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Abstract

Albin Aliu

Unrolling Time

Time series data is of great interest across various domains, such as finance, natu-
ral sciences and engineering applications. It is thus to no surprise that quite some re-
search has been done in providing models which can capture the complexity of time
series data. In recent years, with the hype around generative AI, transformer-based
models such as Autoformer, PatchTST, and iTransformer have dominated the bench-
marks alongside neural network models such as N-BEATS, DLiner, and TimeMixer.
These models offer impressive performance compared to classical time series models
like ARIMA or those based on RNNs. However, the main drawback of these large
and complex models is that they usually require large amounts of data to perform
well and also require long training times.

In this work, we present a framework of how patterns can be learned from time
series data even with models like linear regression, which usually do not work well
on time series data out of the box. Our approach is a two-layered stacking approach,
where on both layers linear regression is used. The first layer generates a set of pre-
dictions, which is the input for the second layer, similar to how layers are stacked in
regular feedforward neural networks. The second layer is trained on the data gen-
erated by the first layer and then used to make a final prediction. The framework is
implemented in Python and provides an API to further extend it with other models.

We evaluated the model using linear regression on both layers on various com-
mon datasets for one-step ahead predictions. Compared to classical time series mod-
els like SARIMA, we saw performance gains of up to 93% on complex time series
that do not exhibit regularity.

We conclude that even simpler, non-traditional time series models can be made
to capture the complexity of time series using our framework.

Keywords: forecasting, time series, machine learning, linear regression, model
stacking, lagging
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Chapter 1

Introduction

Historically, mathematicians Carl Friedrich Gauss and Adrien-Marie Legendre de-
veloped the first time series models. Both used the least squares models to com-
pute orbits of celestial bodies (Stigler, 1986) around 1800. Around 150 years later,
the method of exponential smoothing was known. In the 1970s, ARIMA (Box and
Jenkins, 1976) was introduced and laid the foundation for many more models and
variations, including the introduction of mathematical rigor to time series analysis.
In recent years, very complex neural networks and transforms dominated the field
(Wang et al., 2024b), where big players like Google (Scott and Varian, 2014), Meta
(Taylor and Letham, 2017), Microsoft (Ke et al., 2017) and Amazon (Salinas et al.,
2020) each investigate heavily in time series research and provide a model of their
own. A big drawback of these recent models is that they require large amounts of
data and long training times, which in some cases is not an option.

Our proposed work is a two layered approach with a specific preprocessing and
batching of the data, which enables to learn different patterns. Before introducing
the method of unrolling time, we quickly review the basics of time series analysis to
establish a common language.

1.1 Time Series Data

1.1.1 Time Series Data Characteristics

Time series data offer certain characteristics which can render some traditional sta-
tistical models unapplicable. In this section, we will briefly discuss certain charac-
teristics which need to be taken into account when developing a new model. This
list is surely non-exhaustive but should provide a solid foundation to treat this type
of data.

Temporal Ordering. Standard statistical models often assume that observations
are independent and identically distributed. This assumption is not usually appli-
cable to time series data, where observations are time-specific and exhibit temporal
ordering. In time series, each observation is part of a sequence, and its position in
time contains information. This means the current observation might be influenced
by previous ones, which differs from the assumed independence in many traditional
statistical methods.

Trends. In time series data, trends indicate long-term upward or downward move-
ments. They are different from short-term variations or seasonal patterns and rep-
resent consistent changes over time. Recognizing trends is necessary for model ac-
curacy, as overlooking them can lead to skewed predictions by failing to account for
the data’s directional movement.
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Cyclic Behavior. Cyclic behavior in time series data refers to patterns that occur at
irregular intervals, often influenced by economic, political, or environmental factors.
These patterns differ from seasonal trends due to their irregular nature in terms of
duration and magnitude. Modeling such behavior can be challenging due to this
irregularity, but it is a necessary aspect of understanding time series, especially in
areas like economics where business cycles have significant effects.

Stationarity. Stationarity in time series data refers to the concept where statistical
properties of the series, such as mean, variance, and autocorrelation, are constant
over time (Shumway and Stoffer, 2000). This is fundamental in time series analysis
because many models are developed on the assumption of stationarity.

There are two main types of stationarity:

• Strong or Strict Stationarity: This implies that the joint distribution of any subset
of time series observations remains the same regardless of shifts in time. It’s
a stringent form, seldom met in practical scenarios due to its rigorous require-
ments.

• Weak or Second-Order Stationarity: This is a less strict form, requiring only the
mean and variance to be constant over time and the autocovariance to depend
only on the lag between observations and not on time itself. Many time series
models assume at least weak stationarity.

Non-stationary data, where these statistical properties change over time, often
require transformation to make them stationary. Such transformations might include
differencing the series, applying logarithmic or square root transformations, or using
other models designed to handle non-stationarity.

Noise or Random Variation. Noise in time series data represents the unpredictable
and random elements that are inherent in real-world data. This noise can arise from
different sources, such as measurement errors or unforeseen events. Separating ac-
tual patterns from this noise is a key aspect of time series analysis.

Univariate, Multivariate When considering univariate data in the context of time
series, we are typically referring to one variable, often also called a signal. For ex-
ample, this might include a series of temperature measurements in degrees Celsius.
However, when thinking about models, the terms univariate and multivariate become
a bit more ambiguous. If a model solely considers one stream of input, e.g., 10 pre-
vious measurements, then it is clearly a univariate model. If the model, however,
accepts two streams of inputs, e.g., the previous 10 measurements from two differ-
ent locations, and it uses both data streams interdependently, then it is considered
a multivariate model. The proposed framework in this work will use an univariate
treatment of the data, but it is possible, depending on the choice of model on each
layer, to treat the data as multivariate and use multivariate models for the interme-
diate predictions of layer 1, as seen later in section 2.2.1.

1.1.2 Time Series Models

Given the definitions from above, we can now introduce some common models used
in the context of time series forecasting. Among other properties, time series mod-
els can be divided into two different categories: univariate models and multivariate



1.1. Time Series Data 3

models. We further try to categorize the models into fields by taking their historical
background into account.

Classical models

Even though all kinds of models are in the end by definition statistical models, we
are focusing here on models that arose in the time before abundant computing power
and data were available for training models like eural networks and transformers.

Autoregressive Models (AR) are linear regression models (Box and Jenkins, 1976)
defined as a linear combination of a finite number of past values of a time series.
Given p past values zi at equally spaced time intervals i = t − 1, t − 2, . . . , t − p and
an error term at (often referred to as white noise), the autoregressive model of order p is
denoted as AR(p) and defined as

zt = ϕ1zt−1 + ϕ2zt−2 + . . . + ϕpzt−p + at (1.1)

This model contains p + 1 unknown parameters: ϕ1, . . . , ϕp and σ2
a . In practice,

at is typically assumed to be normnally distributed with zero mean and constant
variance.

Note 0.1. It is common to either treat the data before the parameter learning or do
mean centering on the fly by substituting zi with z′i = zi − µ, where µ is the mean of
the series. This is an additional parameter to be learned from the data.

Moving Average Models (MA) are also a form of linear regression models, focus-
ing on the error component of time series data. In a moving average model of order
q, denoted as MA(q), the current value of the series is defined as a linear combina-
tion of the past q error terms. Suppose at−1, at−2, . . . , at−q represent the error terms
at time intervals t − 1, t − 2, . . . , t − q. Then, the moving average model is defined as

zt = µ + at + θ1at−1 + θ2at−2 + . . . + θqat−q (1.2)

Analogously, the q + 2 parameters θi, σ2
a and µ (mean) are learned from the train-

ing data.

Autoregressive Integrated Moving Average Models (ARIMA) combine the ideas
of autoregressive models (AR) and moving average models (MA), and also incorpo-
rate the concept of integration. This model is particularly useful for non-stationary
time series data, a common occurrence in many practical applications. The ARIMA
model is denoted as ARIMA(p, d, q) where p is the order of the autoregressive part,
d is the degree of differencing (the number of times the data have had past values
subtracted), and q is the order of the moving average part.

The ARIMA model is given by the equation:

(
1 − ϕ1B − ϕ2B2 − . . . − ϕpBp) (1 − B)dzt =

(
1 + θ1B + θ2B2 + . . . + θqBq) at (1.3)

In this equation, B is the backshift operator, defined by Bzt = zt−1. The term
(1 − B)dzt represents the differencing operation applied d times to achieve station-
arity in the time series data. The parameters ϕi and θj are the coefficients of the au-
toregressive and moving average parts of the model, respectively, which are learned
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from the data (Kotu and Deshpande, 2019).

Seasonal ARIMA (SARIMA) extends the ARIMA framework to handle seasonal
patterns by incorporating additional seasonal autoregressive, integrated, and mov-
ing average terms. This is denoted as ARIMA(p, d, q)× (P, D, Q)s, where (P, D, Q)
are the seasonal orders and s is the length of the seasonal cycle. The seasonal differ-
encing term (1 − Bs)D is applied alongside the non-seasonal differencing to ensure
stationarity, and the seasonal AR and MA components capture seasonal dependen-
cies that occur at regular intervals. A common extension of SARIMA is SARIMAX,
which introduces external (also denoted exogenous) variables as additional predic-
tors, allowing the model to incorporate broader contextual factors and potentially
improve forecast accuracy (Kotu and Deshpande, 2019). Note that these exogenous
variables must be known or estimated at each prediction step.

Recent Models

After (S)ARIMA, RNNs dominated the field for quite some time before transformers
and even more complex neural networks were introduced. We quickly go over some
of the popular models from the past years.

N-BEATS (Oreshkin et al., 2020) is a deep neural architecture that relies solely on
fully connected layers with backward and forward residual links. Its design allows
the model to capture both trend and seasonality components effectively without the
need for recurrent or convolutional layers, offering inherent interpretability due to
its basis expansion approach.

The Autoformer (Wu et al., 2022) builds upon the transformer architecture by
introducing the Auto-Correlation Mechanism to replace self-attention. This modi-
fication enables the model to capture long-term dependencies more efficiently, ad-
dressing the computational inefficiencies of traditional transformers in time series
forecasting.

DLinear (Zeng et al., 2022) challenges the necessity of complex deep learning
models by demonstrating that simple linear models can outperform transformers,
especially for long-term forecasting tasks. By decomposing the time series into trend
and seasonal components, DLinear simplifies the modeling process while maintain-
ing high performance.

Inspired by advancements in computer vision, models like TimeMixer (Wang et
al., 2024a) and PatchTST (Nie et al., 2023) adopt architectures originally designed for
image processing. TimeMixer replaces convolutional layers with MLP layers to cap-
ture both temporal and feature-wise dependencies efficiently. PatchTST processes
time series data as patches, similar to Vision Transformers, enabling the model to
capture both local and global temporal patterns.

TimesNet (Wu et al., 2023) introduces a novel neural network architecture specif-
ically designed for time series analysis. It utilizes time-domain operations to model
temporal variations effectively, capturing intricate patterns that general models might
overlook.

Lastly, SCINet (Liu et al., 2022) employs a Sample Convolution and Interaction
mechanism to capture complex temporal dependencies. By modeling both short-
term and long-term patterns, SCINet enhances forecasting performance without re-
lying on recurrent structures.
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FIGURE 1.1: Graph of the original function sin(x) and its piecewise
linear segment approximation using eight segments.

One major drawback of these recent models is that they typically need large
datasets for training and also demand significant computational resources, com-
pared to classical models like ARIMA and SARIMA.

1.2 Linear Approximation

1.2.1 Segmentation

Our approach is based on the fundamental mathematical principle that any differ-
entiable function can be locally approximated to arbitrary precision by a linear func-
tion, as formalized by Taylor’s theorem (see Theorem 1.2.1). This concept is founda-
tional in mathematical analysis and is particularly relevant in time series analysis,
where data inherently focus on specific time points, making local linear approxima-
tions especially powerful.

Figure 1.1 shows an example of a piecewise linear approximation, approximating
the function sin(x). The linear functions chosen here are just the segments for each
interval at each π

2 step. And there are many ways to determine each linear function
component, as well as how to choose the convenient interval steps.

For a continuous function f , we get the slope of the function at point x0 by:

lim
x→x0

f (x0)− f (x)
x0 − x

= f ′(x) (1.4)

This describes the process of the segment windows in Figure 1.1 becoming arbi-
trarily small and we can approximate the function at point x0 to arbitrary precision.
Using this idea to model a function at a given point, we come across Taylor’s Theo-
rem, in our case restricted to n = 1 and we only introduce the first order of the Taylor
polynomial, that is a linear function.
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Theorem (First Order Taylor Polynomial). Given a function f : R → R that is differ-
entiable at x = a, the first order Taylor polynomial of f at a is defined as

P(x) = f (a) + f ′(a)(x − a)

This polynomial P(x) is the linear approximation of the function f around the point x = a.
In other words, P(x) is the tangent to the curve y = f (x) at the point (a, f (a)).

Some limitations with segmentation.
In practice, we tend to work with data that is discretely sampled, but, in theory, the
functions underlying these data are often continuous. However, continuous func-
tion modeling over a complete domain is computationally costly, especially when
high accuracy is required. This approach looks only at the local information around
a single point; it might not capture the global behavior of the function. Besides,
limited computational resources prohibit the use of an infinite number of segments
to approximate a function. Yet, we obtained a good approximation to sin(x) using
only eight segments. Determining the optimal breakpoint numbers and individual
segment lengths with regard to a required approximated resolution is actually an
optimization problem of model parameters. One classic work concerning such top-
ics dates back to 1961 in (Stone, 1961); for an overview regarding today’s research in
this direction, consider (Warwicker and Rebennack, 2021).
Finally, it should be noted that if we do the naive approach by only using the first
and last value of an interval to compute the segment, we effectively discard all in-
formation the intermediate points might have.

1.2.2 Linear Regression

To address the limitations inherent in the naive segmentation technique, we employ
the principle of least squares fitting. In the context of a one-dimensional data set, this
approach involves fitting a straight line that minimizes the cumulative error across
all data points within a specified segment window. For our purposes, we assume
dim(F ) = 1 and T ⊂ Z. Formally, given a time series T and a non-empty subset
S ⊆ T, the residual error for each point in S can be described as follows:

∀(t, x) ∈ S : f (t) + et = ŷ + et = x (1.5)

The objective is to minimize the total least squares error, which is represented by:

|S|

∑
i=1

e2
i =

|S|

∑
i=1

(xi − ŷi)
2 (1.6)

This minimization problem can be formalized using the argmin operator:

f ∗ = argmin
f

|S|

∑
i=1

(xi − f (ti))
2 (1.7)

Here, f ∗ represents the optimal linear function that minimizes the total least
squares error for the subset S. This is just a fancy way to say: Assume f (x) = mx+ q,
then we want to solve

argmin
m, q

|S|

∑
i=1

(xi − (mt + q))2 (1.8)
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In fact, what we are doing here, is Linear Regression (Barr and Çetinkaya-Rundel,
2022). Taking our previous example sin(x) results then in these graphs, depending
on the number of segments:
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(A) Graph of the original function sin(x) and its
piecewise linear regression approximation using

8 segments.
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(B) Graph of the original function sin(x) and its
piecewise linear regression approximation using

16 segments.

FIGURE 1.2: Comparative graphs of piecewise linear regression ap-
proximations.

To illustrate the power of this method, Figure 1.3 shows the fitting on a real time
series data set using both techniques shown so far.
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(A) Graph of an electricity data set and its piece-
wise segmentation approximation using 10 seg-

ments.
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(B) Graph of an electricity data set and its piece-
wise linear regression approximation using 10

segments.

FIGURE 1.3: Comparative graphs of piecewise linear regression ap-
proximations and segmentation approximations.

1.2.3 Higher dimensional data

So far, all examples have been one-dimensional, primarily because they are simpler
to illustrate and conceptualize. However, it is important to note that when dealing
with datasets of multiple features, we are in the realm of multivariate models. In such
instances and in the context of linear models, particularly when applying Linear
Regression, we are essentially fitting a hyperplane to the data, rather than a line.

Additionally, there exists a case in which the univariate data comprises vectorial
data points, rather than scalars. Despite this distinction, the computational and fit-
ting processes remain the same; it is merely the interpretation of the data that differs.
Refer to Figure 1.4 for further illustrations related to a two-dimensional dataset.
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FIGURE 1.4: Three 3D plots showing a plane fit on two-dimensional
data, viewed from different angles.

1.3 Lagging features

A feature engineering technique commonly used in various models in the context
of time series data is lagging features. In this technique, new features are created
from previous past values, hence the name lagging. This technique is fundamental
to models like ARIMA or SARIMA, which rely on past values to forecast future
trends. Our proposed framework employs this strategy, too. See section 1.5.3 for our
detailed method. In general, lagging features involve shifting the time series data by
one or more time steps, to align past values with current outcomes. This alignment
allows models to learn from previous cycles and patterns, improving their accuracy.
This is particularly crucial in time series forecasts, where past trends influence future
trends (Shumway and Stoffer, 2000, Hyndman et al., 2008).

Below is an example illustrating how lagging features are created from a given
dataset wth a two day lag:

Day Sales

1 100
2 120
3 115
4 130
5 125

TABLE 1.1: Original
Sales Data

Day Sales Sales 1-day Lag Sales 2-day Lag

1 100 - -
2 120 100 -
3 115 120 100
4 130 115 120
5 125 130 115

TABLE 1.2: Sales Data
with Lagged Features

1.4 Ensemble Models

An ensemble model combines multiple individual models, often referred to as base
models, into a single model. The intention behind this architecture is to improve pre-
diction accuracy and robustness beyond what any single base model could achieve.
For a given set of models m1, . . . , mn, and an input x, each mi makes a prediction
mi(x) = ŷi. These predictions are then aggregated into a single prediction m(x) = ŷ,
where m refers to our ensemble model. The aggregation method can vary; for re-
gression tasks, it might incorporate a weighted average of ŷi, while for classification
tasks, a majority vote among the ŷi might be used (Oza, 2005).
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Classical ensemble techniques include bagging and boosting, which aim to re-
duce variance and bias, respectively (Breiman, 1996) (Freund and Schapire, 1997).
Bagging, or Bootstrap Aggregating, involves training multiple instances of the same
model on different subsets of the training data and then aggregating their predic-
tions. Boosting involves sequentially training models where each model tries to
correct the errors made by the previous models, resulting in a focus on difficult to
predict instances.

1.4.1 Stacking

A more advanced technique in the context of ensemble learning is the method of
stacking as introduced in (Wolpert, 1992), predating boosting and bagging. The con-
cept behind stacking is that on top of the base models, a second model is trained on
the predictions of each base model, often referred to as the meta-model. This meta-
model leverages the strengths of the base models and corrects their weaknesses by
combining their predictions.

Given a (x, y) pair from our training data, where x is the input and y the real
target, and given a set of models m1, . . . , mn, the stacking approach creates syn-
thetic training data for the meta-model in the form of ((m1(x), . . . , mn(x)), y) =
((ŷ1, . . . , ŷn), y). The meta-model is then trained to combine these predictions ŷ1, . . . , ŷn
into a final prediction ŷ. This approach has been shown to improve model accuracy
and robustness (Wolpert, 1992), and it offers more flexibility in model architecture, as
it allows for combining a variety of different base models like decision trees, support
vector machines, or neural networks and thus allows the model to handle more com-
plex data distributions. However, it must be noted that stacking requires an addi-
tional layer of computation for training the meta-model, making the overall system
more computationally expensive and harder to maintain. Depending on the choice
of base models, this can be a limitation when training resources are constrained and
the base models are computationally intensive to train.

1.5 Mathematical Definitions, Notations and Constructions

In the following subchapters, we present a set of mathematical definitions, notations
and constructions, that will serve as the foundation for describing the method de-
scribed in section 2.

1.5.1 Foundations

Definition 1 (Time Series). Given a set F , referred to as the feature space, and a totally
ordered set (T ,≤), called the time domain, a time series T is a function from T to F . The
function T assigns to each element t in T exactly one element x in F , potentially allowing
the same value of x to be associated with multiple values of t. The function can be represented
by the set of pairs:

T = {(t, T(t)) | t ∈ T } (1.9)

Here, T provides the temporal context for each observation x, ensuring that for every
t ∈ T , there exists a x ∈ F .

Note 1.1. In most cases, we simply use T = Z and F = Rn.
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It is often assumed and preferred that the time domain T is equi-spaced. This
assumption allows for the omission of the time parameter in the model, treating
time as an implicit variable (Guthrie, 2020). Dealing with time series data that is not
equally spaced presents additional challenges. These challenges necessitate certain
assumptions and require additional preprocessing steps such as sampling.

In this work, we proceed under the assumption that T is equi-spaced, formally
stated as:

∀tj, tj+1 ∈ T : tj − tj+1 = c, (1.10)

where c is a constant, and the subtraction operation is appropriately defined for the
set T. Without loss of generality, we proceed with simplification of our notation by
assuming c = 1,

Note 1.2. It is important to note that if we wish to be rigorous, T cannot be just any
totally ordered set; it needs to be a subset of some ordered abelian group. This subset
however does not need to be a (sub)group itsself, as we can do the operations in the
realm of the group. For simplicity, however, further specifications will be omitted
from this discussion.

An element x ∈ F can be denoted as a vector x = ( f1, . . . , fk). Each set of feature
values Fi is defined as:

Fi := πi(F ) = { fi | ( f1, . . . , fk) ∈ F} (1.11)

where πi is the projection function mapping to the i-th feature.
For notation simplicity, a time series T can also be represented as a (finite) se-

quence:
(xt)

|T|
t=1 = (x1, . . . , x|T|) (1.12)

where each xt = T(t) is a vector xt = ( f1t , . . . , fkt), with fit being the i-th feature at
time t.

To further simplify the set notation used in representations of time series data
while still keeping in mind the ordered nature of the data, we use the following
representation:

{xt}T = {xt | xt ∈ T}. (1.13)

Note here that, even though we are using curly brackets similar to set notations,
the (temporal) order is still maintained and implicitly assumed.

Proposition 2. A time series T inherits naturally a total ordering from T .

Proof. Given a time series T as defined in 1.9, we have that T is totally ordered
by definition. Therefore, for any x, y ∈ T, it holds that x = (tx, x′) and y = (ty, y′),
where the conditions tx < ty, tx = ty, or ty < tx are true. We naturally extend
this relation R to elements of T . Thus, for x = (tx, x′) and y = (ty, y′), we define
R′(x, y) := R(tx, ty). By using this natural mapping on T, we inherit the total ordering
from T to T.

Definition 3 (Subseries). Given a time series T defined as a function from T to F , and
a non-empty subset U ⊂ T , we define a subseries U of T as a function from U to F that
restricts T to U . The subseries U can be represented by the set of pairs:

U = {(t, T(t)) | t ∈ U} (1.14)
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where U is a subset of the set representation of T.
We also refer to the set of all possible subseries of T as S(T).

Note 3.1. We further assume that U ⊂ T is equi-spaced. If not, the data requires
sampling.

Definition 4 (Preprocessing Function). A preprocessing function p is a map p : S(T) →
X.

Definition 5 (Model). A model is a map m : X → Y, where X is the input space and Y the
target space. This model is learned from the preprocessed time series data.

Definition 6 (Model Spaces). The input space X consists of all possible inputs that a model
m can accept. The target space Y includes all potential outputs that the model can produce.

Note 6.1. With p, X can be constructed as desired. In the case where we want to
predict some feature fi at time t using all other features f j at the same time t, we
choose X := F \ Fi and Y := Fi = πi(F ).

It is also in the preprocessing function, where we usually drop the t, as we as-
sume T is equi-spaced and thus implicitly given.

Definition 7 (Univariate Model). An univariate model is a map m : X → Y, where
X and Y are sets of scalars. This model only has one independent variable in X and one
dependent variable in Y.

Definition 8 (Multivariate Model). A multivariate model is a map m : X → Y, where
X is a set of vectors and Y is a set of vectors or scalars. This model involves multiple inde-
pendent variables in X and predicts one or more dependent variables in Y.

Definition 9 (Time Series Forecasting Model, Prediction). If m represents a time series
forecasting model — a model learned from time series data and used to predict future values,
which is our primary focus in this work — then m(x) = ŷ is commonly referred to as the
prediction, and y is known as the target or actual value for the input x.

Definition 10 (Horizon). The horizon in the context of time series forecasting refers to
the length of the future time interval that a model attempts to predict. Formally, for a time
series T and a prediction model m, if tT is the latest available timestep in T, the horizon h
is a positive integer such that the model m provides forecasts for the time series values at
tT + 1, tT + 2, . . . , tT + h. This interval represents the set of future time points {tT + 1 ≤
t ≤ tT + h} where predictions are made.

Definition 11 (One-step ahead forecast/prediction). A one-step ahead forecast or pre-
diction refers to the estimate provided by a forecasting model for the next immediate time
point in a time series. For a given current time point t, the one-step ahead prediction is the
forecast for time t + 1. This type of prediction focuses on the shortest possible horizon, which
is h = 1, using the information available up to time t to predict the value at t + 1.

Note 11.1. For simplicity in the notations moving forward, we will refer to the next
immediate time step of a series T as the time step t + 1 and the latest available in the
series as at step t. When we reference the time series explicitly, if it is not obvious
in the context, we subscript additionally the series we are referring to, e.g. tT or
(t + 1)T. Finally, we assume we start with t = 1 as the first index.
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1.5.2 Slicing

We are going to introduce some notations for slicing T into a subseries as it is com-
monly used with lists in Python. Given two timesteps a, b ∈ T , we define the sub-
series

T[a:b] = { (t, x) | t ∈ [a, b) ⊂ T , x ∈ F } (1.15)

Note here that a is included and b is not included.
Additionally, we are going to introduce a notation ( · )−1 for removing the latest

data point of a time series T (at time t = tT).

T−1 = T \ {(tT, x)} (1.16)

and recursively define for r ≥ 2:

T−r = T−r+1 \ {(tT−r+1 , x)} (1.17)

These notations allow for the construction of any connected subseries U ⊂ T,
where connected means that we do not discard any datapoints in between.

Note here that 1.17 is just a special case of T[a:b] for a = 1 and b = tT − r − 1.

1.5.3 Lagging

The lagging, as conceptually described in section 1.3, can be expressed as a prepro-
cesing function ℓ : S(T) → X. Given an a number of desired lags λ ∈ N, we define:

ℓδ(U) : S(T) → X (1.18)
{xt}U 7→ {xt, xt−1, . . . , xt−λ}U (1.19)

for some subseries U ⊂ T. Note here that if U contains data points at t = 1, . . . , λ,
we silently discard them, since they would require features at t = 0,−1, . . . , λ − 1.
Additionally, we will not add any additional rows after tT, that could be constructed
for the lagging features, due to the uknown values for fitT+j∀i and j > 0. These
values are unknown because they are not part of our dataset for T.

1.5.4 Chain of Subseries Construction

Definition 12 (Chain of Subseries). Given a time series T, a chain of suberies of T is
defined as a subset C ⊂ S(T), where for all U, V ∈ C : U ⊂ V or V ⊂ U.

Let ω, η ∈ N. We will denote ω as the window size or window length and η as the
number of windows. We construct a chain of subseries C = {Ti | 1 ≤ i ≤ η}. Each Ti
is a subseries of T defined as:

Ti = T[t−ωi : t] (1.20)

where t represents the latest available time step of the series T.
It is easy to see that ∀(1 ≤ i ≤ η − 1) : Ti ⊂ Ti+1 and thus T1 ⊂ T2 ⊂ . . . ⊂ Tη .
This construction essentially dissects the time domain of the time series into a

chain. Figure 1.5 depicts this time dissection.
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...

FIGURE 1.5: Image of graph with markings of T1, T2, etc.
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Chapter 2

Method

In this chapter, we introduce the architecture of our proposed approach. The ini-
tial section provides an overview of the model’s architecture. Subsequent sections
will detail the specifics of the preprocessing, as well as the two layers a time series
T goes through before arriving at the final prediction ŷ, which represents the next
immediate time step in T.

2.1 Overview of Model Architecture

The model takes as input a time series T. This time series undergoes a preprocessing
step in which the data is enriched with lagged features and dissected into smaller
subseries. These subseries are then processed through Layer 1 (denoted as L1), where
each subseries yields one prediction. The collection of all these predictions forms the
output of L1 and serves as training data for the meta-model, Layer 2 (denoted as L2).
L2 then uses this data to make a final prediction ŷ, which corresponds to a single
value at the same sampling interval as T. Figure 2.1 depicts a simplified pipeline of
the described model.

By the nature of this model, the training data to the model is at the same time the
input to the model. Also, we are going to focus for now on doing a one-step ahead
forecast. However, all of these mechanics can be adapted to increase the horizon of
the model as we will show later.
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FIGURE 2.1: The pipeline from a time series T to the prediction ŷ.

2.1.1 Final formalities and time assumptions

In the case of one-step ahead forecast, we are interested in predicting one or multiple
features fi of x = ( f1, . . . , fk) ∈ F for the next immediate time step in a given time
series T (or any of its subseries U). That is, we want to predict fi at t = max(T ) + 1
(under the assumption that T is equi-spaced).

We further proceed with the case where we restrict our method to predicting one
feature f j, given all other features fi, j ̸= i. The restriction on using all other features
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during inference is artificially set, to simplify the mathematical description of the
model. Indeed, it is possible to work with a configurable list of features available at
time t during training and inference, such that unknown features at time t can be
discarded.

For the further sections, let T = {(t, T(t)) | t ∈ T } be a time series as in 1.9.

2.2 L1 Construction

2.2.1 Base Model

We start by introducing the following hyperparameters:

• Let λ ∈ N. This will be the number of lags that we apply to our time series T.
To do so, we choose a preprocessing (lagging) function ℓλ as defined in section
1.5.3.

• Let ω, η ∈ N. These parameters will be used to construct a chain of subseries,
as defined in section 1.5.4. ω denotes the window size and η the number of win-
dows in a subseries chain.

Given a chain of subseries T1 ⊂ T2 ⊂ . . . ⊂ Tη , we transform each Ti into a series
with λ lagging features by applying ℓλ on it:

T′
i = ℓλ(Ti) (2.1)

This applies the lagging operation on all features. If the series T and hence its
subseries Ti so far only had one feature, i.e. dimF = 1, and thus consisted of a signal
only, then this preprocessing will transform each subseries Ti into a series with λ + 1
features for any t ∈ T :

( ft, ft−1, . . . , ft−λ) ∈ Fλ+1, t ∈ T (2.2)

If the series already had k ∈ N>1 features, then T′
i will have k(λ + 1) features:

( f1t , f1t−1 , . . . , f1t−λ
, . . . , fkt , fkt−1 , . . . , fkt−λ

) ∈ Fλ+1
1 × Fλ+1

2 × . . . × Fλ+1
k (2.3)

This construction still maintains a chain:

∀ 1 ≤ i ≤ η − 1 : T′
i ⊂ T′

i+1 (2.4)

and thus

T′
1 ⊂ T′

2 ⊂ . . . ⊂ T′
η . (2.5)

Note. In the framework we have developed, we do not give restrictions about the
choice of model for either layer. For our experiments, we introduce later the alpha

model, which uses on both layers linear regression models. For this reason, we will
use linear regression as a base model for the subsequent sections to describe our
method. However, we want to stress that any other regression model could replace
these base models.
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We fit per preprocessed subseries T′
i a linear regression model mi on the series T′

i ,
yielding η linear regression models m1, . . . mη trained up to but without tT′

i
= tTi =

tT
1 as follows:

Before fitting, we drop any non-lagged feature, i.e. we drop the fit columns for
all features i. One of these features is at the same time the target feature f jt . Thus our
input space is

xt = ( f1t−1 , f1t−2 , . . . , f1t−λ
, f2t−1 , . . . , f2t−λ

, . . . , fkt−λ
) ∈

k

∏
i=1

Fλ
i (2.6)

and the target space

yt = ( f jt) ∈ Fj.

Note here that our input xt (at time t) is all features at time t − 1, . . . , t − λ.
We fit each model mi on each T′

i up to but without x at tT′
i
. Finally, to put the

models mi into our mathematical context, we note that:

mi : Fλ
1 × Fλ

2 × . . . × Fλ
k → Fj

This might differ if the models mi are fitted differently, see section 2.2.4.

2.2.2 Base Model Prediction

Using the above described method, we construct now the training data for the L2
layer, the meta-model, by repeating the process δ times with a different chain of
subseries of T. For this, we introduce two more hyperparameters:

• Let σ ∈ N. This represents the step size, which is used to slice off the last σ data
entries from our original time series T (cf. section 1.5.2).

• Let δ ∈ N. This determines the size of the synthetic dataset to train L2.

Given a time series T, a number of windows η, a window size ω and a lagging
function ℓλ, we construct a lagged chain of suberies T′

1 ⊂ T′
2 ⊂ . . . ⊂ T′

η as described
in the previous section, starting with T. For each T′

i , a model mi is trained up to but
without tT′

i
.

We construct xt as defined in 2.9 for the next immediate timestep t = tT′
i
+ 1:

xtT′i
+1 = ( f1tT′i

, f1tT′i
−1 , . . . , f1tT′i

−λ
, f2tT′i

, . . . , f2tT′i
−λ

, . . . , fktT′i
−λ
) ∈

k

∏
i=1

Fλ
i (2.7)

.
We then compute η predictions, i.e. for each T′

i :

mi(xtT′i
+1) = ŷiL1

.

From these predictions, we will build a new row for our new dataset:

1This equality is only true given our strategy to devise the time as described in section 1.5.4. In case
of a different strategy, where the latest available timestep tT of the original time series T is not present
in all elements of the subseries chain, i.e. ∃ Ti : xtT /∈ Ti, then this equality does not hold.
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(ŷ1L1
, . . . , ŷηL1

)

This is our first data point of our synthetic dataset for training L2. We will further
mark it with a superscript to be able to distinguish it later:

(ŷ0
1L1

, . . . , ŷ0
ηL1

)

We start with the superscript index of 0 because there was no slicing done on our
origin series T, which we will do in the iteration process of L1. We will additionally
denote the models mi yielding the first data points as m0

i .

2.2.3 Iteration process of L1

We repeat the previously described process with the same configuration in terms of
hyperparameters but with a cut off time series: We will reduce the data points in the
original time series T by cutting off the last σ entries, i.e. we will construct T−σ ⊂ T
(cf. 1.5.2). This will be our new base series. Given this series, we will repeat the
same process to compute mi for (ℓλ(T−σ))i = (T′

−σ)i. This will yield again η trained
models mi based on (T′

−σ)i. We will denote them as m1
i , as they are the first iteration

after our base iteration. In the same way as before, we are going to construct xtT−σ+1.
Note here the following equality:

xtT−σ+1 = xtT−σ+1 (2.8)

Finally, by applying the new learned models m1
i , we compute:

m1
i (xtT−σ+1) = ŷ1

iL1

This gives us our second row in our new data set for L2:

ŷ1
L1

= (ŷ1
1L1

, . . . , ŷ1
ηL1

)

We repeat this δ times, to get δ rows:

mj
i(xtT−σ+1) = ŷj

L1
= (ŷj

1L1
, . . . , ŷj

ηL1
), 0 ≤ j ≤ δ − 1.

Finally, each ŷj
L1

represents a row of η predictions for t = tT − jσ + 1. More
specifically, ŷ0

L1
represents the prediction at tT + 1, i.e. the next step in our time

series.

2.2.4 Features available at t

The data construction described above essentially fits a model m to predict the fea-
ture target f j at time t using all features fi at time t − 1, . . . , t − λ. We do this because
when we use m to predict f j at t+ 1, the features fi at time t+ 1 are usually not avail-
able for any i. However, if for any feature fi, the value is known at time t + 1, then
it is possible not to drop fi at t during fitting. Later, the value for the feature fi can
be injected during inference of t + 1. This is similar to how SARIMA models require
additional features as input during prediction when the model is trained using an
exogenous variable.
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2.3 L2 Construction and Training

2.3.1 L2 Training

Once the data for the L2 layer has been constructed, we can proceed with the training
of the second layer. The second layer resembles very much the convential stacking
technique, where we train a decision maker on top of our L1 data. The choice of model
is here again up to the user, but once again Linear Regression yields reliable results
while keeping the overall system complexity low and does not require too much
data to be fitted.

Given a model of choice, referred to as the decision maker and further down as
DM, we want (and have) that

DM : Fη
j → Fj.

The DM model is responsible for making decisions based on the η predictions
provided by the models in L1.

To train the DM model, we fit the model on the rows ŷj
L1

for j = 1, ..., δ − 1 as
input features, and the real values y as target feature, which we still have from the
original data set T. We intentionally do not include ŷj

L1
at j = 0, i.e. ŷ0

L1
. This data

point represents the predictions for t = tT + 1 as noted above. We also do not have
an actual value y for ŷ0

L1
, as this represents a prediction in the future, not available

to our data set.

2.3.2 L2 Prediction

After training the DM as outlined previously, we proceed to the final prediction gen-
erated by this combination of models. The DM was trained on ŷj

L1
for j = 1, ..., δ − 1,

excluding j = 0. Now, we use this last data point to infer a value and obtain our
final prediction:

DM(ŷ0
L1
) = ŷ.

Here, ŷ represents the final prediction from our model, specifically predicting the
feature f j at time tT + 1 for a given series T.

2.4 Extending the prediction horizon

So far, the method presented focuses on generating a prediction for the next imme-
diate timestep in a time series T, i.e., at t = tT + 1. We show now some possible
methods for extending this to a larger prediction horizon.

2.4.1 Fit L1 to predict h days ahead

The first and most straightforward option is to fit the mi models to predict h days
ahead, instead of h = 1, as we previously did. The rest of the construction and
method stays the same. This means, given a h ∈ N>1, we build our input space for
mi to be:

xt = ( f1t−h , f1t−h−1 , . . . , f1t−h−λ
, f2t−h , . . . , f2t−λ

, . . . , fkt−λ
) ∈

k

∏
i=1

Fλ
i (2.9)



20 Chapter 2. Method

and the target space stays the same:

yt = ( f jt) ∈ Fj.

Similarly, as before, our input xt (at time t) is all features at time t − h, . . . , t − h −
λ.

Finally, if the model is trained in this manner, then the model is trained to always
predict h steps ahead, similarly to how before it was only able to predict one value
one-step ahead.

2.4.2 Data Sampling

Another direct approach is to change the frequency at which the data is sampled. For
instance, if the original time series T consists of one measurement every 5 minutes,
we can resample it at an hourly frequency. Training the model as before but on the
hourly-sampled data, a one-step ahead prediction now corresponds to a full hour’s
prediction horizon. This allows the horizon of the model to be extended solely by
preprocessing the data differently.

2.4.3 Autoregression

While the strategies discussed above effectively shift the horizon by adjusting the
meaning of a single-step prediction, they do not inherently produce multiple suc-
cessive predictions. To obtain a forecast for multiple future steps, we can apply the
model autoregressively. In other words, once a prediction is made, this prediction
can be appended to the original time series T, thus providing updated input data for
predicting the subsequent time step.

This approach is straightforward when dealing with a univariate time series,
as the model directly uses its own previous prediction as an additional data point.
However, if the dataset is multivariate, the model is trained to predict only the des-
ignated target feature f j and not the entire feature set ( f1, . . . , f j−1, f j+1, . . . , fk). In
this case, simply lagging the other features is not possible without additional in-
put data for a subsequent prediction. If external sources are available to inject these
complementary features at each new time point, the same process can be extended
as described in section 2.2.4. Another alternative is to train a separate model for each
feature; the predictions from these additional models can then be combined to form
the complete dataset suitable for autoregressive forecasting of the target variable.
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Chapter 3

The Framework

In this chapter we describe the implementation of the framework in Python. Our
implementation includes an API designed to help with the creation of custom models
and experiments using the previously discussed techniques. The framework offers
high configurability for various parameters and supports concurrent execution of
multiple time series and experiments. The code can be found on GitHub.

We start by discussing the structure and general runtime flow of the framework,
followed by a detailed examination of the API and its configurations.

3.1 Structure

The framework is structured as follows:
/

data Contains raw csv files of the datasets to be used

notebooks Jupyter notebooks for analysis and visualizations

out Output files and results

src

core Core computational algorithms

experiments List of experiments

plotters Scripts for plotting and visual output

system System configuration and utilities

The framework’s codebase is organized within the src directory. The src/system
directory contains scripts that orchestrate the concurrent execution of selected exper-
iments, located at src/experiments. The system configuration, managed through
the file located at src/system/config.py, specifies which experiments to execute,
supporting the following parameters:

3.2 Configurations

The framework is configured on two levels as follows:

• System configuration file located at src/system/config.py

• Experiment configuration file, usually located at
src/experiments/your_experiment/config.py

https://github.com/albxncom/thesis-final
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The system configuration is mainly concerned with configuring parameters of
the system such as concurrent execution, storing system outputs and also defining
which experiments to run, while experiment configuration is specific to the experi-
ment and model used. Parameters and Hyperparameters such as window sizes, step
size and others are configured here.

3.2.1 System Configuration

The system configuration file is a simple python dictionary with the following keys:

• parallel_execution: Boolean. Specifies whether experiments should be exe-
cuted in parallel using Ray1.

• ray_cores: Integer. Specifies the number of cores to be utilized with Ray.

• experiments_to_launch: Array of configurations. Specifies configuration details
for experiments to be launched.

– Experiment configuration format:

* module: String. Specifies the module to load.

* config: String. Specifies the configuration file to load.

* exclude_configs: Path (optional). Specifies the directory of JSON files
to exclude certain configurations.

• out: Dictionary. Specifies what outputs should be generated by the system.

– logs: Boolean. Specifies whether logs should be outputted.

– l1_plots: Boolean. Specifies whether base model plots should be gener-
ated.

– metrics_plots: Boolean. Specifies whether plots comparing actual values
to predicted values should be generated.

– profiling: Boolean. Specifies whether profiling information should be col-
lected.

– config: Boolean. Specifies whether configuration details should be out-
putted.

– experiment: Boolean. Specifies whether experiment details should be out-
putted.

• OUT_FOLDER: Callback function. Specifies a function configured to accept pa-
rameters uid, module_name, and time, returning a valid Path object. This call-
back defines the path for storing output files. The function utils.create_dir()

can be used within this callback to create and ensure the existence of the direc-
tory structure if necessary.

An example configuration for parallel execution could look like this:

1 system_config = {

2 'parallel_execution ' : True ,

3 'ray_cores ' : 240,

4 'experiments_to_launch ' : [

5 {

1Ray is an open-source library for Python designed to help scale Python applications by paralleliz-
ing tasks to run efficiently on multiple cores and machines. https://github.com/ray-project/ray

https://github.com/ray-project/ray
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6 'module ' : 'experiments.ETT.experiment ',

7 'config ' : 'experiments.ETT.configs.explore '

8 }

9 ],

10

11 'out' : {

12 'logs' : True ,

13 'l1_plots ' : False ,

14 'metrics_plots ' : False , #L2 plots

15 'profiling ' : False ,

16 'config ' : True ,

17 'experiment ' : True ,

18 },

19

20 # Where to store

21 OUT_FOLDER: lambda uid , module_name , time: utils.create_dir(

22 Path('../ out/runs') / time / module_name / uid

23 )

24 }

3.2.2 Experiment Configuration

To launch an experiment, two things are required: A module with a run function and
an accompanying configuration dictionary which are then referenced in the system
configuration. These files are then stored in src/experiments/your_experiment as
experiment.py and config.py. Storing the experiment code in a separate file en-
ables the use of different model configurations for the same experiment.

The experiment configuration file

An example of a configuration file for one experiment should adhere to the following
format:

1 explore = {

2 # Data processing configuration

3 "cube": {

4 "shifts": [-2, -4, -6, -8, -10, -12, -14, -16],

5 "cut_off_fn": lambda df: df,

6 "dropna": True ,

7 },

8 # Model configuration

9 "model": {

10 "layer_1": layer_1_curry ,

11 "layer_1_config": {

12 "y_column": "y_t",

13 },

14 "layer_2": layer_2_curry ,

15 "layer_2_config": {

16 "y_column": "y_t",

17 },

18 "dm_training_set_size": [30, 100],

19 "windows": [4, 8, 16],

20 "direction": -1,

21 "step_size": [16, 24, 32],

22 "window_size": [64, 128, 256],

23 },

24 "experiment": {

25 "experiment_range": range(-50, -1, 1),

26 "dataset": Path("../ data/electricity_consumption.csv"),

27 },
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28 }

The configuration is split up into three parts: The cube, model, and experiment
configurations.

Hyperparameter Optimization

Each key’s value in the configuration dictionary can either be a single value of the
appropriate type or a list of those values. When a list is provided, the framework
will run experiments in parallel using the cross product of all the lists in the dictionar
to find the optimal parameter values using grid search. For example, the following
configuration:

1 dict = {

2 "param1": ["a", "b"],

3 "param2": ["c", "d"]

4 }

5

The function call configurator.cross_product(dict) will produce four config-
urations (as a generator) corresponding to the combinations:

1 { "param1": "a", "param2": "c" }

2 { "param1": "a", "param2": "d" }

3 { "param1": "b", "param2": "c" }

4 { "param1": "b", "param2": "d" }

The system will then run the specified experiment for each configuration. If en-
abled, each configuration will be stored as a config.json file in the corresponding
output folder.

Additionally, to save on computing, it is possible to exclude a list of configu-
rations, by specifying in the system configuration a path to a directory containing
configurations to exlcude. Ideally, use the outputted config.json files. The system
will then exclude all configurations found in the specified directory.

Cube

A cube is a class that models a structured data container. Technically, it is a dictionary
mapping time-series names to their corresponding pandas2 DataFrame representa-
tions. The cube supports three parameters:

• shifts (λ): Integer. Specifies the number of lags to apply during preprocessing.
(cf. 1.5.3).

• cut_off_fn: Callback function. A function that accepts a pandas DataFrame as
its parameter df. This function allows for additional cutoffs or modifications
to be applied to the series.

• dropna: Boolean. Specifies whether to remove rows that contain missing val-
ues, which may result from the creation of lagged features.

2Pandas is an open-source Python library that provides flexible and expressive data structures and
data analysis tools. https://github.com/pandas-dev/pandas

https://github.com/pandas-dev/pandas
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Model

The model section of the configuration file is used to define the parameters and
functions necessary for training and making predictions. The layer_1 is responsible
for generating a pandas DataFrame with the training data that is passed to layer_2 to
train the decision maker. Additionally, other hyperparameters are configured here:

• layer_1: Callable function. This function will receive two arguments when
called: chains_dfs and source_cube. The chains_dfs is a list of tuples of
the format: (series (string), list of pandas DataFrames corresponding to T′

1 ⊂
T′

2 ⊂ . . . ⊂ T′
η). The source_cube is a Cube object that can be used to access

the entire scope of the time series during training and predictions. Finally, the
layer_1 function will be provided all arguments defined in the layer_1_config
of the model configuration.

• layer_1_config: Dictionary. This dictionary contains additional (custom) con-
figuration options that are passed directly to the layer_1 function. In most
examples in the source code, the desired target feature name is often passed as
an additional parameter.

• layer_2: Callable function. This function will be called with two arguments:
training_data and source_cube. training_data is the output generated by
layer_1.

• layer_2_config: Dictionary. Similar to layer_1_config, this dictionary pro-
vides additional (custom) configuration options for the layer_2 function.

• dm_training_set_size (δ): Integer. Specifies size for the training dataset that
layer_1 will generate for layer_2.

• windows (η): Integer. The number of windows to use per chain.

• step_size (σ): Integer. The step size between each subsequent subset chain
start.

• window_size (ω): Integer. The window size. (cf. section 1.5.4).

Experiment

The experiment config is technically specific to the experiment.py file. In the pro-
vided examples, we use the following parameters:

• experiment_range: Range. Specifies the range of the predictions to be made in
the time series. The framework will cut off this range. 0 represents the the next
immediate time step outside of the available data for the time series.

• dataset: Path. Specifies the path to the dataset file that will be used in the
experiment. This path should point to a CSV file containing the data for the
experiment.

3.2.3 The experiment module

Once a proper configuration has been set up, the specified module in the system con-
figuration should contain a function called run, accepting a dictionary as input. This
dictionary is the experiment’s configuration that it is run with. The framework ships
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with a basic experiment setup that accepts as described above a experiment_range

and dataset argument, found in system/experiments_defaults.py. This experi-
ment setup uses also the built-in model called alpha, which uses on both layers L1
and L2 linear regression.

An example of how the default shipped default_run function can be used to
load one time series:

1 def run(config: Dict[str , Any]) -> None:

2 dataset_path = get_dataset_path(config)

3 df = pd.read_csv(file_path , header=0, parse_dates =[0], index_col =0)

4 dfs = {'series ' : df}

5 default_run(config , dfs)

3.3 Models

The framework ships with the alpha model, which processes the data as described
in Section 2. The alpha model does not make any assumptions about the models
used in L1 and L2, as it is only concerned with partitioning, processing and feed-
ing the data into each layer. That is why the default configuration also requires a
layer_1 and layer_2 function. The framework also ships with built-in implemen-
tations using linear regression for both layers, which can be found in core/layer_1

and core/layer_2 respectively.

3.3.1 The alpha Model

The alpha model dissects time as described in Section 1.5.4. To develop an alterna-
tive model that segments time differently within this framework, one would need
to createa a new model. The model’s core functionality is to dissect the time and
provide the data frames to the first and then the second layer (or any other layer
if more layers are added). The module cube_to_training_data is specific to the
alpha model, as it is the one responsible for the the segmentation of the data and
then calling the layer_1 on each window T′

i .
The implementation of the alpha model is otherwise fairly straightforward:

1 def predict(

2 layer_1: Callable ,

3 layer_1_config: Dict[str , Any],

4 layer_2: Callable ,

5 layer_2_config: Dict[str , Any],

6 subcube: Cube ,

7 source_cube: Cube ,

8 dm_training_set_size: int ,

9 windows: int ,

10 window_size_fn: Callable [[int], int],

11 cut_off_step ,

12 direction: int = -1,

13 ):

14

15 training_data = cube_to_training_data.process(

16 generator_fn = layer_1 ,

17 generator_args = layer_1_config ,

18 cube = subcube ,

19 dm_training_set_size = dm_training_set_size ,

20 windows = windows ,

21 window_size_fn = window_size_fn ,

22 cut_off_step = cut_off_step ,

23 direction = direction ,
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24 source_cube = source_cube

25 )

26

27 predictions = layer_2(

28 training_data=training_data ,

29 source_cube=source_cube ,

30 ** layer_2_config

31 )

32

33 return predictions

3.4 The Framework’s Analysis Tool

The framework provides an analysis tool to facilitate the evaluation of a run experi-
ment. The function analyze_runs, found in analysis/analysis_tools.py, accepts
two arguments: A Path object for the path argument and a list of strings for the
config_fields argument. The function will traverse the given path recursively and
pick up all predictions.json and config.json files. It returns a pandas DataFrame
with columns for the metrics mentioned above and the configuration values for the
requested dictionary paths in config_fields.

An example call that requests the most relevant hyperparameters could look
something like this:

1 analyze_runs(

2 Path('runs /2024 -01 -11'),

3 [

4 'cube.shifts ',

5 'model.windows ',

6 'model.dm_training_set_size ',

7 'model.window_size ',

8 'model.step_size ',

9 'experiment.dataset '

10 ]

11 )
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Chapter 4

Evaluation

To evaluate our framework, we used multiple datasets commonly used in bench-
marks of time series models. Additionally, we ran some baseline experiments using
ARIMA, SARIMA or SARIMAX models, depending on the data characteristics, and
regular Linear Regression. We then compared these results against the results of our
alpha model on the same datasets, which uses on both layers linear regression. In
this chapter, we detail our experiments and their results.

4.1 Datasets

4.1.1 Air Passengers

The Air Passengers dataset is a classic time series dataset from Box and Jenkins, 1976.
It contains monthly totals of international airline passengers (in thousands) from
1949 to 1960. The dataset exhibits trends and seasonality but is non-stationary. It is
a univariate dataset containing only the date and passenger count features. Figure
4.1a visualizes this dataset.

4.1.2 Electricity Transformer Temperature

The widely known dataset Electricity Transformer dataset, often abbreviated as ETT
(Zhou et al., 2021), is a multivariate dataset and often used in research in the context
of time series forecasting1. It consits of eight features:

• date: The recorded date (ISO 8601)

• HUFL: High UseFul Load

• HULL: High UseLess Load

• MUFL: Middle UseFul Load

• MULL: Middle UseLess Load

• LUFL: Low UseFul Load

• LULL: Low UseLess Load

• OT: Oil Temperature (target feature)

1Papers with Code - ETT Dataset — https://paperswithcode.com/dataset/ett, accessed 28-10-
2024.

https://paperswithcode.com/dataset/ett
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The ETT-small version consists of four CSV files of equi-spaced measurements
from two different provinces in China: ETTh1, ETTh2, ETTm1 and ETTm2. The files
with h in the name are hourly measurements and the files with m in the name have
frequency of 4 records per hour (every 15 minutes).

The dataset can be used for both short-term and long-term predictions, as it pro-
vides a robust combination of short-term and long-term periodic patterns, as well as
irregular ones. Additionally, the data also exhibits long-term trends. Figures 4.1b,
4.1c, 4.1d, and 4.1e visualize the target feature for each dataset.

4.1.3 Weather

The Weather dataset, sourced from the Max-Planck-Institut für Biogeochemie2, is
a multivariate time series dataset designed for long-term forecasting tasks. It pro-
vides meteorological data recorded every 10 minutes from 2020-01-01 to 2021-01-01.
The data is non-stationary and does not exhibit any trend. The dataset includes the
following 21 features:

• date: The recorded date (ISO 8601)

• p (mbar): Atmospheric pressure in millibars

• T (°C): Temperature in degrees Celsius

• Tpot (K): Potential temperature in Kelvin

• Tdew (°C): Dew point temperature in degrees Celsius

• rh (%): Relative humidity in percent

• VPmax (mbar): Maximum vapor pressure in millibars

• VPact (mbar): Actual vapor pressure in millibars

• VPdef (mbar): Vapor pressure deficit in millibars

• sh (g/kg): Specific humidity in grams per kilogram

• H2OC (mmol/mol): Water vapor concentration in millimoles per mole

• rho (g/m3): Air density in grams per cubic meter

• wv (m/s): Wind speed in meters per second

• max. wv (m/s): Maximum wind speed in meters per second

• wd (°): Wind direction in degrees

• rain (mm): Rainfall in millimeters

• raining (s): Duration of rain in seconds

• SWDR (W/m2): Shortwave downward radiation in watts per square meter

• PAR (µmol/m2/s): Photosynthetically active radiation in micromoles per square
meter per second

2Weather Station Beutenberg from 2020-01-01 to 2021-01-01 — https://www.bgc-jena.mpg.de/

wetter/, accessed 21-12-2024.

https://www.bgc-jena.mpg.de/wetter/
https://www.bgc-jena.mpg.de/wetter/
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• max. PAR (µmol/m2/s): Maximum photosynthetically active radiation in mi-
cromoles per square meter per second

• Tlog (°C): Log temperature in degrees Celsius

• OT (ppm): CO2 concentration in parts per million (target feature)

Figure 4.1f visualizes the target feature of this dataset.

4.2 Environment Specifications

4.2.1 Hardware

Architecture

• Type: x86_64, 64-bit

• Byte Order: Little Endian

CPU

• Model: AMD EPYC 7742 64-Core Processor

• Cores: 128 cores (64 cores per socket, 2 sockets)

• Threads per Core: 2

• Frequency: 1500 MHz to 2250 MHz

Memory

• L1 Cache: 4 MiB (data + instructions)

• L2 Cache: 64 MiB

• L3 Cache: 512 MiB

4.2.2 Software

The framework is written in Python 3.11 using pandas3 2.1.4, scikit-learn4 1.3.2
and ray5 2.9.0. For the baseline experiments, we used pmdarima6 2.0.4.

The repository with all the source code and experiments for reproduction can be
found on GitHub7.

3https://pandas.pydata.org/
4https://scikit-learn.org/
5https://www.ray.io/
6https://pypi.org/project/pmdarima/
7https://github.com/albxncom/thesis-final

https://github.com/albxncom/thesis-final
https://pandas.pydata.org/
https://scikit-learn.org/
https://www.ray.io/
https://pypi.org/project/pmdarima/
https://github.com/albxncom/thesis-final
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FIGURE 4.1: Plots of the target feature for each used dataset
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4.3 Experimental Setup

We conducted multiple experiments on different datasets using the alpha model.
It works on univariate as well as multivariate data. The code can be found in
src/core/layer_1/lin_reg.py and in src/core/layer_2/lin_reg_one_step.py

respectively.

4.3.1 Experiment Categorization

We categorize the experiments into two categories based on whether the data is uni-
variate or multivariate. Additionally, we list which datasets and models were used
for comparison.

Univariate Experiments

The Air Passengers dataset is originally univariate. We created additional univari-
ate time series datasets of the target feature of ETTh1 and Weather. Additionally,
both datasets were downsampled to one measurement per day to accelerate compu-
tations for the baseline models. We used the same sampling to evaluate the alpha

model.
We trained ARIMA models for the ETTh1 and Weather dataset and a SARIMA

model for the Air Passengers. While the Air Passengers dataset exhibits seasonality,
the ETTh1 dataset also contains a two-year seasonal pattern. However, this seasonal-
ity is insufficient for reliably training a SARIMA model due to shifts in the data. The
Weather dataset does not display seasonality. Finally, we trained our alpha model
for each dataset to compare.

Multivariate Experiments

For the multivariate experiments, we evaluated our framework on the complete ETT
(ETTh1, ETTh2, ETTm1, and ETTm2) and the Weather dataset. We then compared
our results with trained ARIMAX models on the same datasets. For these exper-
iments, we did not resample the data. The SARIMA models utilized all features
as exogenous variables and were provided these features at the time of prediction.
Conversely, the alpha model was kept simpler, and thus these features were not
available when the prediction was made (see Section 2.2.4).

4.3.2 Experiment Procedure

The Baseline Models

The alpha model is a one-step ahead model. To ensure a fair comparison with the
baseline models, each baseline model was also utilized to make only one-step ahead
predictions. Specifically, for each time series, we initially excluded the last 30 data
points and trained the respective model on the remaining dataset using pmdarima’s
auto_arima function to determine the optimal order. The initially determined op-
timal order was then fixed and used for all 30 predictions to maintain consistency
across the prediction steps. The trained model was then used to generate a predic-
tion for the immediate next timestep. Subsequently, we incrementally expanded the
training window by one data point — excluding only the last 29 data points — and
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retrained the model to make the subsequent prediction using the fixed order. This it-
erative process was continued, progressively increasing the training set by one data
point each time until all desired predictions were obtained.

The alpha Model

Given an experiment configuration, the framework will launch a run for each con-
figuration of the experiment configuration’s cross product as described in Section
3.2.2. The alpha model was used for all runs. The framework then collects and
stores the specific configuration and predictions made into a predictions.json and
config.json file in the output folder.

The framework abstracts this procedure in the function run found in
src/system/experiment_defaults.py. For this experiment, the experiment section
in the configuration file accepts a experiment_range parameter. We opted for a
range of range(-30,0,1). For each run, the model is trained iteratively by incre-
mentally expanding the training window one data point at a time, starting with a
cut-off at the 30th last data point and progressing to the last data point (i.e., from
-30 to -1). After each incremental training, the model generates a one-step ahead
prediction for the subsequent timestamp. This process results in the model being
trained and making a single prediction 30 times per run, thereby mirroring the iter-
ative methodology used for the baseline experiments.

4.4 Evaluation Metrics

To assess the performance of the alpha model on the ETT dataset, several standard
evaluation metrics commonly used in time series forecasting were computed.

For each run, the following metrics were computed:

• Mean Squared Error (MSE)

• Mean Absolute Error (MAE)

• Root Mean Squared Error (RMSE)

• Root Relative Squared Error (RRSE)

These metrics were calculated over 30 predictions for each configuration, ranging
from -30 to -1, as detailed in Section 4.3.2.

All metrics discussed below are outlined in Witten, Frank, and Hall, 2011.

4.4.1 Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) is the square root of the Mean Squared Error
(MSE). It provides an error metric in the same units as the target variable, making it
easily interpretable.

RMSE =
√

MSE =

√
1
n

n

∑
i=1

(yi − ŷi)2
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4.4.2 Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) measures the average magnitude of the errors
made:

MAE =
1
n

n

∑
i=1

|yi − ŷi|

4.4.3 Root Relative Squared Error (RRSE)

The Root Relative Squared Error (RRSE) is a normalized version of the RMSE.

RRSE =

√
∑n

i=1(yi − ŷi)2

∑n
i=1(yi − ȳ)2

where:

• ȳ is the mean of the actual values.

An RRSE value of less than 1 is an indication that the model performs better than
using the mean as prediction.

4.5 Results

For the results section, we will elaborate on the ETTh1.csv dataset specifically before
summarizing the overall results over all datasets. All these results can be reproduced
with the experiments in the src/experiments folder. Finally, the provided Jupyter
Notebook in src/analysis/ can be used to visualize and conveniently display the
results.

4.5.1 Hyperparameter Optimization Results

With the ETTh1.csv dataset, we experimented with multiple ranges for the hyperpa-
rameters. In most cases, we started with 1 or 2 and continued with the 2n sequence.
Table 4.1 shows the ten best (out of 1680) configurations sorted by MSE.

TABLE 4.1: Ten best runs on ETTh1.csv sorted by MSE (rounded to
three decimals)

MSE MAE RMSE RRSE η δ ω σ λ

0.073 0.228 0.270 0.392 16 256 256 1 16
0.100 0.292 0.317 0.460 16 256 8 8 32
0.110 0.269 0.332 0.482 16 128 256 2 16
0.125 0.314 0.353 0.512 64 128 8 2 128
0.145 0.313 0.381 0.553 4 128 4 8 64
0.146 0.316 0.381 0.554 4 128 4 8 128
0.147 0.276 0.383 0.556 8 128 8 32 64
0.150 0.292 0.387 0.562 32 256 4 8 32
0.157 0.326 0.396 0.575 4 128 4 4 128
0.160 0.336 0.399 0.580 4 128 4 16 32
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Configuration distribution

Figure 4.2 shows box plots of the distribution of MSE vs. hyperparameter configura-
tions across all 1680 runs. The white dots represent outliers. Not all runs succeeded,
which is also noticeable when looking, for example, at the plot for the η parameter
(number of windows/chain length) for value 64. These failures occur because the
product of window length and the number of windows exceeds the available time
series data.

Some values produce better results than others, e.g. the average MSE increases
up to 1.8 times for the window length between ω ⩽ 64 and ω = 256. Also to note:
for the number of shifts λ = −16 shows best results for this dataset.

4.5.2 Univariate Results

The Air Passengers dataset exhibits strong seasonality (with 144 data points span-
ning 10 years and a 12-point seasonal cycle), enabling SARIMA to excel with a 42%
performance improvement over alpha. In contrast, the Weather dataset does not
follow a clear seasonal pattern, and the ETTh1 dataset only shows weak weekly sea-
sonality (period of 7), which provides only a negligible advantage. Consequently,
SARIMA and alpha achieve comparable results on ETTh1, while in the Weather
dataset, predicting CO2 — an irregular time series lacking strong seasonality and
patterns — allows the alpha model to outperform SARIMA by approximately 30%
in terms of MSE and 20% in MAE. Table 4.2 shows the results for the univariate
datasets, with bold values indicating the best performance on the specific error mea-
surement.

TABLE 4.2: Experiment Results for Univariate Datasets

alpha SARIMA

Dataset MSE MAE η δ ω σ λ MSE MAE p d q P D Q s

Air Passengers 467.41 17.98 4 64 16 1 16 268.8 12.9 1 1 0 2 1 1 12
Weather 52.45 5.55 8 64 32 4 2 75.3 7 4 0 0 0 0 0 -
ETTh1 1.07 0.74 8 64 4 4 2 1.1 0.73 1 1 2 1 0 1 7

We conclude from these results that SARIMA excels when the dataset encom-
passes multiple seasonal cycles like the Air Passengers dataset does. On the other
hand, alpha demonstrates superior performance on irregular datasets such as the
Weather dataset. Additionally, when the data contains some regular patterns but no
seasonality, like the ETTh1 dataset, both models perform comparably.

4.5.3 Multivariate Results

We begin by comparing a simple Linear Regression model, trained on the raw data
using all features, which makes a single prediction after each training phase. This
process is repeated 30 times with different cutoff points, following our methodology.
The results, presented in Table 4.3, demonstrate that Linear Regression fails to cap-
ture the complexity of the data. In contrast, both alpha and SARIMA, despite relying
solely on the target feature and disregarding all other features in our univariate ex-
periments, perform more effectively. However, by wrapping our framework around
Linear Regression models on both layers and unrolling the time series in a particular
way, we make Linear Regression work in this setting.
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FIGURE 4.2: Box plot of hyperparameter distribution.
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TABLE 4.3: Performance of a Linear Regression model on ETT

Dataset MSE MAE RMSE RRSE

ETTh1 34.592 5.556 5.882 6.828
ETTh2 102.323 9.545 10.116 2.962
ETTm1 20.284 4.458 4.504 7.499
ETTm2 99.117 9.825 9.956 11.768

We present the results of our multivariate experiments in Table 4.4, which lists
the optimal hyperparameter configurations for the alpha and SARIMAX models
identified for each dataset, along with the corresponding MSE, MAE, RMSE, and
RRSE values for each configuration. The SARIMAX model achieves, on average, a
69% improvement in MSE and a 50% improvement in MAE over alpha on the ETT
dataset without ETTh1. However, on ETTh1, alpha outperforms SARIMAX by 59%
in MSE and 28% in MAE. Interestingly, alpha faces considerable challenges in mod-
eling the complexity of ETTh2. Nevertheless, SARIMAX also shows relatively weak
performance on ETTh2 compared to its results on the other ETT datasets. On the
Weather dataset, the alpha model substantially outperforms SARIMAX by a wide
margin in both error metrics. It attains an MSE of 1.83, whereas SARIMAX’s MSE
is 26.13—an improvement of approximately 93%. Similarly, alpha achieves roughly
a 77% improvement in MAE over SARIMAX. These results further strengthen our
assumption that alpha can capture the complexity of irregular, non-cyclic datasets
that do not exhibit regular patterns.

TABLE 4.4: Experiment results for multivariate datasets

alpha SARIMAX

Dataset MSE MAE RMSE RRSE η δ ω σ λ MSE MAE RMSE RRSE p d q

ETTh1 0.07 0.23 0.27 0.39 16 256 256 1 16 0.17 0.32 0.41 0.53 4 1 1
ETTh2 2.76 1.42 1.66 0.49 16 64 128 1 8 0.56 0.55 0.75 0.22 2 1 3
ETTm1 0.09 0.25 0.30 0.50 32 64 16 1 64 0.04 0.16 0.19 0.31 1 1 2
ETTm2 0.22 0.38 0.47 0.56 32 64 8 1 64 0.06 0.18 0.24 0.27 1 1 4
Weather 1.83 1 1.35 0.75 8 128 64 4 4 26.13 4.30 5.11 1.02 3 0 2
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Chapter 5

Conclusion

This thesis introduces a novel two-layered framework for time series forecasting,
achieving three primary milestones. First, we formulate the framework in a precise,
rigorous, and abstract manner, ensuring its applicability to any models designated
for the first and second layers (L1 and L2). Second, we implemented this framework
in Python, providing a convenient API that facilitates the development, execution,
and evaluation of various models within this two-layered approach. Third, our ex-
perimental results, as presented in Table 4.3, demonstrate that models such as Linear
Regression can experience substantial performance improvements when applied to
time series data using our framework. Specifically, the initial model, alpha, which
leverages Linear Regression on both layers, outperforms traditional Linear Regres-
sion and the ARIMA model on irregular, non-cyclic datasets for both univariate and
multivariate time series. This significant enhancement underscores the effectiveness
of our two-layered approach in handling diverse and complex time series forecasting
tasks. Our introduced framework and method proposes a new way of decompos-
ing time series data in so-called chains of subseries, similar to patching, which shows
promising results in recent models. By adjusting the hyperparameters, we explored
different settings via a grid search approach.

We evaluated the alpha model on the Air Passenger, Weather and Electricity
Transformer Temperature (ETT) datasets, some widely recognized standard datasets
in time series analysis, to assess the performance in short-term predictions for both
univariate and multivariate time series. The experimental results demonstrate that
our framework achieves performance comparable to SARIMA on cyclical time series
and even outperforms SARIMA when handling irregular time series. The experi-
mental results also showed that only scaling the parameters to high values does not
always result in better performance.

The proposed alpha model within this framework currently only supports a one-
step ahead prediction, which makes training and predicting very costly. Future work
could focus on developing a more elaborate model capable of predicting a larger
horizon. The way that we patch the time series into windows T′

i ⊂ T′
i+1 could fur-

ther be explored by creating patches that only intersect to some extent but not as a
whole. The framework showed drastic improvements for linear regression on time
series data. Another study on this topic could be using a classical time series model
like ARIMA on L1 or a classical neural network for L2. Furthermore, the hyperpa-
rameter search process could be made more efficient. Currently, the grid search ap-
proach is computationally costly and limited to predefined values (e.g., a = 1, 2, 4, 8),
potentially missing optimal parameters like a = 3, 5, 6, 7. Future work could explore
more effective optimization techniques, such as randomized search or Bayesian op-
timization, to enhance performance and reduce computational overhead.
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