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Abstract

Jonas Fontana

Improving Feature-Space Generalization Using the Typhon
Framework

Feature extraction is a critical component in deep learning models, often accomplished
through convolutional neural networks (CNNs) stacked at the beginning of the network. How-
ever, the fusion of feature extraction and decision-making lacks clear separation, and the train-
ing of early layers presents challenges due to limited error gradients and the requirement of
extensive data. This is particularly challenging in domain-specific tasks like Computer-Aided
Diagnosis in medical applications, where large datasets are often not available. In this thesis, I
investigate Typhon, a meta-learning framework introduced by Cuccu et al. (2022) which lever-
ages parallel transfer learning to improve sample efficiency and enhance the generalization of
feature extraction. Building upon previous work, I adapt Typhon to the task of segmenta-
tion using a breast cancer ultrasound dataset, augmented with support datasets from other
breast ultrasound and brain MRI scans. Even without extensive parameter optimization, Ty-
phon achieves a significant performance improvement of 4% in Intersection over Union (IoU)
and 9% in recall compared to state-of-the-art methods. Moreover, my results demonstrate a
reduction in overfitting, enabling the model training to fully converge. These findings under-
score Typhon’s versatility as a meta-learning framework, empowering its application to tackle
contemporary challenges in deep learning tasks.

To showcase the versatility of Typhon, I also extend its capabilities to the domain of au-
toencoding. Specifically, I employ Typhon to encode and decode images from diverse Atari
game environments, encouraging the feature extractor to learn shared characteristics across
the games. I introduce a comprehensive framework that encompasses the generation of new
Atari images, training of the feature extractor using Typhon, and training of a new controller
that utilizes the feature extractor’s output. The iteration of these components allow to pro-
gressing through different stages of the games and obtaining training images that are not
available initially.

Finally, my exploration of Typhon’s applications has led to the development of a novel
neural network layer called PixelPerfect. This layer enables precise identification of feature
coordinates within input using a minimal number of parameters. The utilization of this layer
will be demonstrated in the context of identifying features in Atari images; however, its ap-
plications possibly extend to every tasks requiring precise localization, including tumor seg-
mentation.

Keywords: Typhon, parallel transfer, overfitting, segmentation, UDIAT, breast cancer,
CAD, Atari, PixelPerfect
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Chapter 1

Introduction

In Machine Learning models, feature extraction plays a critical role in capturing meaningful
representations from raw data. It involves encoding the input into a compact set of relevant
features that can effectively represent the underlying patterns and characteristics. However,
training a proper feature extraction is a challenging task, since it happens at the early stages
of the model, where the error gradient from backpropagation is less precise. This limited
gradient signal poses difficulties in updating the feature extraction process accurately, in turn
requiring a large amount of data for reliable learning. To address this challenge, I propose the
use of the Typhon meta-learning framework, which allows me to integrate additional datasets
into the learning process, thereby enhancing the capability of the feature extractor to general-
ize across different domains. This ability to generalize is highly desirable in various applica-
tions, as it enables Machine Learning models to effectively apply learned knowledge to new,
unseen data or scenarios.

In the first part of the thesis, I will introduce some concepts that will later be necessary to
understand the experiments conducted. Section 1.1 will provide a concise explanation of how
Machine Learning is employed in the medical domain to assist professionals in the diagnostic
process, while Section 1.2 and Section 1.3 will present an overview of the techniques that are
concretely used. Subsequently, in Section 1.4 I will introduce some additional background
that will facilitate the understanding of the application of Typhon discussed in this work, re-
lated to Reinforcement Learning.

Section 1.5 will delve into the discussion of the datasets utilize and introduce how they
were collected. Additionally, Section 1.6 and Section 1.7 will present relevant works that are
related with this thesis. Finally, in 1.8 I will examine the goals of this work and present the
main contributions.

1.1 Computer-Aided Diagnosis (CAD)

Computer-Aided Diagnosis (CAD) methods have revolutionized the field of medical imaging
by seamlessly integrating algorithms and digital tools into the diagnostic workflow. These so-
phisticated systems offer a wide range of applications, spanning from the detection of lesions
in visualization tools such as Magnetic Resonance Images (MRIs) to radiographies (X-Ray),
mammographies, ultrasounds, and various other types of medical data. By leveraging CAD
methods, healthcare professionals can augment their diagnostic processes with valuable sup-
port, including second opinions and analyses that may be challenging or time-consuming for
doctors to perform alone.

CAD systems have become indispensable tools in modern healthcare, playing a crucial
role in assisting radiologists and other specialists in the interpretation of medical images. They
have proven particularly valuable in areas where precise and accurate analysis is life-critical,
such as the detection of tumors, abnormalities, and other pathological conditions. Through
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advanced image processing algorithms, CAD systems can automatically identify and localize
suspicious regions, providing quantitative measurements and assisting in formulating diag-
nostic hypotheses. This not only saves time but also enhances the accuracy and consistency
of diagnoses.

CAD systems have been introduced more than 40 years ago (Oakden-Rayner, 2019) and
their purpose has not been to replace doctors, but rather to enhance their capabilities. The
driving goal behind the development of CAD systems is to provide support to medical profes-
sionals, offering additional insights and assisting in tasks that may be impractical or beyond
human capacity. CAD systems serve as valuable second opinions, leveraging their compu-
tational power and pattern recognition algorithms to analyze medical images and provide
valuable information to aid in decision-making.

Consider, for example, the benefit of integrating cancer detection models in medical ma-
chines, automatically screening for the presence of a malignant mass while conducting routine
examinations. Surgeons and radiologists would not have sufficient time to meticulously exam-
ine every patient for any possibility of cancer, especially when there are no initial suspicions.
However, early detection of malignant masses plays a crucial role in the successful treatment
of the disease. A diagnosis by a CAD system could provide a valuable hint to medical pro-
fessionals, prompting them to investigate further, potentially saving lives.

CAD systems have significantly contributed to the advancement of personalized medicine
by enabling tailored treatment plans based on accurate and detailed diagnostic information.
By precisely delineating the location and extent of abnormalities, CAD systems assist in treat-
ment planning, guiding surgical interventions, and facilitating targeted therapies. This level
of precision not only improves patient outcomes but also minimizes unnecessary procedures
and reduces the overall healthcare costs.

Supporting medical experts with CAD systems strengthens the overall healthcare ecosys-
tem, resulting in improved patient outcomes and a higher level of care. CAD systems have
become an integral part of the diagnostic process, augmenting the expertise of healthcare pro-
fessionals and providing a valuable tool for decision support. As medical imaging technolo-
gies continue to evolve, those systems are positioned to advance further, incorporating Deep
Learning algorithms, multimodal image fusion, and real-time analysis capabilities. Their
ongoing development and integration in clinical practice hold great promise for the future,
opening new avenues for improved diagnostics, personalized treatment, and ultimately, better
patient care.

1.2 Techniques for tumor identification

In this section, I will introduce how tumors are typically identified in CAD tools. Specifically,
I will first provide an overview of one of the most common Machine Learning task, namely
classification. I will discuss its functioning and provide numerous examples of its applica-
tions. Moving forward, I will explore segmentation as a direct evolution of classification and
examine its wide range of practical uses.

In the second part of this section, I will delve into the evaluation of model performance in
these tasks, a crucial step in the development of increasingly effective models. I will introduce
several common evaluation metrics used in the field, discussing their mechanics, practical
application, and highlighting both their strengths and weaknesses.

1.2.1 Classification

Classification is a fundamental task in the field of machine learning, encompassing various
domains and applications. At its core, classification involves determining the class or cate-
gory, out of a limited set, to which a given input belongs. This task finds extensive use in
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diverse fields, including computer vision, fraud detection, natural language processing, and
the medical domain.

In computer vision, classification enables the identification and recognition of objects,
scenes, or concepts present in images. It allows machines to understand and categorize visual
information, leading to a wide range of applications in various domains. Prominent datasets,
such as ImageNet, have significantly contributed to the advancement of classification models
by providing extensive collections of images covering thousands of different categories. By
analyzing the features extracted from an image, a classification model can accurately predict
the object or scene depicted in it.

The applications of classification in computer vision extend far beyond simple object
recognition tasks. While distinguishing between cats and dogs may seem like a trivial ex-
ample, it serves as the foundation for more sophisticated tools and technologies, such as au-
tonomous driving systems and surveillance systems. These applications heavily rely on the
pre-processig of visual information in the scene, leaging to the accurate classification of ob-
jects and scenes in real-time, enabling intelligent decision-making and ensuring safety and
security.

Beyond these high-profile applications, there are relevant applications in numerous day-
to-day activities. For instance, machine learning models can be trained to identify the type
of a mushroom from an image, helping users determine whether it is poisonous or edible.
Classification algorithms can also be utilized in image-based product searches, where users
can find a specific product simply by capturing its picture. In agriculture, classification mod-
els can assist in diagnosing and treating sick plants by analyzing visual cues and providing
recommendations for appropriate remedies. These examples highlight the vast potential of
classification in computer vision, with applications spanning various industries and domains.
Figure 1.1 shows an example of classification.

Beyond computer vision, classification plays a crucial role in a myriad of real-world appli-
cations across various domains. One such application is fraud detection, where classification
models can be trained to differentiate between legitimate transactions and fraudulent ones.
By analyzing patterns and identifying suspicious activities, these models contribute to the de-
tection and prevention of financial crimes, safeguarding individuals and organizations from
potential threats.

In the realm of natural language processing (NLP), classification techniques find exten-
sive use in classifying text documents based on their content. For example, email providers
leverage classification algorithms to automatically filter out spam emails, ensuring that users’
inboxes are not inundated with unwanted messages.

Sentiment analysis is another area where classification techniques are used. By assigning
sentiment labels to text, such as positive, negative, or neutral, models can gauge the overall
sentiment expressed in a piece of writing. This has wide-ranging applications, from analyzing
customer reviews and feedback to understanding public opinion on social media platforms.
The ability to classify sentiment provides valuable insights for businesses, policymakers, and
researchers, enabling informed decisions based on public sentiment.

The medical domain stands as a critical area where classification techniques play a vi-
tal role in improving patient care and medical decision-making. In this context, classifica-
tion models are trained to analyze various medical inputs, ranging from patient records and
medical images to sensor data, and classify them as indicative of a healthy or an unhealthy
condition. Machine Learning models enable the development of diagnostic tools that aid med-
ical professionals in identifying potential diseases or conditions at an early stage, facilitating
timely interventions and personalized treatment plans.
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One prominent example within the medical field is the utilization of Computer-Aided Di-
agnosis (CAD) systems (see Section 1.1) which employ algorithms to analyze medical images
and classify them as originating from either a healthy patient or a patient with health issues.

Furthermore, classification models find applications in a wide range of other medical
tasks, including disease prediction, risk assessment, and treatment planning. By analyzing
patient data, such as genetic information, biomarkers, and clinical measurements, classifica-
tion algorithms can identify patterns and risk factors associated with specific diseases. This
information can then be used to predict the likelihood of developing certain conditions, en-
abling proactive interventions and preventive measures.

Figure 1.1: Classification. In a classification task, the model outputs a single
label for the entire image (in this case, poisonous or edible).

1.2.2 Segmentation

Segmentation is a fundamental task in the field of computer vision which involves the parti-
tioning of an image into coherent and meaningful regions, enabling a comprehensive under-
standing of visual data through the assignment of labels to individual pixels. This process can
be considered an extension of classification, where the model is tasked with classifying each
pixel individually, rather than the entire image as a whole. The significance of segmentation
is evident in its wide range of applications across various domains, including autonomous
driving, image/video editing, augmented reality, and medical image analysis.

Traditionally, segmentation methods relied on techniques such as thresholding and region
growing (Liu, Deng, and Yang (2019)), which were limited in their ability to capture intri-
cate visual patterns. However, recent advancements in the field have predominantly embraced
deep convolutional neural networks (CNNs) (see Section 1.3.1) as the preferred approach for
addressing segmentation challenges. By leveraging the power of Deep Learning (see sec-
tion 1.3.2), these modern techniques have demonstrated exceptional performance by learning
from large-scale annotated datasets. The growing availability of such datasets has allowed
these models to effectively capture complex visual patterns, resulting in highly accurate seg-
mentations.
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The versatility of segmentation is evidenced by its ubiquity across diverse domains. In
the context of autonomous driving, segmentation is utilized to identify and delineate vari-
ous objects and regions within a scene, enabling vehicles to make informed decisions and
navigate safely. In image and video editing, segmentation facilitates precise selection and
manipulation of specific objects or regions, allowing for advanced editing techniques and
creative effects. Augmented reality applications heavily rely on segmentation to overlay vir-
tual objects seamlessly into real-world environments, enhancing the user experience. In the
medical field, segmentation plays a critical role in analyzing medical images, aiding in the
identification and delineation of anatomical structures or pathological regions for diagnosis
and treatment planning.

‘ 1 cabinet] %’
ST0 T microwave

wall §tonedo?r stuff] | l
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Figure 1.2: Segmentation. In the left image, a model recognizes (segments)

the pixels corresponding to a dog. All other pixels are classified as "not dog".

In the right image, a multiclass segmentation model identifies the different
objects in a kitchen (source: Carion et al. (2020)).

Evaluation Metrics

The evaluation of trained models is a critical step in assessing their performance and deter-
mining their effectiveness. While visual inspection of model outputs can provide some initial
insights, it lacks the scientific rigor and scalability necessary for comprehensive evaluation.
To address these challenges, the field of Supervised Learning relies on the use of metrics to
quantitatively assess model performance on a large scale.

In the context of image segmentation, metrics play a pivotal role in evaluating the model’s
ability to accurately identify objects and regions within an image. These metrics provide
objective and standardized measures of performance that can be applied consistently across
different datasets and models. By withholding a portion of the dataset during training and
computing metrics on this held-out set, the model’s generalization and predictive capabilities
can be rigorously evaluated.

In the following sections, I will delve into the specific metrics used for evaluating seg-
mentation models, discussing their strengths, limitations, and interpretations.

Accuracy. Accuracy is a widely used metric in segmentation evaluation that measures the
overall correctness of the model’s predictions. It quantifies the proportion of correctly clas-
sified pixels or regions out of the total number of pixels or regions in the image. A high
accuracy value indicates that the model is making correct predictions for a majority of the
pixels or regions, reflecting its ability to accurately segment and classify the objects of in-
terest. Conversely, a low accuracy value suggests that the model is struggling to correctly
classify a significant portion of the image, indicating potential errors and misclassifications.

In practical terms, accuracy serves as a general indicator of the model’s ability to capture
the underlying patterns and structures within the image. It provides a comprehensive mea-
sure of how well the segmentation model is able to accurately delineate objects or regions
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of interest. However, it is important to note that accuracy alone may not provide a complete
understanding of the model’s performance, especially in scenarios with imbalanced class dis-
tributions or when the cost of false positives or false negatives is not equal. In such cases,
it is necessary to consider additional metrics to gain more nuanced insights into the model’s
behavior.

Accuracy is computed as:

True Positive + True Negative
True Positive + False Positive + True Negative 4 False Negative

Accuracy =

Precision. Precision is a fundamental segmentation metric that provides insights into the
model’s ability to accurately identify and classify positive instances within an image. It mea-
sures the proportion of true positive predictions, which are correctly identified positive in-
stances, out of all positive predictions made by the model. A high precision value indicates
that the model has a low rate of false positives, meaning that it correctly identifies and clas-
sifies positive regions while minimizing incorrect identifications. On the other hand, a low
precision value suggests a higher likelihood of false positives, indicating that the model may
incorrectly identify regions as positive even when they are not.

In practical terms, precision is particularly important in applications where the cost of
false positive errors is high. For instance, in the context of predicting the risk of recidivism,
a false positive has the potential to devastate the life of an innocent person. While precision
is a valuable metric for evaluating segmentation models, it should be used with caution and
in conjunction with other metrics. Relying solely on precision can be misleading in scenarios
where false negatives (missed detections) have severe consequences or when class imbalances
exist, such as in medical imaging where a high precision may indicate a low false positive rate
but could overlook critical cases with false negatives.

The precision is calculated as:

True Positive

Precision = — —
True Positive + False Positive

Recall. Recall, also known as sensitivity or true positive rate, assesses the ability of the
model to correctly identify the presence of a target class by capturing the proportion of true
positive predictions out of all actual positive instances in the data. A high recall value indicates
that the model effectively detects the target class and minimizes false negatives, ensuring that
fewer positive instances are overlooked.

Recall plays a crucial role in applications where the consequences of false negatives are
significant. For instance, in Computer-Aided Diagnosis, missing the detection of abnormali-
ties or diseases can have severe implications for patient care and treatment decisions. A high
recall value in this context indicates that the model successfully identifies potential regions
of interest, helping healthcare professionals focus their attention on areas that require further
investigation or intervention. However, similarly as for the previous metrics, relying solely
on recall as a performance metric can be problematic in certain scenarios. One limitation
is when the cost of false positives (incorrectly classifying a negative instance as positive) is
high. For instance, in security screening applications, a high recall might lead to an exces-
sive number of false positives, causing inconvenience or delays for individuals. Therefore,
a trade-off between recall and precision needs to be carefully considered to strike a balance
between minimizing false negatives and false positives.
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The formula for recall is given by:

True Positive
Recall =

True Positive + False Negative

Specificity. Specificity, also known as the true negative rate, complements recall in segmen-
tation evaluation by measuring the model’s ability to accurately identify negative instances.
It quantifies the proportion of true negative predictions out of all actual negative instances
in the data. A high specificity value indicates that the model effectively avoids false positive
errors, ensuring that negative instances are correctly classified as such.

In various applications, specificity holds particular importance when the consequences of
false positives are significant. However, it is essential to consider the limitations of relying
solely on specificity as the sole performance metric. While high specificity ensures a low rate
of false positives, it may come at the cost of increased false negatives. In situations where the
detection of positive instances is critical, such as in medical diagnostics or anomaly detection,
a high specificity value may lead to the omission of important regions or objects of interest.

We compute specificity as:

True Neegati
Specificity = rue Negative

True Negative + False Positive

AUC (ROC). The Area under the Curve (AUC), intended as the Receiver Operating Char-
acteristic (ROC) curve, is a commonly used metric for evaluating the performance of seg-
mentation models. The ROC curve plots the true positive rate (sensitivity) against the false
positive rate (1 - specificity) at various threshold values, and the AUC quantifies the overall
performance of the model across all possible threshold values. AUC values range in [0.0, 1.0],
with higher value indicating better performance. An AUC of 1.0 represents a perfect model
that achieves a 100% true positive rate with a 0% false positive rate, while an AUC of 0.5
indicates a model that performs comparably to random guessing. Lower values correspond
to even lower performance.

AUC is particularly important in applications where the balance between sensitivity and
specificity is crucial, where accurately identifying positive instances while minimizing false
positives is vital. By utilizing the AUC metric, for example, medical professionals can as-
sess the overall discriminatory power of the segmentation model, determining its ability to
differentiate between regions or objects of interest and background.

While being more informative than other metrics, also AUC has some limitations. In
particular, it assumes that the cost of false positives and false negatives are equal. In cases
where the cost of misclassification varies significantly, AUC alone may not provide a com-
prehensive evaluation. Therefore, it is usually recommended to interpret the AUC value in
conjunction with other metrics such as sensitivity, specificity, precision, and recall to gain a
more nuanced understanding of the model’s applicability and make informed decisions based
on the specific requirements of the application domain. Figure 1.3 provides a visual example
of the AUC computation.

Dice Score. The Dice Score, also known as F1 score, is a widely used metric in segmenta-
tion tasks that combines the concepts of precision and recall into a single measure. It quanti-
fies the similarity between the predicted and ground truth segmentations, providing an overall
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Figure 1.3: Area Under the Curve. The figure provides a visual intuition of
how AUC is computed, by considering the area under the plot given by the
sensitivity at the variation of the specificity. Source: Langhammer (2018).

assessment of segmentation accuracy. The Dice Score is calculated by taking twice the inter-
section between the predicted and ground truth segmentations, and dividing it by the sum of
the predicted and ground truth segmentations. This formulation allows the Dice Score to high-
light both false positive and false negative errors, making it a valuable metric for evaluating
segmentation models.

The values of the Dice Score range in [0.0, 1.0], where a value of 1.0 indicates a perfect
overlap between the predicted and ground truth segmentations, while a value of 0.0 indicates
no overlap at all. It is a commonly used metric in medical image analysis, where precise seg-
mentation of structures or regions of interest is critical for accurate diagnosis and potentially
invasive procedures such as biopsies.

This metric is mathematically equivalent to the harmonic mean of precision and recall,
and thus called F1, where the more generic Fg score applies additional weights, favoring one
of precision or recall more than the other. The harmonic mean provides a balanced measure
that considers both precision and recall, making it an ideal choice for evaluating segmentation
performance.

The Dice Score can be computed as:

2 X True Positive

Dice Score = — — :
(2 x True Positive) + False Positive 4 False Negative

Intersection over Union. The Intersection over Union (IoU), also known as Jaccard index,
is a widely used metric in segmentation tasks that measures the spatial alignment and accu-
racy of the predicted segmentation compared to the ground truth. The IoU is closely related
to the Dice score, as both metrics assess the similarity between the predicted and ground truth
segmentations. Similar to the Dice Score, the IoU calculates the overlap between the predicted
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and ground truth segmentations (here called Intersection), but with a slightly different formu-
lation, by normalizing it over the regions union. It quantifies the degree of overlap between the
predicted and ground truth segmentations, providing a measure of the segmentation’s quality.

The metric can assume values ranging in [0.0, 1.0], where a score of 1.0 indicates a perfect
overlap between the predicted and ground truth segmentations, while a score of 0.0 represents
no overlap at all. It is commonly used in various applications, such as object detection, se-
mantic segmentation, and medical image analysis. In medical imaging, the IoU metric plays a
crucial role in assessing the accuracy of anatomical structure segmentations. Accurate delin-
eation of structures, such as tumors or organs, is essential for diagnosis, treatment planning,
and disease monitoring.

The IoU is computed as the ratio of the intersection to the union of the predicted and ground
truth regions:

oU Intersection True Positive
ouU = : = I I :
Union True Positive + False Positive + False Negative

1.3 Models for segmentation tasks

In this section, I will introduce the topic of segmentation architectures, focusing on concrete
machine learning models specifically designed for image segmentation tasks. The founda-
tion of these models lies in neural networks (NN), which have become a cornerstone in the
field of computer science and Machine Learning. Neural networks offer a versatile and pow-
erful framework for addressing complex problems, making them widely adopted and highly
effective in various domains.

One of the significant advancements in the field of Machine Learning has been Deep
Learning (DL), an approach that harnesses the potential of large-scale neural networks using
an enourmous amount of data for training. Over the past decade, Deep Learning has revo-
Iutionized the landscape of Machine Learning, unleashing remarkable progress in numerous
domains. From language translation and image recognition to self-driving cars, digital assis-
tants, and Large Language Models (LLMs), Deep Learning has played a pivotal role in most
recent results, as showcased next.

After showing the importance of Deep Learning, I will shift the focus to state-of-the-art
DL architectures that have emerged for medical image segmentation. These architectures have
demonstrated exceptional performance in accurately segmenting medical images, providing
valuable insights for diagnosis, treatment planning, and disease monitoring. Throughout this
section, I will explore these architectures and discuss their applicability and relevance to my
work.

1.3.1 Neural Networks

The concept of neural networks originated in 1943 with the work of (McCulloch and Pitts,
1943), who explored the functioning of neurons and devised a simple neural network using
electrical circuits. Inspired by the human brain, neural networks are composed of a directed
graph of densely interconnected processing nodes. In the simplest models, these nodes are
typically organized into layers, forming a feed-forward structure where data flows in a unidi-
rectional manner. For this reasons these models are called sequential models.

In a sequential model, the flow of information is processed in a sequence, where the out-
put of one layer serves as the input to the next layer. This sequential nature allows neural
networks to process and transform data through successive layers of computation, exploiting
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function composition to grow their complexity fast. Each layer of nodes in the network per-
forms a linear combination of the inputs it receives, multiplying them by the corresponding
weights. This weighted sum is then passed through an activation function, which introduces
non-linearity to the network. The activation function is a critical component that enables
neural networks to capture complex patterns and relationships in the data.

One of the key properties of neural networks is their ability to perform function composi-
tion. Through the non-linear activation functions, neural networks are capable of combining
simple functions at each layers to construct more complex functions. This process allows them
to model intricate patterns and make higher-level representations of the data. By stacking
multiple layers, a neural network can capture increasingly abstract and sophisticated features,
enabling it to learn and generalize from complex datasets. Figure 1.4 shows an example of a
simple neural network.

Furthermore, neural networks are universal function approximators. This means that
given sufficient complexity in terms of the number of layers and nodes, a neural network
can approximate any function. This remarkable property demonstrates the expressive power
and flexibility of neural networks, although complex functions can require an extremely big
network. This is the reason that brought to the establishment of Deep Learning.

Hidden Hidden
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Figure 1.4: Neural Netwok. An example of a very simple neural network
consisting on an input layer, three hidden layers and an output layer.

1.3.2 Deep Learning

The concept of Deep Learning was formally introduced by lan Goodfellow, Yoshua Bengio,
and Aaron Courville in 2016 (Goodfellow, Bengio, and Courville, 2016), although prior work
had already laid the foundation in preceding years. Deep Learning sis a ML technique where
numerous layers of artificial neurons are interconnected to form a large, deep neural network.
Leveraging the compositional nature of neural networks, Deep Learning rapidly raises the
complexity of approximated functions. As a result, remarkable achievements have been at-
tained in diverse domains such as machine translation, autonomous driving, and image recog-
nition (Barrault et al., 2019; Yurtsever et al., 2020; Dabre, Chu, and Kunchukuttan, 2020).
Furthermore, Deep Learning has showcased impressive performance in time series forecasts,
text recognition, natural language processing (NLP), game playing, and medical diagnosis
(Masini, Medeiros, and Mendes, 2020; Chen et al., 2021; Wang, Babenko, and Belongie,
2011; Hirschberg and Manning, 2015; Silver et al., 2017a; Silver et al., 2017b; Bakator and
Radosav, 2018).



1.3. Models for segmentation tasks 11

Deep Learning models are typically trained using the Backpropagation algorithm, em-
ploying stochastic gradient descent (sgd):

w < w—1n-VwE(w)

where the network weights w are updated using the derivative of the error functin VwE (w),
multiplied by an error rate #.

During training, the output of the model is compared with the desired output (the label), and
the error is computed. This error is then utilized to adjust the weights of the last layer, aiming
to align the subsequent output for the same input more closely with the label. The derivative
of the layer’s function guides the direction of weight adjustments to improve the output. Once
the weights of the last layer are adapted, the error propagates backward through the model,
sequentially adjusting each layer using the same approach. It is noteworthy that the preci-
sion and magnitude of the backpropagated error progressively diminishes as it traverses the
network. Consequently, training the initial layers of a deep network becomes more challeng-
ing, underscoring the greater difficulty in training deeper networks compared to shallow ones.

Alongside the fully connected layer, several others layers have significantly contributed to
the efficacy of Deep Learning. Here I present some of the most common ones:

The convolutional layer is widely employed, particularly in image-related tasks. This layer
utilizes a small mask (or kernel) with the same dimensionality as the input (e.g. 2D on an
image), which is slid across the input. At each step, the input values are multiplied by their
corresponding kernel values, and the results are aggregated via summation to generate the
output value. For instance, a 3x3 mask with zeros except for a 1 at the center corresponds to the
identity function, preserving the input. Conversely, a 3x3 mask with uniform weights of 1/9
performs an average of the inputs, resulting in a blurred image. The difference with a standard
convolution is that these weights are learned by the model, instead of being hardcoded. Figure
1.5a illustrates an example of a convolution.

In a recurrent layer, connections between nodes can form cycles, enabling outputs from
certain nodes to be used as subsequent inputs at the next activation. This simple yet effective
mechanism allows the network to process related inputs, establishing a rudimentary form
of memory. Recurrent neural networks (RNNs) are particularly valuable for tasks involving
temporal dynamics, such as time series analysis and speech/text recognition. In Figure 1.5b,
the red arrow illustrates a recurrent connection.

Skip connections have emerged as a prominent component in Deep Learning. Instead of
forwarding the output of layer n solely to layer n + 1, skip connections transmit it to layers
further ahead, such as # 4+ 2 or even n + 3, nn + 4, and so on. This approach offers two signifi-
cant advantages. Firstly, during the forward pass, low-level features are propagated and can be
used alongside subsequent higher-level representations. Secondly, during backpropagation,
skip connections establish shorter paths from the last layer to earlier layers, usually result-
ing in larger and more precise error gradients. This facilitates the training of initial layers,
enhancing the overall training process. In Figure 1.5c, the red arrow illustrates a recurrent
connection going from the first hidden layer to the third hidden layer.

Pooling layers represent another common component often used in conjunction with con-
volutional layers. Pooling involves selecting a window on the input (similar to convolution)
and reducing it to a single value. One popular example is max pooling, which retains only
the maximum value within the selected interval. Given the convolution’s ability to identify
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specific patterns at various points in the input, max pooling is frequently applied after convo-
lutions to retain the most pertinent features and discard non-maximal values, promoting the
preservation of features identified with higher confidence. Figure 1.5d illustrates an example
of a max pooling operation.

Batch normalization is a technique introduced by (Ioffe and Szegedy, 2015). It involves
normalizing the output of the previous layer by subtracting the batch mean and dividing by the
batch standard deviation. This procedure is designed to reduce the effect of covariance shift,
where the distribution of the data changes during training. It has been shown to result in more
efficient training and faster convergence. However, recent studies by (Santurkar et al., 2018)
argue that the benefits of batch normalization are actually attributed to the smoothing effect
it has on the objective function. Despite the differing interpretations, the overall outcome
remains improved training performance and accelerated convergence.

Dropout is a regularization technique that was introduced by Srivastava et al. (2014) to
address overfitting in neural networks. The approach involves randomly disabling (or “drop-
ping out”) certain neurons during training, encouraging the model to learn more robust and
redundant representations. By reducing the reliance on individual neurons and preventing
them from overfitting to specific inputs, dropout enhances the model’s generalization abilities
and consequently improves performance on unseen data.
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Figure 1.5: Deep learning layers. Example of different elements commonly
used in deep learning models. Figure (a) presents an example of a 33 con-
volution on a 5x5 input. In Figure (b), the red arrow indicates a recurrent
connection. Similarly, in Figure (c) the red arrow indicates a skip connection.
Finally, Figure (d) shows a 33 max pooling on a 5x5 input.
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UNET

UNET is a highly popular Deep Learning architecture specifically designed for image segmen-
tation tasks, originally introduced in Ronneberger, Fischer, and Brox (2015). This architec-
ture, which gained significant attention in the Deep Learning community since its inception,
is characterized by its distinctive U-shaped network structure. The U-shaped design stems
from the architectural layout, where the input image is progressively encoded into higher-
level features through a “contracting path” composed of convolutional and pooling layers.
This encoding process allows the network encode the input into increasingly higher features.
Subsequently, the symmetric decoding path employs upsampling and convolutional layers to
restore the feature maps back to the original input size. A crucial aspect of UNET is the
utilization of skip connections, which involve concatenating the feature maps from the con-
tracting path with the upsampled feature maps in the decoding path. This mechanism enables
the network to retain both local and global information throughout the segmentation process.
UNET produces pixel-wise predictions, indicating the presence or absence of specific classes
at each corresponding point in the input image. By leveraging its unique architecture and
skip connections, UNET has demonstrated remarkable performance in various segmentation
tasks, making it one of the principal choice for identifying objects in images. Figure 1.6 shows
the architecture of UNET as it was presented in the original paper.
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Figure 1.6: UNET Architecture. Original UNET architecture presented in
Ronneberger, Fischer, and Brox (2015). On the left side, a sequence of encod-
ing blocks composed of convolutional layers reduce the input shape. On the
right side, the procedure is inverted through a sequence of decoding blocks
until the initial shape is reconstructed. Skip connection connects the two
parts, facilitating the propagation of earlier features to later decision layers.

In 2016, the paper “Deep Residual Learning for Image Recognition” (He et al., 2015) ad-
dressed the degradation problem encountered in deep neural networks. Despite the potential
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of deeper architectures to capture increasingly complex features, it was observed that as net-
work depth increased, performance would plateau and eventually degrade. This phenomenon
challenged the conventional notion that deeper networks always lead to improved results.

To overcome this limitation, the authors initially reasoned that adding more layers to a
network should be beneficial, as a deeper network could simply propagate the values through
identity functions in the added layers, and the training error would be no greater than the one
of its shallow counterpart. However, experimental results showed that as the network grew
deeper, its performance deteriorated, leading to the degradation problem.

The authors proposed a novel approach based on residual learning, introducing the con-
cept of residual blocks that facilitated the optimization of residual mappings within the net-
work. By enabling the network to focus on learning the difference (or residual) between the
input and the target output, rather than attempting to learn the entire output, they showed that
deeper models could be effectively trained.

The authors therefore introduced skip connections, known as identity mappings, at regular
intervals within the network architecture. These connections allowed the model to learn the
difference or residual between the input and the desired output, which was found to be easier
to learn. It is important to notice that these additional connections did not increase the num-
ber of parameters, nor the complexity of the training, except for the negligible element-wise
addition.

The new architecture, called ResNet, revolutionized the field of Deep Learning. The
versions presented in the paper demonstrated remarkable scalability, allowing for the con-
struction and training of networks with an unprecedented depth of up to 152 layers, which
surpassed by eight times the depth of the state-of-the-art VGG architecture (He et al., 2015).
ResNet achieved outstanding performance on various benchmark datasets, including a re-
markable 3.57% error rate on the ImageNet test set, which lead to the first place in the ILSVRC
2015 classification task (He et al., 2015). Furthermore, ResNet exhibited a relative improve-
ment of 28% on the COCO object detection dataset, which the authors attributed solely to the
employment of their extremely deep representations. The ResNet architecture also achieved
top rankings in the ImageNet localization, COCO detection, and COCO segmentation chal-
lenges.

Overall, “Deep Residual Learning for Image Recognition” proposed five variants of ResNet
(based on the number of layers): ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152.

Figure 1.7 shows the structure of the ResNet34 architecture.

1.4 Additional background

At the end of Section 2, an additional application of the Typhon framework will be presented,
demonstrating its versatility and emphasizing its role as a generic meta-learning framework
that can enhance the training process of any existing model. In particular, I will 