An intuitive way to see this is: if I had to store the
information given by the variable, how much storage would I need? For example, if
we need to store the result of a non-biased coin toss, one bit would be enough. This
is because there are only 2 possible results (head and coin), so for example we could
set the bit to 0 in the first case and to 1 in the second. Similarly, if we had 8 variables
instead of 2, we would need 3 bits.
But if the variables would not appear with the same frequency? For example, sup-
pose we have 3 variables a, b and c. If a comes 9 times out of 10, we could decide to
just store a 0 for a. If the variable is a b, then we would store 10, and 11 if it is a c.
In this way, 90% of the time we would only need 1 bit, and 10% of the time 2 bits.
Therefore, on average we need 1.1 bits.
The formula of Shannon’s Entropy, therefore, sums all the values with the logarithm
of their frequency (as the log contains a fraction, the value will be negative. For this
reason the result is multiplied by -1).

E = −
n

∑
i=1

pi · log(pi)

Spectral Entropy is a normalized version of Shannon’s Entropy (between 0 and
1). We can use it to measure the disorder between a time series, and its forecastability.
The smaller is the Spectral Entropy, the higher the frequency of some values, and
therefore it is easier to "guess" the next value.

4 Chapter 2. Background

2.1.2 Distribution

Another important characteristic of a time series is the way in which its values are
distributed. If the values are distributed in a normal way (Gaussian distribution),
the mean and variance of this distribution are enough to fully describe it. However,
most of the time it is not so. To show the distribution of a time series we can therefore
partition the possible values in sets and count how many points are in each group.
It is then possible to plot the results using a histogram, as shown in Figure 2.1a and
Figure 2.1b.

(A) Example of a time series and the cor-
responding distribution functions1

(B) Example of time series distribution

FIGURE 2.1: Time Series distribution

2.1.3 Autocorrelation

Given 2 variables (in this case 2 time series), the correlation between them is the
measure of similarity they have. It measure how they vary together. The correlation
function is defined as

Corr(x, y) =
Cov(x, y)
σ(x)σ(y)

where Cov(x, y) is the covariance of x and y, and σ(x) is the standard deviation of x.
It can have a value between -1 (perfect negative correlation) and +1 (perfect positive
correlation).

As the name says, the autocorrelation of a time series is its correlation with itself
(shifted by n steps). The autocorrelation function measures its correlation with a
copy of itself shifted by 1 step, by 2 steps, by 3 steps, etc. Figure 2.2 shows an
example of 2 autocorrelation functions

2.2 Time Series Evaluation Metrics

When describing time series on their own, features are very practical. However,
when comparing multiple time series, we have an additional tool: metrics. Metrics
uses the features to describe the relationship between two (or more) time series. In
our case, this is especially useful to evaluate generated data against the original one.

2.2.1 Mutual Information

A first important metric used to measure similarity between two sets of data is the
Mutual Information ([Dionisio, Menezes, and Mendes, 2004]). Given two variables

1[Ham, Brackston, and Stumpf, 2019]

2.2. Time Series Evaluation Metrics 5

FIGURE 2.2: Example of autocorrelation function ([Paige and
Trindade, 2010])

v1 and v2, the Mutual Information measures the amount of information we can ob-
tain about v2 by looking at v1 (and the other way around, as it is symmetric).

FIGURE 2.3: Mutual information ([Mutual Information diagram])

In this case, given two time series s1 and s2 (the original one and the synthetic
one), Mutual Information can be used to measure the similarity between them, thus
evaluating the generation algorithm. The Mutual Information (MI) between time
series X and Y can be computed as

MI(X, Y) =
|X|

∑
i=1

|Y|

∑
j=1

p(i, j)log
(

p(i, j)
p(i)p(j)

)

where p(i, j) =
∣∣Xi ∩Yj

∣∣ /N is the probability that an object picked at random falls
into both classes Xi and Yj ([Scikit-learn: Clustering]), as illustrated by Fig. 2.3.

2.2.2 Correlation

As introduced in 2.1.3, correlation is the measure of similarity between two variables
(in this case, between two time series). It is computed with:

Corr(x, y) =
Cov(x, y)
σ(x)σ(y)

where Cov(x, y) is the covariance of x and y, and σ(x) is the standard deviation of
x. Its value ranges from +1 to -1, where +1 means that x and y vary together, -1 that

6 Chapter 2. Background

they vary perfectly oppositely, and 0 that they vary independently from each other.
Fig. 2.4 shows three examples of correlation.

(A) Perfect positive correlation
(+1)

(B) Very small correlation
(~0.01)

(C) Perfect negative correla-
tion (-1)

FIGURE 2.4: Examples of correlation

2.2.3 Root Mean Squared Error (RMSE)

Another important metric to evaluate a generation model is the Root Mean Squared
Error (or Deviation), shown in Fig. 2.5. Given a model and a time series, the RMSE
sums the squares of the differences between each point of the time series and the
model. Squaring them ensures that the values are positive (otherwise positive and
negative errors would compensate each other), and gives a higher weight to bigger
errors. Taking the root at the end ensures the result to have the same scale of the
data.

FIGURE 2.5: Root Mean Squared Error

7

Chapter 3

Time Series Generation Methods

In this section, for each approach mentioned in 1.3 we will present some concrete
techniques. These are the techniques that will then be used to generate synthetic
data in 4.

3.1 Anomalies Injection

A first basic approach is the anomalies injection. This belongs to the data pertur-
bation class. Given an initial time series, it is modified by randomly injecting some
anomalies in order to obtain new data. For example, [Agots] provides four type
of anomalies: "extreme" anomalies, "shift" anomalies, "trend" anomalies, and "vari-
ance" anomalies.
Extreme anomaly: a point is modified to have a much bigger/smaller value than

the original one, thus resulting in a spike when the time series is plotted. An
example is given in Figure 3.1 (A).

Shift anomaly: all the records in a given interval are shifted by a given value, which
is equal in every point. The result is that a part of the time series is shifted up
or down. An example is given in Figure 3.1 (B).

Trend anomaly: a trend is inserted at a given point in the time series, meaning
that an increasing (or decreasing) sequence of values is added to a portion
of the time series. For example, a time series [1,1,1,1,1,1,1,1,1,1] might become
[1,1,1,2,3,4,4,4,4,4]. Notice that after the trend part ([2,3,4]), all the values are
modified in order to continue "directly" from the last point (in this example,
they are all increased by 3). An example is given in Figure 3.1 (C).

Variance anomaly: the variance of a random interval is augmented. Visually, this
results in something similar to a "vibration". An example is given in Figure
3.1 (D).

(A) Example of 3 ex-
treme anomalies

(B) Example of a shift
anomaly

(C) Example of a trend
anomaly

(D) Example of two vari-
ance anomalies

FIGURE 3.1: Anomalies examples

8 Chapter 3. Time Series Generation Methods

Algorithm 1 Pseudocode of AnomaliesInjection

Input: Original dataset
Optional inputs: Nb. anomalies, anomalies probabilities, anomalies max length
cp← copy of original dataset
for Nb. anomalies required do

Randomly choose:
TS target . Time Series in which to add the anomaly
Anomaly type
Starting point
Length

Add anomaly to selected TS in cp
Output: cp (Copy of original dataset with anomalies)

3.2 Dynamic Time Warping Barycenter Averaging (DBA)

Another basic approach to generate new data from an initial dataset is DBA. With
DBA, new time series are creating by averaging some of the existing ones using (an
advanced version of) Dynamic Type Warping, a measure of similarity between time
series ([Volny, Novak, and Zezula, 2012]). Figure 3.2 gives a visual explanation of
DTW.

FIGURE 3.2: Difference between Euclidean and DTW distance
([Volny, Novak, and Zezula, 2012])

With this algorithm, a new time series is created as the weighted average of the
already existing time series. The only parametrization is in how the weights are dis-
tributed. A first approach is to distribute them randomly across all the available time
series. Theoretically, with this approach it would be possible to generate an infinite
number of new time series. However, more advanced approaches exist. According
to [Forestier et al., 2017], the best results are obtained when a "main" time series re-
ceives most of the weight, and the remaining is distributed across the other series
according to an exponential function based on their distance. The farther they are
from this main time series, the smaller the weight they receive. Formally, the weight
for time series i is given by

wi = e
ln(0.5)· DTW(Ti ,T∗)

d∗NN (3.1)

where T∗ is the "main" time series selected and d∗NN is the distance between T∗

and its nearest neighbor. Once all the weights have been distributed, the weighted
average of N time series under DTW is the time series that minimizes

arg min T :=
N

∑
i=1

wiDTW2(T, Ti) (3.2)

3.3. Data generation with autoregressive models 9

Fig. 3.3 shows a set of time series (left) and a new time series generated with
DBA starting from this set (right).

FIGURE 3.3: Example of data generated with DBA ([Forestier et al.,
2017])

Algorithm 2 Pseudocode of DBA

Input: Original dataset
for Nb. new time series required do

Randomly select main time series T*
Compute DTW distance to nearest neighbour
Distribute weights wi . Using 3.1
Create new time series T . Using 3.2

Output: set of new time series

3.3 Data generation with autoregressive models

The basic model-base approach is the Autoregressive models. This model assumes
that a value y at time t depends on previous values at times t-1, t-2, ..., t-p, plus a
noise εt. Formally,

yt = c + φ1yt−1 + φ2yt−1 + ... + φpyt−p + εt

where c is a constant. Based on the existing data, the model sets a coefficient φ for
each of the p previous values. Once the model is constructed, it can then be used to
generate new time series, one point by one.

AR models can be extended to more sophisticated models, for example ARMA
(Autoregressive Moving Average), ARIMA (Autoregressive Integrated Moving Av-
erage), or SARIMA (Seasonal Autoregressive Integrated Moving Average). Despite
the increasing number of components, they are all based on the idea that past values
determine the current one.

Algorithm 3 Pseudocode of AR

Input: Original dataset, window size n
for time series t in input dataset do

Find n coefficients φi for time series t using regression
for length of time series to generate do

Generate new point using coefficients φ

Keep only new points
Output: set of new time series

10 Chapter 3. Time Series Generation Methods

3.4 Generative Adversarial Networks (GANs)

Generative Adversarial Networks were introduced in 2014 by Ian Goodfellow in
[Goodfellow et al., 2014] and have been described by Yann LeCun as "the most inter-
esting idea in the last 10 years in Machine Learning"([Generative Adversarial Network
(GAN)]). It is an architecture to train a Generative model, constituted from two sub-
models: a "generator", in charge of generating synthetic data starting from a random
input vector, and a "discriminator", whose task is to distinguish real data (i.e. from
the original source) from synthetic data. As the name suggests, the two models
compete one against the other. The generator is a generative model which tries to
"foolish" the discriminator, maximizing the probability for it to make a mistake in
the classification. To do this, it receives a vector randomly drawn from a Gaussian
distribution (the seed of the generation), and generates a new sample of the data. On
the other side, the discriminator is a classification model, and it learns to distinguish
real data from fake ones. It receives a sample (either from the original dataset or
from the generator output) and does a binary prediction (real or fake). Formally, the
generator (G) and the discriminator (D) play a minimax game with value function
V(D, G):

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1− D(G(z)))]1

The training succeeds when the discriminator is wrong about 50% of the time.
At this point, the generator should be able to create synthetic data that is indistin-
guishable from the real one. Fig. 3.4a shows a scheme of a GAN model.

Algorithm 4 Pseudocode of GAN

Input: Original dataset
for Nb. epochs do

r ← random sample from Gaussian distribution
Generator:

Receive r
Generate fake data dgen

Discriminator:
Receive dgen or sample from original data
Predict class (real or fake)

3.4.1 TimeGAN

GANs were not created specifically for time series. Indeed, they are mostly used
with images, and therefore are not particularly good when it comes to properties
specific to time series.

For this reason, [Yoon, Jarrett, and Schaar, 2019] developed an alternative called
TimeGAN. The goal of TimeGAN is to capture not only the properties within each
time point, but also across time ([Yoon, Jarrett, and Schaar, 2019]). In other words, it
tries to consider temporal dynamics. To do this, it uses four components (instead of 2):
an embedding function, a recovery function, a sequence generator, and a sequence
discriminator. Training the autoencoding components (first two) jointly with the ad-
versarial components (last two), the model should be able to simultaneously learns

1[Goodfellow et al., 2014]

3.4. Generative Adversarial Networks (GANs) 11

FIGURE 3.4: Sketch of GAN, TimeGAN and InfoGAN architectures

to encode features, generate representations, and iterate across time ([Yoon, Jarrett,
and Schaar, 2019]). In this way, the adversarial components act on the latent space
provided by the embedding function, learning the underlying temporal dynamics.
Fig. 3.4b shows a scheme of a TimeGAN model.

3.4.2 InfoGAN

Another evolution of GAN is InfoGAN, presented by [Chen et al., 2016]. The idea
behind InfoGAN is to encourage the model to learn meaningful interpretation ([Chen
et al., 2016]) through mutual information maximization and unsupervised disentan-
gled representation. According to the authors, the underlying problem is that GANs
receive no restrictions on how to use the input vector, and might therefore learn a
very entangled representation. However, "many domains naturally decompose into
a set of semantically meaningful factors"([Goodfellow et al., 2014]). For example,
the image of a face can be represented through the eyes color, eyes distance, hairs
length, etc. To encourage this representation, InfoGAN decomposes the input vec-
tor into two parts: a first component z, which will be the source of the incompressible
noise, and c, whose structure will enforce learning of the meaningful features. The
Generator thus becomes G(z, c). To ensure that it will not just ignore the c part, Info-
GAN requires G(z, c) to have a high mutual information (see 2.2.1) with c. Fig. 3.4c
shows a scheme of an InfoGAN model.

13

Chapter 4

Experiments

In this chapter, we will evaluate the data generated with the techniques mentioned
in 3. Firstly, we will summarize the specifications of the machine we use. After
that, we will present the datasets used in the experiment, as well as the metrics
considered. In a second part, we will then analyze the results obtained, and at the
end of the chapter we will derive a recommendation on which class of techniques to
use in which situation.

4.1 Setup

In this section we will present the setup for our experiment. In particular, we will
indicate the machine used, the dataset considered, and the evaluation methods. The
algorithms used have already been presented in 3 Time Series Generation Methods.

4.1.1 Machine

For the experimental part, we chose to run our code on a linux server with the fol-
lowing specifications:

Processor Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
1 physical processor; 4 cores; 8 threads

Machine Type Mini Tower
Operating System Ubuntu 20.04.2 LTS
Kernel Linux 5.4.0-67-generic (x86_64)

4.1.2 Datasets

In this section, we will shortly describe the datasets used to compare the different
generation techniques. These have been chosen to have different characteristics, for
example a greater or smaller number of records, a more o less strong seasonal pat-
tern, presence or absence of anomalies/spikes, and uniformity or variation of the
time series.

BeetleFly (from UCR archive)

The BeetleFly dataset is a 1-D mapping of Beetle’s and Fly’s images uploaded to the
UCR archive by J. Hills and A. Bagnall. It represents the distance of the outline from
the center of the images. The result is a dataset of time series with a cyclical pattern
and a mean of 0. More about this dataset can be found at [Dataset: BeetleFly].

14 Chapter 4. Experiments

Coffee (from UCR archive)

The Coffee dataset comes from the paper [Briandet, Kemsley, and Wilson, 1996]
about food spectrographs, and has been uploaded to the UCR archive by K. Kemsley
and A. Bagnall. Most of the series in the dataset overlaps, with only some minor
variation. No particular trend or cyclical pattern emerges. More about this dataset
can be found at [Dataset: Coffee].

Ham (from UCR archive)

The Ham dataset is another dataset about food spectrographs (same as 4.1.2 Coffee),
uploaded to the UCR archive by K. Kemsley and A. Bagnall. It represents Spanish
and French dry-cured hams. The result is a dataset with time series containing up to
4/5 spikes each. More about this dataset can be found at [Dataset: Ham].

Lighting7 (from UCR archive)

The Lighting7 dataset contains records of the FORTE satellite about electromagnetic
events associated with lightning. It was uploaded to the UCR dataset by D. Eads.
Similar to the 4.1.2 Ham dataset, most of the values are in a small range, with occa-
sionally some spikes (but rarely more than 1 per time series). More about this dataset
can be found at [Dataset: Lighting7].

Alabama_weather

The Alabama_weather dataset contains longer and more variegated time series w.r.t.
the considered UCR datasets. The time series in the datasets show no particular
trend or seasonality. Some contain noise, others much less. To keep the generation
time reasonable, only a subset has been considered (limiting the number of time
series and their length).

Currency2

As the name says, the Currency2 dataset contains a list of currencies values. Most
of the time series in this dataset have a similar value range, but there are some ex-
ceptions. They do not have any evident cyclical pattern or common trend, and they
tend not to change too abruptly.

Alabama_weather_3072

The major drawback of the BasicGAN implementation found is that it requires a
dataset with a specific structure, meaning 3072 time series of length 3072. To obtain
it, we manually created a dataset shifting a 3072-points window over a time series
of length 6143, with a step of 1. As consequence, the resulting dataset is extremely
uniform, but this allows to consider BasicGAN technique as well. The original time
series is from the Alabama_weather dataset.

Summary

Table 4.1 summarize the datasets used. Fig. 4.1 shows them, while Fig. 4.2 shows
the only the first 3 time series of each dataset.

4.1. Setup 15

Nb. of time series Length Caracteristics

BeetleFly 20 512
Similar pattern for all time series
Cyclic

Coffee 28 286 Very uniform

Ham 105 431
Spikes at the same point for
each time series

Ligthing7 73 319
Few anomalies, in different poin
for each time series

Alabama_weather 15 2000
Longer time series with
more noise

Currency2 20 2610
Some time series with trend,
most not. Only small variations

Alabama_weather_3072 3072 3072
Identical time series, shifted by
1 in time

TABLE 4.1: Summary of the considered datasets

(A) BeetleFly (B) Coffee (C) Ham

(D) Lighting7 (E) Alabama_ weather (F) Currency2

FIGURE 4.1: Datasets plots

4.1.3 Metrics

The first thing to do in order to evaluate the generation algorithms is to choose how.
Since our goal is to perform a general analysis (and not task-specific), we have de-
cided to select some features of the original time series and observe whether or not
they are maintained in the generated ones. In addition, we have also selected some
metrics, to discover the relation between the original time series and the generated
ones. Below is the list of what we decided to consider:
Mean. Although this is arguably the least interesting property we consider, it is a

good way to understand if a method generates data on the same scale as the
real one. If not, it might be necessary to process the generated data before being
able to use it. It is therefore important to know it.

Variance. This is a relatively simple way to compare the distribution of the new time
series with that of the original ones. Alone it would not be enough, but it is still
an important property to check.

Spectral Entropy (see 2.1.1). Applying this to both the original data and the gen-
erated one, it allows us to see which method better preserves the amount of

16 Chapter 4. Experiments

(A) BeetleFly (3 ts) (B) Coffee (3 ts) (C) Ham (3 ts)

(D) Lighting7 (3 ts) (E) Alabama_ weather (3 ts) (F) Currency2 (3 ts)

FIGURE 4.2: Datasets plots (3 time series each)

information in the time series. If the generated data has a much lower Spec-
tral Entropy than the original data, it might not be optimal for tasks such as
forecasting.

Mutual Information (see 2.2.1) shared between the original data and the synthetic
one. This is an important evaluation metric and, in contrast to the previous
features, it compares directly the new data with the original one (instead of
extracting properties from both and compare these).

Correlation (see 2.2.2) between original time series and the synthetic one. A very
high or very small correlation mean that the generated data has a similar trend
to the original one (i.e. almost the same or the opposite values with only small
variations), and therefore will not be so useful. At the same time, a very small
correlation indicate that the generated data is completely different from the
original one, and therefore a model trained with this data could perform poorly
on the real one.

Distribution (see 2.1.2). The distribution is a very important property of time series,
and it is important to evaluate whether or not the generating algorithms are
capable of preserving it.

Autocorrelation (see 2.1.3). The particularity of time series is that time is impor-
tant. In particular, values at a given time might strongly depend on values at
previous times. Autocorrelation measures this dependence, and it is useful to
evaluate how much the time-dependencies are preserved.

4.2 Results

In this section, we will group the metrics listed in 4.1.3 into logical classes and for
each of them we will analyze the results across all the datasets and all the generation
methods.
Statistical metrics:. This group includes the mean and the variance. They are classic

statistical measures that give a first insight into the considered data.
Distribution-based metrics:. This group includes the correlation with the original

dataset, the distribution, and the auto-correlation. They are very important to

4.2. Results 17

understand if the generated data preserves the distribution of the values in the
original dataset, and, if yes, whether or not it does it generating completely new
data or just by copying the original one.

Information-based metrics:. This group includes entropy and mutual information.
They are both based on the information theory, and will analyze the amount of
information preserved during the generation.

4.2.1 Statistical metrics

From Fig. 4.3 and Fig. 4.4 we can notice that the basic methods (DBA and Anoma-
liesInjection) generate data with very similar mean and variance w.r.t. the original
one, for all the datasets considered. The fact that simple methods preserve statistical
metrics is not a surprise, since they use the original time series as the starting point
and only slightly modify them.

The performance or AR depends on the dataset considered. It is able to preserve
the statistical metrics with BeetleFly and Coffee, but has worst results for example
with Ham and Lighting7. This is due to the fact that the latter contains anomalies
(spikes), and the auto-regressive model is not able to handle them.

Among the GAN-based methods, InfoGAN is the one that better preserves the
statistical metrics during the generation. However, same as for AR, it has more diffi-
culties when handling datasets with anomalies. The other GAN-based methods do
not preserve the statistical metrics. This is due to the fact that the aim of GANs is
not to preserve the statistical metrics, but rather focus on other properties such as
the information contained in the data.

FIGURE 4.3: Normalized mean of the considered datasets

FIGURE 4.4: Normalized variance of the considered datasets

18 Chapter 4. Experiments

4.2.2 Distribution-based metrics

The results for Correlation are shown in Fig. 4.5, while those for Distribution and
Autocorrelation are shown respectively in Fig. 4.6-4.11. and Fig. 4.12-4.14.

Again, the first thing we can notice is that simple methods (DBA and Anomalies
Injection) have a very high correlation and similar autocorrelation function and dis-
tribution (even though Anomalies Injection has in the generated data some extreme
values, which is completely predictable given how the method work). This shows
once again that the generated data is only a minor modification of the existing data.

For AR, the correlation is very low. We can also notice that the generated values
are much more concentrated in a smaller range. The method is not able to cover all
the patterns of the original data. The autocorrelation function is in general similar to
the autocorrelation function of the original data for the first part. However, it loses
precision after a while. This is again due to the fact that after a certain point the new
values are constructed based on synthetic values, increasing the error.

The correlation of the GAN-based methods is in general low, especially for TimeGAN
and BasicGAN. The autocorrelation function is similar to the one of the original data
when the dataset is large enough for the GAN model to capture the temporal evolu-
tion in the data (see Fig. 4.13 and Fig. 4.14). When instead the dataset is too small,
GANs methods are not able to model it properly, as we can see from Fig. 4.12.

FIGURE 4.5: Correlation of the considered datasets w.r.t. the original
data

4.2.3 Information-based metrics

The results for Entropy and Mutual Information are shown in Fig. 4.15 and Fig. 4.16.
We can see that, with minor exceptions with the longer datasets, simple methods

(DBA and Anomalies Injection) generate data with similar entropy to the original
one, and share a high mutual information with it. This result was expected, since
the generated data is only a perturbation of the original one.

AR also generates data with similar entropy to the original one, but has a smaller
mutual information especially in the last three datasets. This is probably due to
the fact that Lighting7 contains a lot of spikes (and our AR model is not complex
enough to consider them), and the other two datasets are much longer. Since AR
only consider the last points, after a certain threshold the new values are generated
based on other synthetic values, thus losing precision.

For GAN-based methods, we can immediately see that the entropy of the data
generated with TimeGAN and BasicGAN is much higher. However, for TimeGAN
the mutual information is similar to those with the other methods. We can deduce

4.2. Results 19

(A) Original

(B) AnomaliesInjection

(C) AR

(D) DBA

(E) InfoGAN

(F) TimeGAN

FIGURE 4.6: Distribution of BeetleFly_TEST

(A) Original

(B) AnomaliesInjection

(C) AR

(D) DBA

(E) InfoGAN

(F) TimeGAN

FIGURE 4.7: Distribution of Coffee_TEST

that the data generated with this method is less similar (i.e. has a higher distance)
to the original one than those generated with other methods, but despite this, it
shares a lot of information with it. InfoGAN has very similar results w.r.t. mutual
information, but slightly better preservation of the entropy in the datasets without
spikes.

4.2.4 Runtime

Below are presented the times (in seconds) needed to generate synthetic data with
every method and for each of the 6 main datasets considered. The time presented
only considers the generation (and training for InfoGAN and TimeGAN), but not
the time needed to extract the metrics, plot the results, save the data, or any other
task. In addition, it is to mention that the values presented are the results of a single

20 Chapter 4. Experiments

(A) Original

(B) AnomaliesInjection

(C) AR

(D) DBA

(E) InfoGAN

(F) TimeGAN

FIGURE 4.8: Distribution of Ham_TEST

(A) Original

(B) AnomaliesInjection

(C) AR

(D) DBA

(E) InfoGAN

(F) TimeGAN

FIGURE 4.9: Distribution of Lighting7_TEST

experiment. Although it would be more correct to do multiple runs for each value
and consider the mean, in this case the exact result is not particularly important.
What is investigated here is rather the order of growth of each algorithm, and the
relation between them.

Runtime (s) BeetleFly (20x512) Coffee (28x286) Ham (105x431) Ligthing7 (73x319) Alabama_weather (15x2000) Currency2 (20x2610)
AnomaliesInjection 3.4792 3.7648 13.2981 10.4487 3.9154 2.4432
AR 8.6032 4.1136 26.3448 3.3944 57.1649 18.2239
DBA 5.1887 4.0671 104.6299 33.9407 54.898 143.2891
InfoGAN (200 eps) 222.7651 232.73 1381.9785 400.3487 2576.8138 2659.7723
TimeGAN (200 eps) 301.3007 343.3313 319.0164 288.4910 266.4494 269.8655

TABLE 4.2: Runtime of the different methods

From table 4.2 we can see that AnomaliesInjection, AR and DBA require very
few time compared to GAN-based methods. In addition, the required time is less
influenced by the size of the input dataset.

4.3. Recommendations 21

(A) Original

(B) AnomaliesInjection

(C) AR

(D) DBA

(E) InfoGAN

(F) TimeGAN

FIGURE 4.10: Distribution of Alabama_weather_6k_8k

(A) Original

(B) AnomaliesInjection

(C) AR

(D) DBA

(E) InfoGAN

(F) TimeGAN

FIGURE 4.11: Distribution of Currency2

Generation with InfoGAN requires much longer, and the required time is heavily
conditional on the size of the input dataset. For small datasets, the time required by
TimeGAN is similar to that of InfoGAN. However, for TimeGAN the time remains
constant with the growth of the input dataset, leading to a much faster generation
with bigger inputs.

4.3 Recommendations

In this section, we try to summarize which class of algorithms is better in which sit-
uation, based on the results obtained. In particular, we will consider three variants:
the similarity of the generated data, the size, and the presence of anomalies. In the
first case, we consider a generated time series to be similar to the original one when

22 Chapter 4. Experiments

(A) Original

(B) AnomaliesInjection

(C) AR

(D) DBA

(E) InfoGAN

(F) TimeGAN

FIGURE 4.12: Autocorrelation of Ham_TEST

(A) Original

(B) AnomaliesInjection

(C) AR

(D) DBA

(E) InfoGAN

(F) TimeGAN

FIGURE 4.13: Autocorrelation of Alabama_weather_6k_8k

it consists of almost the same values, with only some minor changes. More for-
mally, two similar time series have a high correlation and a small RMSE (Root Mean
Squared Error, not analyzed here). The second variable depends on the size of the
required output. We distinguish two cases: when it is enough to double the initial
(original) input, and when instead we need to generate a bigger dataset. Lastly, we
distinguish input datasets with anomalies (e.g. 4.1d) from datasets without anoma-
lies (e.g. 4.1b).

The classes of algorithms considered are those just analyzed, meaning simple
methods (including DBA and Anomalies Injection), autoregressive methods (AR),
and ML methods (e.g. GANs).

The recommendations derived are illustrated in Fig. 4.17.

4.3. Recommendations 23

(A) Original

(B) AnomaliesInjection

(C) AR

(D) DBA

(E) InfoGAN

(F) TimeGAN

FIGURE 4.14: Autocorrelation of Currency2

FIGURE 4.15: Entropy of the considered datasets

FIGURE 4.16: Mutual information of the considered datasets w.r.t. the
original data

24 Chapter 4. Experiments

FIGURE 4.17: Recommendations

25

Chapter 5

Augmentation Framework

To automate the experimental part of this work, and to facilitate its replicability, we
have implemented a tool that brings together the selected algorithms1. It has been
created for Ubuntu 20.4, and it is mainly written in python 3.6. The tool allows to
generate new time series starting from any dataset with the right format (.csv file
with time series as columns). The datasets considered in this work are included
with the code, however a user can add its own.

It is possible to choose between 6 generation techniques: AnomaliesInjection,
AR, DBA, Basic GAN, InfoGAN, and TimeGAN. The tool takes care of hiding the
differences in their implementation (different programming languages, input for-
mat, etc.) and standardizes the output format. In addition, upon request, it extracts
some metrics both from the new and the original data in order to evaluate the gen-
eration.

5.1 Implementation

As mentioned, the sources for the different techniques are very heterogeneous. Some
of them are written in python, others in java. Some have a ready-to-work implemen-
tation, while others are just a library, or even an article, and need additional work
to be used. In addition, some implementation use different version of the same li-
brary (in particular tensorflow), or require different input format. TimeGAN and
InfoGAN also produces sub-samples of time series, which needs to be reconstructed
into full time series to be compared with the other techniques.

Our contribution with this tool is to hide all these differences and make it possi-
ble to use the different techniques in a uniform and seamless way. Table 5.1 summa-
rize these differences.

1The code and the datasets are publicly available at https://github.com/Fontanjo/TS_generation_benchmark

Technique Source Last version data Language Limitations
Anomalies Injection Agots 2019 Python It is a library
DBA Forestier et al., 2017 2017 Java Requires different input format
AR Brownlee, 2020 2020 Python It is an article, no implementation
Basic GAN dbiir/TS-Benchmark 2021 Python Requires specific input shape

TimeGAN TimeGAN 2021 Python
Requires tensorflow==1.15.0
Provides no output, only visual analysis
Produces sub-samples

InfoGAN tsgen 2021 Python
Requires tensorflow==1.4.0
Produces sub-samplese

TABLE 5.1: Summary of the different sources used

26 Chapter 5. Augmentation Framework

FIGURE 5.1: Use example: searching for the best algorithm combin-
ing the 3 scenarios

5.2 Scenarios

The main goal of the generation tool is to simplify the generation of synthetic time
series using different algorithms, as well as visualizing and analyzing the results.
Figure 5.1 shows how to use the tool to choose the best algorithm for a given situa-
tion, and below is a list with a more specific description of the main use scenarios:
Scenario 1: Visualize datasets. The first thing a user might be interested in is to
visualize a dataset. In this scenario, the user can add its own dataset to the frame-
work and use the provided tools to visualize it. In addition, he can visualize the
distribution of the dataset, as well as the distribution of each single time series in it.
The same thing holds for autocorrelation, for which it is possible to generate a single
plot for the entire dataset or a separate plot for each time series.
Scenario 2: Analyze datasets. In this scenario, a user studies a dataset based on a
set of properties and metrics. It is possible to extract the mean, the spectral entropy,
and all the properties described in 2.1. It is also possible to specify two datasets and
compute metrics s.a. mutual information and correlation between them. All these
results are stored in a csv file, and they can be plotted with gnuplot using another
provided script.
Scenario 3: Augment datasets. In this scenario, the user has a dataset he wants to
augment. He can add this dataset to the framework, then select the algorithm he
wants to use and customize the parameters. For example, he can specify the number
of epochs for ML-based methods, or frequency and type of anomalies for anomalies
injection. It is also possible to specify the size of the generated data (number of time
series and their length).

27

Chapter 6

Conclusion

In this work we presented a tool to evaluate different algorithms to generate syn-
thetic time series. To do this, we presented some of the state-of-the-art methods to
generate new time series and show some of the most diffused implementations. We
then discussed how to evaluate the quality of generated data through time series
properties and metrics. With these concepts, we used our tool to generate data for
6 different datasets and 6 generating methods, and analyzed the results. Finally, we
presented some conclusions and suggestions that could be drawn from the results.

A natural future work on this tool is the introduction of new generating algo-
rithms. For example, more sophisticated auto-regressive models, other anomalies
injection techniques, or VAEs-based algorithms. In addition, there are many proper-
ties and metrics to evaluate time series that could be included in the code, for exam-
ple DTW-distance. Finally, other things that would be useful to add are techniques
to visually evaluate the generated data, such as PCA or t-SNE.

Another direction to continue this work is to evaluate the data generated on a
time series analysis task. For example, evaluate whether the synthetic data created
help improve the accuracy of a model for anomaly detection, classification or pre-
diction.

29

Bibliography

Briandet, Romain, E. Katherine Kemsley, and Reginald H. Wilson (1996). “Discrim-
ination of Arabica and Robusta in instant coffee by Fourier transform infrared
spectroscopy and chemometrics”. In: Journal of Agricultural and Food Chemistry
44.1, pp. 170–174. DOI: 10 . 1021 / jf950305a. URL: https : / / hal . archives -
ouvertes.fr/hal-01606904.

Brownlee, Jason (Aug. 2020). Autoregression Models for Time Series Forecasting With
Python. URL: https://machinelearningmastery.com/autoregression-models-
time-series-forecasting-python/.

Chen, Peiyuan et al. (June 2010). “ARIMA-Based Time Series Model of Stochastic
Wind Power Generation”. In: Power Systems, IEEE Transactions on 25, pp. 667 –
676. DOI: 10.1109/TPWRS.2009.2033277.

Chen, Xi et al. (2016). “InfoGAN: Interpretable Representation Learning by Infor-
mation Maximizing Generative Adversarial Nets”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by D. Lee et al. Vol. 29. Curran Associates, Inc. URL:
https://proceedings.neurips.cc/paper/2016/file/7c9d0b1f96aebd7b5eca8c3edaa19ebb-
Paper.pdf.

Dataset: BeetleFly. URL: https://timeseriesclassification.com/description.
php?Dataset=BeetleFly.

Dataset: Coffee. URL: https://timeseriesclassification.com/description.php?
Dataset=Coffee.

Dataset: Ham. URL: https://timeseriesclassification.com/description.php?
Dataset=Ham.

Dataset: Lighting7. URL: https://timeseriesclassification.com/description.
php?Dataset=Lightning7.

Dbiir. dbiir/TS-Benchmark. URL: https://github.com/dbiir/TS-Benchmark.
Dionisio, Andreia, Rui Menezes, and Diana A. Mendes (2004). “Mutual information:

a measure of dependency for nonlinear time series”. In: Physica A: Statistical Me-
chanics and its Applications 344.1. Applications of Physics in Financial Analysis
4 (APFA4), pp. 326–329. ISSN: 0378-4371. DOI: https://doi.org/10.1016/j.
physa.2004.06.144. URL: https://www.sciencedirect.com/science/article/
pii/S0378437104009598.

eXascaleInfolab. tsgen. URL: https://github.com/eXascaleInfolab/tsgen.
Forestier, Germain et al. (2017). “Generating Synthetic Time Series to Augment Sparse

Datasets”. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 865–
870. DOI: 10.1109/ICDM.2017.106.

Gao, Jingkun et al. (2020). RobustTAD: Robust Time Series Anomaly Detection via De-
composition and Convolutional Neural Networks. arXiv: 2002.09545 [cs.LG].

Generative Adversarial Network (GAN). URL: https://docs.paperspace.com/machine-
learning/wiki/generative-adversarial-network-gan.

Goodfellow, Ian J. et al. (2014). Generative Adversarial Networks. arXiv: 1406.2661
[stat.ML].

Ham, Lucy, Rowan Brackston, and Michael Stumpf (Apr. 2019). Extrinsic noise and
heavy-tailed laws in gene expression. DOI: 10.1101/623371.

https://doi.org/10.1021/jf950305a
https://hal.archives-ouvertes.fr/hal-01606904
https://hal.archives-ouvertes.fr/hal-01606904
https://machinelearningmastery.com/autoregression-models-time-series-forecasting-python/
https://machinelearningmastery.com/autoregression-models-time-series-forecasting-python/
https://doi.org/10.1109/TPWRS.2009.2033277
https://proceedings.neurips.cc/paper/2016/file/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Paper.pdf
https://timeseriesclassification.com/description.php?Dataset=BeetleFly
https://timeseriesclassification.com/description.php?Dataset=BeetleFly
https://timeseriesclassification.com/description.php?Dataset=Coffee
https://timeseriesclassification.com/description.php?Dataset=Coffee
https://timeseriesclassification.com/description.php?Dataset=Ham
https://timeseriesclassification.com/description.php?Dataset=Ham
https://timeseriesclassification.com/description.php?Dataset=Lightning7
https://timeseriesclassification.com/description.php?Dataset=Lightning7
https://github.com/dbiir/TS-Benchmark
https://doi.org/https://doi.org/10.1016/j.physa.2004.06.144
https://doi.org/https://doi.org/10.1016/j.physa.2004.06.144
https://www.sciencedirect.com/science/article/pii/S0378437104009598
https://www.sciencedirect.com/science/article/pii/S0378437104009598
https://github.com/eXascaleInfolab/tsgen
https://doi.org/10.1109/ICDM.2017.106
https://arxiv.org/abs/2002.09545
https://docs.paperspace.com/machine-learning/wiki/generative-adversarial-network-gan
https://docs.paperspace.com/machine-learning/wiki/generative-adversarial-network-gan
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.1101/623371

30 Bibliography

jsyoon0823. TimeGAN. URL: https://github.com/jsyoon0823/TimeGAN.
Kang, Yanfei, Rob J. Hyndman, and Feng Li (May 2020). “GRATIS: GeneRAting

TIme Series with diverse and controllable characteristics”. In: Statistical Analy-
sis and Data Mining: The ASA Data Science Journal 13.4, 354–376. ISSN: 1932-1872.
DOI: 10.1002/sam.11461. URL: http://dx.doi.org/10.1002/sam.11461.

KDD-OpenSource. Agots. URL: https://github.com/KDD-OpenSource/agots.
Laptev, N. (2018). “AnoGen : Deep Anomaly Generator Nikolay Laptev”. In:
Le Guennec, Arthur, Simon Malinowski, and Romain Tavenard (Sept. 2016). “Data

Augmentation for Time Series Classification using Convolutional Neural Net-
works”. In: ECML/PKDD Workshop on Advanced Analytics and Learning on Tempo-
ral Data. Riva Del Garda, Italy. URL: https://halshs.archives-ouvertes.fr/
halshs-01357973.

Mutual Information diagram. URL: https://commons.wikimedia.org/wiki/File:
Entropy-mutual-information-relative-entropy-relation-diagram.svg.

Paige, Robert and A. Trindade (Jan. 2010). “The Hodrick-Prescott Filter: A special
case of penalized spline smoothing”. In: Electronic Journal of Statistics 4. DOI: 10.
1214/10-EJS570.

Scikit-learn: Clustering. URL: https://scikit-learn.org/stable/modules/clustering.
html#mutual-info-score.

Talbot, Paul W et al. (June 2019). “Correlated Synthetic Time Series Generation using
Fourier and ARMA”. In: URL: https://www.osti.gov/biblio/1634101.

Vajapeyam, Sriram (2014). “Understanding Shannon’s Entropy metric for Informa-
tion”. In: CoRR abs/1405.2061. arXiv: 1405.2061. URL: http://arxiv.org/abs/
1405.2061.

Volny, Petr, David Novak, and Pavel Zezula (Apr. 2012). “Employing Subsequence
Matching in Audio Data Processing”. In:

Wen, Qingsong et al. (Feb. 2020). “Time Series Data Augmentation for Deep Learn-
ing: A Survey”. In: Proceedings of the Thirtieth International Joint Conference on Ar-
tificial Intelligence. DOI: 10.24963/ijcai.2021/631.

Yoon, Jinsung, Daniel Jarrett, and Mihaela van der Schaar (2019). “Time-series Gen-
erative Adversarial Networks”. In: Advances in Neural Information Processing Sys-
tems. Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc. URL: https://
proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-
Paper.pdf.

https://github.com/jsyoon0823/TimeGAN
https://doi.org/10.1002/sam.11461
http://dx.doi.org/10.1002/sam.11461
https://github.com/KDD-OpenSource/agots
https://halshs.archives-ouvertes.fr/halshs-01357973
https://halshs.archives-ouvertes.fr/halshs-01357973
https://commons.wikimedia.org/wiki/File:Entropy-mutual-information-relative-entropy-relation-diagram.svg
https://commons.wikimedia.org/wiki/File:Entropy-mutual-information-relative-entropy-relation-diagram.svg
https://doi.org/10.1214/10-EJS570
https://doi.org/10.1214/10-EJS570
https://scikit-learn.org/stable/modules/clustering.html#mutual-info-score
https://scikit-learn.org/stable/modules/clustering.html#mutual-info-score
https://www.osti.gov/biblio/1634101
https://arxiv.org/abs/1405.2061
http://arxiv.org/abs/1405.2061
http://arxiv.org/abs/1405.2061
https://doi.org/10.24963/ijcai.2021/631
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf

	Abstract
	Introduction
	Motivation
	Problem Definition
	Existing Work

	Background
	Time Series Properties and Features
	Spectral Entropy
	Distribution
	Autocorrelation

	Time Series Evaluation Metrics
	Mutual Information
	Correlation
	Root Mean Squared Error (RMSE)

	Time Series Generation Methods
	Anomalies Injection
	Dynamic Time Warping Barycenter Averaging (DBA)
	Data generation with autoregressive models
	Generative Adversarial Networks (GANs)
	TimeGAN
	InfoGAN

	Experiments
	Setup
	Machine
	Datasets
	Metrics

	Results
	Statistical metrics
	Distribution-based metrics
	Information-based metrics
	Runtime

	Recommendations

	Augmentation Framework
	Implementation
	Scenarios

	Conclusion
	Bibliography

