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Abstract

Christophe Broillet

Single-Dataset Applications of Typhon and Parallel Transfer to
Mitigate Overfitting and Improve Sample Efficiency Across
Deep Learning

Deep learning neural networks are powerful and efficient in various supervised
learning tasks and applications, since they are able to approximate any complex
functions to arbitrary precision. However, large networks require a considerable
amount of data to be trained, due to the vanishing gradients problem. Indeed, the
layers close to the input receive little, imprecise error feedback during backpropaga-
tion in such networks. The Typhon meta learning algorithm can mitigate this prob-
lem by training a model on multiple heterogeneous datasets, bridging transfer learn-
ing and multitask learning. Over those methods, Typhon has the advantage to learn
(i) each task as a separate, independent target, and (ii) in a parallel manner. How-
ever, Typhon cannot be applied to a single dataset. This works proposes to extend
the applicability of the Typhon algorithm to any single dataset, by introducing two
new algorithms named Two Levels Typhon and Ultra Typhon, which treat classes
or group of classes as independent tasks to solve. These two algorithms improve
the sample efficiency over classical learning algorithms, resulting in higher perfor-
mances and a better generalization. Moreover, they are resilient against overfitting.
Overall, the Typhon family algorithms converge faster on deep learning training and
can be used as a new alternative to mitigate overfitting.

Keywords: Machine Learning, Deep Learning, Overfitting, Moving Target, Transfer
Learning, Multi-Task Learning, Sample Efficiency, Parallel Transfer, Typhon
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Chapter 1

Introduction

This Chapter presents firstly a few foundations in various topics, including some
mathematical background as well as machine learning concepts. Those topics are
shown and explained in order to have the essential background knowledge to read
the content of this work. At the end of this Chapter, the motivation beyond this
work, and its main contributions are presented.

1.1 Functions and function approximation

A function is a mathematical object that describes a relationship between two sets.
Let A and B be two sets, then a function f is a relationship that assigns one element
x ∈ A to exactly one element y ∈ B. This is commonly written as f (x) = y. To be
fully defined, a function needs to assign all elements from the set A to an element to
the set B, otherwise it is not a function. The set A is called the domain of the function
while the set B is called the range of the function. Depending on how the elements
of B are assigned, there are different types of function:

1. Injective, where all elements in B are being assigned at most once.

2. Surjective, where all elements in B are being assigned at least once.

3. Bijective, where all elements in B are being assigned exactly once (i.e. the func-
tion is injective and surjective).

Some elementary functions are for example f (x) = x2, where A = R and B =
R+, or f (x) = sin(x), where A = R and B = [−1, 1]. A function can be mathemat-
ically defined, i.e. it is possible to write a mathematical formulation of the function,
as in the two examples above, but could also be so complex that it is nearly impos-
sible to understand how it is constructed, nor writing it in a mathematical form. For
example, let the set A be the set of all magnetic resonance images (MRIs) coming
from scanners, and B = {yes, no}. Then a possible relationship, function between
those two sets can be to assign yes or no to any MRI, given if it contains a cancerous
tumor or not. This process or function is hard to compute, but it must exist, other-
wise no radiologists, nor the human brain, would be able to make diagnoses about
a cancer for the patients.

Some functions have defined parameters, such as the coefficients a, b, c in an ex-
ample polynomial f (x) = ax2 + bx + c, or the amplitude a and the frequency ω
in a function describing a physical wave f (x) = a · sin(ω). Such functions are
called parametric functions. The set of parameters is called the parametrization
of the function. Parametric functions can be used to approximate other functions, by
modifying their parametrization, for example as done in Taylor series [1] or Fourier
series [2]. Finding the right parametrization of a (parametric) function that approxi-
mates a target function is the foundation of machine learning.
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1.2 Supervised learning

The general goal of machine learning is to find and derive patterns as mathematical
functions, or relationships between two sets. That is, to find the rules that govern
the process of generating the data. Taking the previous example, this corresponds
to how a radiologist is able to diagnose a yes or no by looking at the image. There
are different ways of learning those relationships, called learning paradigms. The
three main paradigms in machine learning are supervised learning, unsupervised
learning and reinforcement learning. The latter is used in applications that lack ac-
cess to labeled data, as often common in dynamic tasks such as continuous control.
Unsupervised learning is used to find relationships or patterns within the data, for
example if it can be separated into similar groups, or in order to compress it without
losing information. Finally, supervised learning makes use of already labeled data
in order to recognize patterns, such as in classification tasks. In this thesis, unsuper-
vised learning and reinforcement learning are simply mentioned and not used. From
now on, all learning techniques and concepts are related to supervised learning.

The set A contains all the inputs, observations or samples, denoted by x, and
the set B consists of all the labels, denoted by y which are corresponding expected
outputs. The goal of supervised learning is to derive, find, or approximate the real
underlying function f : A→ B, x 7→ f (x), also denoted by f (x) = y that generated
the data. To accomplish this, the function f needs to be modeled or approximated
by a model or approximator f̂θ : Ã → B with f̂θ(x) = ŷ ≈ y, where Ã ⊂ A is the
available data. The output of the model ŷ is called a prediction, and θ represents the
parametrization of the model, e.g. some numerical coefficients, or architectures. All
the pairs D = {(x, y) : x ∈ Ã, b ∈ B} are put together and form the dataset. There
are different family of models, such as the linear models, the polynomial models, the
neural networks, which are basically compositions of functions, (see Section 1.5), or
other methods. The (supervised) learning algorithms see the examples (x, y) from
the dataset and then update the parametrization θ of the model f̂θ so that it better
fits the examples, meaning the predictions ŷ are closer to the real labels y.

In the real world, for example in medical applications, it would be helpful to
have access to a complex function f that outputs yes or no given a MRI, if there is a
cancerous tumor or not. Indeed, a lot of people could be saved from cancer if such
function was directly linked to a scanner for example, thanks to the early diagnosis.
To find such a function, supervised learning can be used as learning paradigm. To
model a complex function f using supervised learning, the sets Ã and B have to be
known. More precisely, supervised learning needs pairs (x, y) with x ∈ Ã and y ∈ B
so that it can approximate the real underlying function.

In supervised learning, the two most common categories of problems are the
classification and the regression problems. Classification problems consist of clas-
sifying an input into a pre-defined set of classes, for example classifying images be-
tween cat, dog and bird. In this example, the inputs are the images and the classes
or labels are cat, dog and bird. The classification algorithms output discrete predic-
tions, that is to which class the input belongs to. The second category, the regression
problems, are used when the output of the algorithm needs to be continuous, for
example in weather prediction or mortgage rate prediction.
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1.3 Mathematical optimization

The similarity and/or difference of the prediction f̂θ(x) = ŷ with the real value,
i.e. the label y, needs to be measured. That is, an objective is required in order to
define what is a good prediction or a bad one. The objective is modeled by an objec-
tive function, called the loss function. Mathematically, a loss function is denoted by
L( f̂θ(x), y). Examples of loss functions include cross entropy loss [3], mean absolute
error or mean squared error [4], and hinge loss [5]. Note that usually the total loss
function is the sum or the average of the loss function value for each example in
the dataset. The loss used in this work (see Chapter 3) is the binary cross entropy,
defined as L( f̂θ(x), y) = −y · log ( f̂θ(x)) + (1− y) · log (1− f̂θ(x)). The end goal of
supervised learning algorithms turns out to be a mathematical optimization prob-
lem: minimize the loss function L w.r.t. the model’s parametrization θ, on a given
dataset D. This is written mathematically in Equation 1.1.

argmin
θ

L( f̂θ(x), y) (1.1)

In Equation 1.1, the inputs x and labels y, as well as the loss function L are de-
fined beforehand. Thus, the single object that can be modified in order to solve the
optimization problem is to alter the predictions ŷ such that they are as close as possi-
ble to the real values y. This is done by updating the parametrization of the model f̂θ ,
until desired precision. Updating the parametrization of the model is often referred
as training the model.

1.4 Evaluation

As mentioned in Section 1.2 and Section 1.3, supervised learning algorithms solve
an optimization problem minimizing an objective function, the loss function, given
a dataset with observations and labels w.r.t. a certain model f̂θ . In general, finding
a good model f̂θ is hard, since in principle the observations in the available data Ã
do not contain all possible elements from the real A set. Thus the model needs to
generalize as much as possible, to perform well on unseen data, i.e. on examples of
the A \ Ã set that the model has not be trained on. Trying to understand the type
and how the data was generated helps to understand the real underlying process,
thus helping to achieve better generalization.

To simulate this, data splitting is usually performed. The full dataset D is sepa-
rated in two parts: one training set, and one test set, usually in a 80% - 20% manner.
The training set is used to train the model, i.e. to optimize its parametrization in
order to minimize the loss function, while the test set is used to evaluate the perfor-
mance of the trained model f̂θ , i.e. how it is performing on unseen data, on which it
has not been trained on. This informs about which trained model is more desirable
for a specific application, and which model has achieved the best generalization.

Most algorithms include hyperparameters that modify their behavior by for ex-
ample set a trade-off between sub-optimization problems the algorithms are solving.
These hyperparameters need to be optimized as well, in order to get the best perfor-
mance out of the model. This step is crucial when solving real-world problems. As
the test set should not be seen during the optimization nor the training procedure,
the training set is usually split further into two sets: (i) the proper training set and
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Training Set Validation Set Test Set

Entire Dataset

Used for training and optimization processes
Untouched until

training completes

FIGURE 1.1: Example of data splitting. The entire dataset can be split
into three parts: (i) a training set that is used in the training phase, i.e.
to optimize the loss function, (ii) a validation set used to fine-tune the
hyperparameters if any, and (iii) a test set to evaluate the final trained
model after the optimization of the hyperparameters. Typical split
size are 70% for the training set, 10% for the validation set and 20%
for the test set. k-fold cross validation [6, 7] can also be used to make

the results statistically significant.

(ii) the validation set which can be used to test different hyperparameters configu-
rations without showing the real test set data. Figure 1.1 shows how a dataset is split
into these sub-sets, each having a different role.

To complete the evaluation of the model, different measures called metrics can
be computed to give different information on how the model is performing. Such
metrics include for example accuracy, precision, recall, F1-Score [8], area under the
ROC-curve [9], Dice-Sørensen coefficient [10, 11], Jaccard index [12, 13], or coef-
ficient of determination [14, 15]. Depending on the application being solved, the
choice of the metrics differs. For example, accuracy, precision and recall are often
used in classification problems while the coefficient of determination is used to eval-
uate regression tasks. Metrics are also used in official publications, where authors
can compare their results of their own proposed methods on the same metrics, thus
having a fair comparison.

1.5 Neural networks

A modern and popular generic function approximator, ubiquitously used for deep
learning are the (artificial) neural networks. Neural networks are universal function
approximators, meaning that they are in principle able to approximate any function
to arbitrary precision, depending on their architecture. The more complex is the neu-
ral network, the more complex the function it approximates can be. They are called
neural networks because they are inspired by the biological behavior of the human
brain: neurons are connected between each other by synaptic weights, and if they
have reached a certain electric potential they get activated, propagating the signal
to the next neurons. This way, different areas of the brain are activated depending
on the task the human is doing. Artificial neural networks are only inspired by the
human brain in the sense that they are a mathematical abstraction and simplification
of the real human brain [16].
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out

Input Layer 1

Layer 2

FIGURE 1.2: Example of a (fully-connected) neural network with
two layers. The input is x = (x1, x2), the weights wij and the biases bi
form the parametrization of the network. The intermediate outputs
of a neuron, denoted by ui, are computed by performing a linear com-
bination of the weights wij and the outputs of the previous layer xi,
and add the bias bi, that is ui = ∑j xj ∗ wij + bi. An activation func-
tion σ is then applied to ui to form the real output of the neuron σ(ui).
The shape of the output of the last layer depends on the underlying

function the network is approximating.

1.5.1 Architecture

The architecture of a neural network consists of different layers. Each of these lay-
ers applies a transformation to their input, which can be a matrix multiplication,
or a convolution for example. All coefficients of those transformation, such as the
coefficients in the matrix multiplications or the coefficients of the filters used in the
convolutions, are called the weights or parameters of the network. They form the
parametrization of the neural network, that needs to be optimized to minimize the
loss function. At the end of each layer there can be also a non-linear activation func-
tion that transforms further the output of the layer, which becomes the true output
of the layer. This output is then passed as input to the next layer. Thanks to the
non-linear activation functions at the end of the layers, neural networks are able to
approximate any function. In a mathematical point of view, neural networks can be
seen as a sequence of complex (non-)linear function compositions. Figure 1.2 shows
an example of a (fully-connected) neural network with two layers.

1.5.2 Classification

For a classification task, the number of neurons in the last layer usually corresponds
to the number of classes to classify. Indeed, each output neuron can inform on the
classification score for one specific class. The output of those neurons can be inter-
preted as a probability after applying the standard logistic or the softmax [17] ac-
tivation function on the last layer of the neural network. In that way, for every
input going through the neural network, probabilities to belong to each class will be
assigned. The class corresponding to the highest probability is thus picked as the
predicted class of the given input.

In order to use the labels y with neural networks, they have to be encoded. This
is usually done either by categorical encoding, where each class is assigned to a
single number, or by one-hot encoding, where each class is assigned to a zero n-
dimensional array except a one at the position of the class. For example, suppose
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Prediction

1) Forward pass

Label

Loss function

3) Backward pass 2) Error construction

FIGURE 1.3: Neural networks training. Step 1: the input goes
through the network, which computes the prediction. Step 2: the
error, i.e. the value of the loss function, is computed with the predic-
tion and the label. Step 3: the error is backpropagated in reverse order
within the network, with the goal to compute all error gradients with
respect to each single weight. With those gradients, an optimization

algorithm is applied to update the weights of the network.

there are some (ordered) classes [cat, dog, shark, crow]. By using categorical encod-
ing, the label for dog is 2 and the label for crow is 4, while by using one-hot encoding
the label for dog is [0, 1, 0, 0] and the label for crow is [0, 0, 0, 1].

1.5.3 Training

The training of a neural network, i.e. the optimization of the loss function w.r.t.
the parametrization of the network, is performed in two distinct steps, which are
repeated until convergence, or by achieving desired precision. These steps are:

1. The gradients of the error w.r.t. each weight of the network are computed using
the so-called backpropagation algorithm [18, 19, 20]. This is achieved in three
sub-steps:

1) The forward pass, where the input goes through the entire network and a
prediction gets out as output.

2) The loss function is applied to the prediction and the true label to compute
the error.

3) The backward pass, where the evaluated error goes back into the network
to compute an error gradient for each single weight.

This is summarized in Figure 1.3.

2. Once all gradients are available thanks to the backpropagation, any (first-order)
optimization algorithm can be applied. This can be for example the stochastic
gradient descent (SGD) [21, 22], the adaptive moment estimation (ADAM) [23]
or the Broyden Fletcher Goldfarb Shanno (BFGS) algorithm [24]. Second-order
methods such as Newton’s method [25] could in theory also be applied, but
the second-order derivatives can be very hard depending on the activation
function and do need in general too much resources to be computed for neural
networks.
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1.6 Deep learning

A sub-set of machine learning that is used into many nowadays domains, such as
computer vision or language modeling, is deep learning [17]. This is using deep
neural networks, networks with many layers, to be able to approximate a very com-
plex function. Because of their size, deep neural networks are heavily affected by
error propagation. If the network makes a large mistake in the first layers, the error
is then propagated through the network and becomes bad at the end. Also, the very
first layers of the networks, which are the most important ones as they act as feature
extraction since they are the closest to the input, will receive very little error feed-
back, i.e. error gradient, that was computed with the backpropagation algorithm.
This makes deep neural network data-hungry, that a large amount of data is required
to train them as the gradients received in the first layers are imprecise. This problem
is known as the vanishing gradients problem.

Deep learning emerged in the early 2010’s, due to a convergence of several fac-
tors:

1. The availability of larger dataset and the era of the big data. This is due to
the progress in data storage and with the emergence of the open-source pol-
icy, where the access to data is made public. Large amount of data is often
collected, stored and shared more easily.

2. The improvement on the hardware side for the computations. Since the train-
ing of neural networks is mainly composed of matrix multiplication opera-
tions, the latter can be parallelized using graphics processing units (GPUs).
This speeds up the training process and enables the use of larger network ar-
chitectures, that are able to approximate more complex underlying functions.

3. The development of new algorithms. Instead of the standard fully-connected
architectures (see Figure 1.2), other network architectures were invented for
specific applications. For example, convolutional neural networks [26, 19] for
image processing or transformers [27] for text processing, which are used as
architecture of large language models such as GPT [28].

Deep learning is powerful and useful but very data-hungry, which makes it hard
to apply for some applications. Indeed, some fields have little, publicly available
data. For example, in the medical field, data is subject to (i) the privacy of the patient
and (ii) requires tremendous work from radiologists to correctly label the data, i.e.
constructing the datasets, in order to train models with supervised learning. This
lack of data can be summarized as the data scarcity problem.
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1.7 Overfitting

Machine learning models, especially neural networks are universal function approx-
imators, meaning that they are in principle able to approximate any function to arbi-
trary precision, depending on their architectures. The more complex is the network,
the more complex is the function it can approximate. Thus in principle, enough com-
plex networks could learn perfectly the dataset it is trained on, i.e. the training set.
However this does not mean that the model will perform well on unseen data. To
verify this, the performance of the model is evaluated on the test set (see Section 1.4).
The outputs or predictions of the model are computed and compared to the real la-
bels. Since the model does not have been trained on the data of the test set, it is a
good measure on how the model is generalizing.

A good model is a model generalizing well, that is, it is capable of recogniz-
ing general patterns on unseen data. While being trained, the model learns general
patterns, but also patterns specific to the training set which also includes any data
selection bias and specific defects such as noise. However, the model should not
learn such patterns, in which case the model will not generalize on unseen data.
When the model starts to learn those bad patterns and loses its capacity to general-
ize, this is called overfitting. When training a model, the trade-off between learning
the general patterns from the training set that can be applied to unseen data, without
learning patterns that are too specific or only relevant to the training set, or biases
and noise, should be handle carefully. Overfitting arises often when the model is too
complex w.r.t. the real underlying function. Figure 1.4 shows an example of a model
overfitting after some time of training.

1 204 408 612 816 1020
Epochs

1

2

3

4

Lo
ss

CIFAR-100

Train
Val

FIGURE 1.4: Example of a model overfitting. The local minimum of
the loss function on the validation set (in orange) is shown by the blue
line. After this line, the model is overfitting, as the validation loss
increases while the training loss is decreasing. This example comes
from a real experiment done in this work, using a classical learning

algorithm on the CIFAR-100 dataset [29] (see Section 4.1.1).
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1.8 Available methods against overfitting

Current methods to mitigate overfitting include early stopping [30], dropout [31]
and regularization [32]. The principle of early stopping is to monitor the perfor-
mance of the model on the validation set and stop the training process at the right
time, that is when the loss on the validation set is at its local minimum. Overfitting
starts when the loss increases on the validation set, while continuing to decrease on
the training set (see Figure 1.4). This indicates when the model starts to learn pat-
terns that are relevant only to the training set, i.e. patterns that are not useful to
achieve a better generalization anymore. Dropout is used to avoid that neurons are
depending or relying too much on each other when taking the decision. To mitigate
this problem, the dropout methods simply zeros the activation, output, of one neu-
ron with a probability p. Thus, some activations become null, zero, and they will
not be propagated further in the network. Note that dropout only zeros activations
during the training phase, but not during the inference phase, where all activations
are taken into account for the final decision. Regularization could also be used. The
goal is to add some penalty term to the loss function, so that the optimization prob-
lem becomes a bit different, as the objective function has been modified. Different
penalty terms can be applied such as the L1 or L2 norm of the parameters [33, 34].
This ensures to reduce the impact of less useful features that have a too high impact
during the computation of the predictions of the network. In most cases however
early stopping is considered sufficient.

1.9 Transfer learning

One possible way to mitigate the data scarcity problem (see Section 1.6) is by using
transfer learning (TL) [35, 36]. TL requires having one large dataset representing a
source task, and one small dataset representing a similar target task, on which it is not
possible to train a deep neural network due to data scarcity. The principle of transfer
learning is to transfer the knowledge of the dataset of the source task to the dataset
of the target task. Transfer learning first trains a model on the source task, and
then specializes this trained model on the target task. This is done by re-initializing
the last layers of the network when specializing on the target task. This is possible
as the vanishing gradients problem is less impactful on the last layers. However,
the model can be exposed to catastrophic forgetting. Indeed, when dealing with
multiple source tasks, the model can at some point forget what it has learned from
the first source tasks. As a consequence, some source task’s knowledge could not
be transferred at all to the target task, if it is stored in the last layers that have been
re-initialized multiple times.
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1.10 Multi-task learning

Another way besides transfer learning to mitigate the data scarcity problem is to use
multi-task learning (MTL) [37]. The goal is to train a network that is able to perform
on different tasks at the same time. The tasks have a common feature representation
inside the network, i.e. a shared feature space. This is achieved by concatenating the
input of each tasks, activating the network on this concatenated input, and finally by
splitting the output at the end, to get a separated output for each task. This means
that each task is learned in conjunction, rather than in sequence as in transfer learn-
ing. Learning tasks in sequence can lead to the moving target problem, in which
there are too many different, diverging, objectives making the model not being able
to learn a clear and general objective. MTL avoids the moving target problem by
learning the tasks in conjunction, as a single task. However, MTL could suffer from
data imbalance between the tasks, making it harder to train on some smaller specific
task. Additionally, to be able to solve multiple tasks at the same time, the model
needs to be significantly more complex. But as the model is getting more and more
complex, overfitting can arise quicker than expected, thus becoming bad for gener-
alization on the other tasks or on unseen data (see Section 1.7).

1.11 Motivation

With the onset of deep learning, neural networks model are getting bigger and big-
ger, and therefore the amount of data required to train them becomes considerable.
Nonetheless, training such large models can lead to vanishing gradients, where the
first layers receive little feedback error (see Section 1.6). Mitigating the vanishing
gradients problem is crucial since the very first layers are extremely important, as
they take the role of extracting the features from the original input. It is thus difficult
to train large models in some fields where data is not abundant. However datasets
coming from the same field have sometimes common features, but they can be too
heterogeneous between each other, making it impossible to simply merge them into
bigger datasets. For example, to train a model that can predict if there is a cancerous
tumor on a prostate MRI, a great amount of data is needed. Yet other body parts
containing cancerous tumors as well cannot be used since they do not represent the
prostate, making them heterogeneous and thus cannot be merged.

This problem is tackled by the use of a newly designed meta supervised learn-
ing algorithm, called Typhon [38]. Typhon is able to train a single model on dif-
ferent, heterogeneous datasets, yet containing common features to increase the per-
formance, on possibly all datasets compared to classical learning. It bridges trans-
fer learning and multi-task learning. Typhon differs from transfer learning in the
sense that it learns the tasks in parallel rather than sequentially, while being distinct
from multi-task learning as Typhon learns each task as a separated entity rather than
viewing them as a single task. Typhon is described thoroughly in Chapter 2. How-
ever, this algorithm requires a set of heterogeneous datasets having similar features,
and as mentioned this is not always possible. This work thus aims at extending
the original Typhon algorithm into a modified algorithm that can use the power of
Typhon on a single dataset, taking off the multiple datasets requirement.
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1.12 Contributions

This work proposes to extend the applicability of the Typhon learning algorithm to
other datasets, other tasks, and finally to two new versions of Typhon that require
only a single dataset. More specifically, this work:

1. Proposes a refactored, merged version of the original Typhon algorithm, such
that it can not only be used in classification tasks, but also in segmentation and
auto-encoding tasks. The new version of Typhon is a combination of different
contributions of various works, including [39, 40, 38, 41]. The code is available
on GitHub1.

2. Creates a new algorithm of the Typhon family, a single-dataset version, con-
taining super-classes by combining common classes together. Typhon treats
each super-class as a complete dataset, that contains multiple classes.

3. Creates another novel single-dataset Typhon algorithm, such that it is possible
to use Typhon with any single dataset. This new algorithm performs one-class
classification on each class independently, inspired by one-class algorithms
such as one-class support vector machines [42].

4. Proposes a new metric that measures the overfitting of a model during its train-
ing phase. This enables the possibility to compare the resilience of various
algorithms against overfitting.

5. Validates the performance of the new Typhon algorithms in mitigating overfit-
ting and increasing sample efficiency.

The next Chapter will present comprehensive details about the Typhon frame-
work in particular, before getting into the new algorithms in Chapter 3. Chapter 4
details the experimental setup used and the results obtained. Finally, Chapter 5
presents the conclusions and hints at some promising avenues for future work.

1https://github.com/ChristopheBroillet/typhon-single-dataset

https://github.com/ChristopheBroillet/typhon-single-dataset
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Chapter 2

The Typhon framework

This chapter introduces the Typhon framework, from its origin in Section 2.1 to its
current form in Section 2.3, passing by explaining the steps taken to arrive there in
Section 2.2. This chapter finally ends by showing the use of Typhon in a proven
successfully application in Section 2.4.

2.1 Heterogeneous sequential transfer: Hydra

The story of Typhon started with the Hydra framework [39] in 2019. Hydra was
a new learning algorithm that was created as a new attempt to mitigate the data
scarcity problem common in many real-world applications. It was illustrated specif-
ically in the application to detect cancerous tumors on medical images. This specific
medical application was chosen because in this field, images are very hard to obtain
due to various reasons: the privacy information of the patients, the cost of the work
to label the images, or the heterogeneity of the devices or hardware to record and
capture the images. Additionally, as explained in Section 1.6, deep learning algo-
rithms such as deep neural networks are very data-hungry, i.e. they need a tremen-
dous amount of data to mitigate the problem of vanishing gradients, and to actually
learn the underlying function that generated the data.

The goal of Hydra was to apply transfer learning across different heterogeneous
dataset, in the specific case of medical images. For example, datasets of different
modalities such as magnetic resonance images, computed tomography scans or even
ultrasound images, but also coming from different body parts such as the brain, the
prostate or the lungs. By utilizing Hydra on different datasets, the trained model is
able to aggregate information it learns from one organ and transfer it into another
one. This is the so-called sequential transfer learning, as it learns one dataset after
another. At the end, it finally re-learns on a target dataset, so that it can be specialized
on this particular dataset.
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FIGURE 2.1: Generic Hydra/Typhon architecture. Different input
datasets are required to train a model with Hydra/Typhon. These
input datasets firstly pass through a feature extractor, the body, that
is shared across all datasets. Then, the output of the feature extractor
is sent to the corresponding decision maker, the head that is specific
to the dataset, which is the only one activated, the others remain in-
active. These heads output the required result depending on the task

the model is trained on.

Hydra is very similar to transfer learning but still a bit different in the sense that
the parts of the network trained are not always the same during the training pro-
cess. By taking a network architecture, Hydra splits it into two distinct parts: (i)
the feature extractor (FE) and (ii) the decision maker (DM). The location of the split
is arbitrary, thus becoming an hyperparameter. The core concept of Hydra is that
the FE is shared across all datasets while there is one single DM per each dataset,
resulting in the Hydra name coming from the mythical creature that has one body,
the FE, and several heads, the DMs. This architecture makes the FE very generalized
across all dataset and able to learn abstract features, while one DM is specialized to
one specific dataset. Figure 2.1 shows the generic, abstract architecture of a model
trained with Hydra. However, Hydra requires to have one dataset selected as tar-
get. This target dataset is the main objective and is improved using different other
datasets as support datasets. The learning process using Hydra goes as shown in
Algorithm 1. For more information, the original work is referred [39].
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Algorithm 1 Hydra

Requires: Complete Hydra model f̂θ〈FE, {DMi}〉, target dataset D0,
list of support datasets {Di}
for each epoch do . Train the target dataset

batch← getBatch(D0)

f̂θ〈FE, DM0〉 ← train( f̂θ〈FE, DM0〉, batch)
for each support dataset Di do

Freeze(FE)
for each epoch do . Train on a support dataset with frozen FE

batch← getBatch(Di)

f̂θ〈FE, DMi〉 ← train( f̂θ〈FE, DMi〉, batch)
Un f reeze(FE)
for each epoch do . Train on the same support dataset

batch← getBatch(Di)

f̂θ〈FE, DMi〉 ← train( f̂θ〈FE, DMi〉, batch)
Freeze(FE)
for each epoch do . Train the target dataset with frozen FE

batch← getBatch(D0)

f̂θ〈FE, DM0〉 ← train( f̂θ〈FE, DM0〉, batch)
Un f reeze(FE)
for each epoch do . Train the target dataset

batch← getBatch(D0)

f̂θ〈FE, DM0〉 ← train( f̂θ〈FE, DM0〉, batch)
return f̂θ

FIGURE 2.2: When starting to train a support dataset, the de-
cision maker (DM) for this particular dataset is initialized ran-
domly. To avoid error propagation due to the newly initialized
DM, the feature extractor (FE) is frozen, that is the parameters of
the FE are not updated. In that way, only the new DM is being
trained on the dataset in a first phase. When the DM is enough
trained, the FE is unfrozen and starts to learn patterns from this

support dataset.

2.2 Trying to switch from sequential to parallel transfer

As described in Section 2.1, Hydra uses sequential transfer learning to improve the
performance on a target dataset by using multiple, heterogeneous support datasets
sequentially. The knowledge of the support datasets can be transferred further to
the next support datasets and hopefully to the target dataset. However, as seen in
Section 1.9, using multiple source datasets can lead to the catastrophic forgetting
problem, where the knowledge of the very first datasets can be forgotten during
training. Hence the useful knowledge from a support dataset could possibly not be
transferred to the target dataset.

While trying to mitigate the catastrophic forgetting problem occurring in Hydra,
the framework has evolved to become Typhon. Instead of being based on sequen-
tial transfer learning, now Typhon uses parallel transfer learning, bridging transfer
learning and multitask learning. It means it is able to learn different heterogeneous
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datasets at the same time, i.e in parallel, simulating multi-task learning. Typhon still
differs from multi-task learning in the sense that it treats each tasks or datasets in-
dependently, rather than as a single entity. However, another problem arising now
is the moving target, as mentioned in Section 1.10. Indeed, the algorithm seems to
learn different objectives at the same time, because of the difference in the datasets,
such as its format or its contained information. But instead of being a problem, it
is in fact the strength of the Typhon way of learning: using moving target to learn
different objectives and aggregate common information or knowledge useful across
all datasets.

2.3 Addressing the parallel transfer problem: Typhon

Typhon is a meta-learning algorithm that is capable of learning different and het-
erogeneous datasets at the same time, using parallel transfer learning, that bridges
multi-task learning and transfer learning. Precisely, Typhon is (i) a multi-task learn-
ing algorithm, where the goal is to train a model that is able to solve different tasks
without aggregating them while (ii) re-using knowledge from other tasks or datasets
to further improve all other tasks in a parallel transfer learning way. To this end,
Typhon splits the network architecture akin to Hydra. Given a neural network ar-
chitecture, Typhon splits the network arbitrarily in two main parts: (i) one common,
shared feature extractor (FE) and (ii) several decision makers (DMs), one per each
dataset. The name Typhon has also a meaning as Typhon is the father of Hydra in the
mythology, while being a generalization with higher performance than Hydra in the
algorithmic world. Figure 2.1 shows the generic architecture of Typhon.

The training with Typhon goes as follows. In one epoch, Typhon sees one batch
of each dataset. For one specific batch, Typhon trains the FE and the correspond-
ing DM, and repeat this step for all datasets. Thus there is one rotation over all
datasets at each epoch. Due to this repetition, catastrophic forgetting is mitigated
(see Section 1.9), as Typhon re-learns the patterns specific to each dataset it has al-
ready learned, but possibly forgotten in the meantime. This can be illustrated by a
student that revises different subjects, such as literature, geography and computer
science. Every day, the student starts by learning literature, then switch to geog-
raphy and finally computer science. At the end of the day, it is possible that some
topics in literature are already forgotten, but as the student will learn them again
the day after, it will be less prone to forget them again as the revision continues.
Algorithm 2 shows how a model is trained using Typhon.

Algorithm 2 Classic Typhon

Requires: Complete Typhon model f̂θ〈FE, {DMi}〉, list of datasets {Di}
for each epoch do

for each dataset Di do
batch← getBatch(Di)

f̂θ〈FE, DMi〉 ← train( f̂θ〈FE, DMi〉, batch)
return f̂θ

FIGURE 2.3: The Typhon algorithm is much simpler and more
elegant than the Hydra algorithm shown in Algorithm 1.



2.4. Typhon in computer-aided diagnosis 17

Finally as Typhon learns different datasets in parallel, it does actually not out-
put only one single trained model as in classical learning, in transfer learning or
even with Hydra, but n trained models, one per each dataset. This may make the
cumulative training time faster than classical learning algorithms (see Section 4.4).

To make the training actually possible from Algorithm 2, Typhon needs a contin-
uous stream of batches coming from the datasets. This is achieved in the framework
with a loop loader: it wraps a dataset, and gives batches, with constant size, until
the dataset is exhausted. After that, the loop loader reloads and shuffles the dataset,
and then continues to give batches ad eternam. Each dataset is wrapped up in a loop
loader, so that Typhon can pick a batch from any dataset whenever it wants.

Typhon can be applied to any machine learning tasks or neural network archi-
tectures, making it a meta-learning algorithm. Indeed, the only thing to do is to arbi-
trarily set the separation between the feature extractor part and the decision maker
part within the architecture. However the location of the split is considered as a new
hyperparameter to be optimized, as the learning rate or the batch size for example.

2.4 Typhon in computer-aided diagnosis

As Typhon is a meta-learning algorithm, it can be applied in principle to any appli-
cations using supervised learning. Starting with classification for example, Typhon
can learn similar datasets that classify some objects such as images or other sup-
ports, and is able to learn the abstract common patterns in order to improve the
performance of the classification on the datasets. This Section presents an applied
example of Typhon used to train a neural network that can detect cancerous tumors
on medical images, i.e. classify whether a medical image contains a cancerous tumor
or not. This task belongs to the topic of computer-aided diagnosis.

Cancer leads to millions of deaths every year. To prevent and possibly cure it, the
diagnoses need to be done by medical doctors as soon as possible. Due to tiredness
or a considerable amount of side work, these professionals may not see correctly the
very first stages of the cancer, i.e. very small early cancerous tumors. Machines could
help radiologist to detect cancerous tumor on medical images, becoming computer-
aided diagnosis machines.

The problem of cancerous tumor detection can be turned into a classification
problem, and solved via supervised learning. Different methods have already been
shown [43, 44]. The performance of these algorithms are limited because the true
underlying function is very hard to approximate as it is very complex, thus a deep
neural network is required. Unfortunately as seen before, data is very limited in this
field making the training procedure of such large neural network difficult.

In order to mitigate the problem of data scarcity, complex models can be trained
using the Typhon learning algorithm. As explained in Section 2.3, Typhon can train
a model with different heterogeneous datasets, coming from different body parts for
example, but also from different modalities, i.e. types of images such as magnetic
resonance images or ultrasound images. Typhon is able to aggregate all useful fea-
tures from all body parts and can apply what it has learned to other organs. This
implies that classifying a specific cancerous tumor, for example a prostate cancer, is
easier. In classical learning, a tremendous amount of data containing images of the
prostate is required, whereas in Typhon the data can also contain images from other
modalities, or coming from other body parts. More information can be found in the
original work [38].
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Chapter 3

Methods

This work proposes two new algorithms of the Typhon family focused on single-
dataset applications with the potential to mitigate overfitting and improve sample
efficiency. At each epoch, Typhon sees data from different datasets, thus moving the
objective target, and retains only information or features that are useful across all
datasets. As mentioned in Section 2.3, this is done by training the model on one batch
per each dataset per epoch, which mitigates catastrophic forgetting. This will thus
remove noise or features that are not useful between all the datasets. This Chapter
describes two different methods to use Typhon with a single dataset. In Section 3.1
the dataset is separated into super-classes, containing real classes that have common
features, and assigning one super-class to one decision maker. Furthermore, in Sec-
tion 3.2 the idea is developed more and assigns each single class to one decision
maker. Finally in Section 3.3, a new metric to measure overfitting is proposed and
described.

3.1 Datasets with super-classes: Two Levels Typhon

In order to leverage the generalization capability of Typhon, the datasets should be
similar enough to have common features to share, but also be distinct enough so
that specific information can be learned about each super-class. So far, only a set
of different, heterogeneous datasets has been used with Typhon. The first idea to
extend Typhon to a single-dataset version could be to make various sub-datasets
from a single one, and train Typhon on them as previously described in Section 2.3
and Algorithm 2. This can be achieved if the original dataset has clear distinct sep-
arations between the classes, enabling to aggregate them into super-classes. Indeed,
in some classification datasets, some classes have common features shared between
them. For example, in a dataset containing images of animals, one super-class could
be sea-animal, or bird. The true effective classes of the dataset are dispatched into
those super-classes, depending on what type of animal they describe. Thus, inside
those super-classes there will be the real classes of the datasets, simply aggregated.

Once this structure is built, Typhon can be used to train a model having one de-
cision maker, one head, per each super-class. Each decision maker classifies the real
classes coming from its super-class. Thus, each head will have one output neuron
per each sub-class contained in the super-class. Each neuron outputs then the prob-
ability of belonging to the sub-class (see Section 1.5.2). For example, a head assigned
to the sea-animal super-class will classify shark, cat-fish and whale, whereas the
bird head will classify pigeon, crow and eagle. The original multi-class classifica-
tion problem is split into multiple sub-classification problems. The hypothesis is that
this way Typhon can learn specific class-features useful across the whole dataset,
which would have not been retained by using classical learning algorithms, thus
improving the performance of the classification. Figure 3.1 shows example classes
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DatasetSuper-classes Sub/Real-classes

Beaver Dolphin

Otter

Seal Whale

Bear Leopard

Lion

Tiger Wolf

Crab Lobster

Snail

Spider Worm

Hamster Mouse

Rabbit

Shrew Squirrel

FIGURE 3.1: Splitting data into super-classes. Example super-classes
from the CIFAR-100 dataset [29], which can be learned using Two
Levels Typhon. The full dataset has first a separation between super-

classes, which then contain the real, original classes of the dataset.

from the CIFAR-100 dataset [29] that are dispatched into super-classes, which are
assigned to Typhon’s heads.

To use Typhon with this method, the dataset has to be prepared and correctly for-
matted beforehand, as shown in Figure 3.1. Firstly, the super-classes structure needs
to be designed: the model should know which sub-class belongs to which super-
class, by encoding the sub-classes among the super-classes. Secondly, the model still
needs to remember what are all the sub-classes, because the original task’s goal is
to classify the inputs among those sub-classes. An implementation solution for this
two requirements is to use one-hot labels (see Section 1.5.2). This first new algorithm
is called Two Levels Typhon. The name Two Levels Typhon is coming from this
dataset preparation, where the model needs to know (i) the (sub-)class level labels
and (ii) the super-class level labels.

3.1.1 Inference and evaluation

The model needs to be able to output a prediction, in order to be evaluated. The
trick here is, for a given input, to activate all heads, corresponding to super-classes,
aggregate the activations, which are obtained by applying the standard logisitic ac-
tivation function to each individual neuron, and take the highest one as the inferred,
predicted class. Indeed, each head is able to distinguish if the input belongs to its
own super-class, where in average all its activations will be higher than the other
heads, but also to which particular sub-class, corresponding to the real predicted
class. This process makes however the inference part potentially slower than in clas-
sical models, since all heads need to be activated in turn. To mitigate this problem,
the inference is split into two parts. First the inputs pass through the feature extrac-
tor only once, and its output is then distributed across all decision makers. In that
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FIGURE 3.2: Two Levels Typhon model inference. The architecture
is composed of one shared feature extractor, in red, and of multi-
ple decision makers, in blue, one per each super-class. Each deci-
sion maker performs multi-class classification, thus contains in its last
layer one neuron per each sub-class, in orange, that outputs the clas-
sification score. The input firstly goes through the feature extractor,
and is then distributed across all decision makers. The highest score
or activation among all output neurons, in green, is interpreted as the
prediction of the network, same as with a classic monolithic architec-

ture.

way, the feature extractor is activated only once, thus saving computation time dur-
ing the inference part. Figure 3.2 shows how the inference works within the model.

This process is repeated for all observations of the dataset that is inferred. The ad-
vantage of the combination of this evaluation and the shape of the model is that the
full model can be evaluated to compare the performance against classical models,
but additionally each decision maker can be evaluated separately as well. Indeed, it
is possible to construct metrics for each specific decision maker, enabling to detect
which one performs better than the others. That is, for a given observation, the deci-
sion maker should be able to tell if the input is belonging to one of its sub-classes but
also if it is not. This can give a hint on how to optimize the hyperparameters further
for each decision maker, improving the overall performance of the model.
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3.1.2 Training

In order to be able to train a model with Typhon and this super-classes dataset ar-
chitecture, the fundamental original Typhon algorithm needs to be modified. This
altered algorithm with super-classes requires the binary cross entropy as loss func-
tion (see Section 1.3). This is firstly because the outputs or the predictions of the
model contain classification information on all classes and secondly because the la-
bels are encoded in a one-hot fashion (see Section 1.5.2). More precisely, this can be
interpreted as multiple binary classification problems.

In theory, the original Typhon algorithm (see Algorithm 2) could be used as is
to train a dataset with super-classes, by rotating over each super-class, and train ac-
cordingly the specific head of the corresponding super-class. However in practice,
that means that each head only sees observations coming from its own super-class.
This implies that the heads are not trained to detect samples that are not coming
from their own super-class. To solve this problem, a modified Typhon algorithm
is proposed, and is called Two Levels Typhon. Given a batch of one super-class,
the algorithm makes a two steps training, inspired by one-class algorithms (outlier
detection) such as one-class support vector machines [42]. These steps are the fol-
lowing:

1. Two Levels Typhon trains the batch on its corresponding head. This is called
positive training, since the label contains the positive sub-class, i.e. the one.

2. Two Levels Typhon trains the same batch on other, different head(s), where the
label becomes all zeros. This part is called negative training.

For the negative training part, all heads need eventually to see samples for all
other super-classes, implying that at each new negative training, another head is se-
lected to be trained on the batch. This ensures that all heads are seeing observations
for all (negative) super-classes. The Two Levels Typhon algorithm enables to train
on a specific, chosen number of negative heads, thus introducing a new hyperpa-
rameter. Using this two-steps training, each head learns to distinguish positive ob-
servations coming from its own super-class, and is able to tell what is the sub-class,
but it can also tells when an input is not coming from one of its sub-class, where all
its activations should be near zero. This makes the output activation of each neuron
stronger, and thus the highest activation can be trusted more as being the real class.
This new algorithm is described in Algorithm 3.

Algorithm 3 Two Levels Typhon

Requires: Complete Typhon model f̂θ〈FE, {DMi}〉,
single dataset with super-classes {Di}, number of negative heads to train m
for each epoch do

for each super-class Di do
batch← getBatch(Di)

f̂θ〈FE, DMi〉 ← train( f̂θ〈FE, DMi〉, batch) . Positive training
for 1, . . . , m do

j← nextHeadToTrain(i) . Select a head for negative training
f̂θ〈FE, DMj〉 ← train( f̂θ〈FE, DMj〉, batch) . Negative training

return f̂θ
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3.2 Single-dataset version: Ultra Typhon

Two Levels Typhon requires a dataset that has a clear partitioning between classes,
such that they can be dispatched into super-classes. Two Levels Typhon, and stan-
dard Typhon, can in principle not be used with datasets that do not have this clear
separation. However, this work proposes a second new algorithm of the Typhon
family, which is a truly single-dataset version of Typhon, that can be applied to any
single dataset. This new algorithm is called Ultra Typhon. Ultra Typhon is in fact
a special case of the Two Levels Typhon algorithm. Instead of having one decision
maker per each super-class that performs multi-class classification, Ultra Typhon
uses one decision maker per each proper class, doing one-class classification. This
implies that each head has only one single output neuron, that tells the probability
of belonging to the class.

The dataset preparation for Ultra Typhon is very simple. The labels need to be
encoded using the one-hot encoding (see Section 1.5.2). Otherwise no other prepara-
tion is needed, as Ultra Typhon uses the original shape of the dataset.

3.2.1 Inference and evaluation

The inference and the evaluation part are also very similar to Two Levels Typhon.
One observation goes into the network as input, passes through the feature extrac-
tor. The activation of the feature extractor is distributed across all decision makers
in order to save time, and all heads are activated. Those activations are aggregated
and taken as a whole. There is one activation per each class, and the highest one is
chosen to be the prediction of the network. This also enables the opportunity to eval-
uate (i) the full model as a whole and compare it with other model’s performance,
e.g. with classical learning, but also (ii) each head separately, to verify which class
seems harder to learn for the model, which additionally makes it possible to tune
the hyperparameters for each head independently. Figure 3.3 shows the inference
of a model trained with Ultra Typhon.

3.2.2 Training

To train a dataset with Ultra Typhon, the same concept of positive and negative train-
ing is used, as explained in Section 3.1.2. The difference is that the label is no more
a collection of zeros and a single one, but the label for each head turns out to be a
single number, either a one (the input belongs to the class) or a zero (the input does
not belong to the class) because each DM has only one output neuron. This again
requires the binary cross entropy as loss function (see Section 1.5.2), as the probabil-
ity of each single class is computed. The rotation over the datasets, simulated by the
classes themselves, is again used: given a batch from one class, Ultra Typhon trains
the model on (i) the corresponding head (positive training, the label is a one) and (ii)
other head(s) (negative training, the label is a zero). Algorithm 4 shows the training
process used by Ultra Typhon.
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FIGURE 3.3: Ultra Typhon model inference. The inference is sim-
ilar to Two Levels Typhon (see Figure 3.2). The output neurons, in
orange, are put in the last layer of each decision maker and give the
classification scores. The highest activation among all those neurons,
in green, is interpreted as the prediction of the network, same as with

a classic monolithic architecture.

Algorithm 4 Ultra Typhon

Requires: Complete Typhon model f̂θ〈FE, {DMi}〉,
single dataset with classes {Di}, number of negative heads to train m
for each epoch do

for each class Di do
batch← getBatch(Di)

f̂θ〈FE, DMi〉 ← train( f̂θ〈FE, DMi〉, batch) . Positive training
for 1, . . . , m do

j← nextHeadToTrain(i) . Select a head for negative training
f̂θ〈FE, DMj〉 ← train( f̂θ〈FE, DMj〉, batch) . Negative training

return f̂θ

3.3 Overfitting score

Both new Two Levels Typhon and Ultra Typhon algorithms leverage the moving
target problem as a mitigation tool for overfitting. To actually see how much are
those algorithms with a given model prompt to overfitting, a metric is required.
The metric should be fair across all type of experiments: it should be invariant to
(i) the length of the experiments and also to (ii) the type of loss function. To fulfill
those requirements, a new metric is proposed in this work, and further used in the
experiments in Chapter 4.
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Algorithm 5 Overfitting score

Requires: Training losses T = [xT(t0), . . . , xT(tn)],
validation losses V = [xV(t0), . . . , xV(tn)], timestamps t0, . . . , tn
T ← smooth(T) . Smooth with moving average
V ← smooth(V)
S = [] . Empty list to store point-wise scores
for each timestamp ti, i = 1, . . . , n− 1 do

Compute d
dt xT(ti) . According to Equation 3.1

Compute d
dt xV(ti)

if d
dt xV(ti) ≤ 0 or

(
d
dt xV(ti) > 0 and d

dt xT(ti) > 0
)

then . No overfitting
s = 0

else . Overfitting
s = d

dt xV(ti)− d
dt xT(ti)

Add s to the list S
score = average(S)
return score

The core idea is to compare the trends between the values of the loss function on
the training set and the ones on the validation set. As suggested in Section 1.7, this
is an indicator when overfitting is occurring: at the point where the validation loss
reaches its local minimum, it will increase afterwards thus having worse predictions,
while the training loss is still decreasing, and this is where the model starts to overfit.
The proposed metric will therefore aggregate those trends. To represent the trend
of a curve, the derivative is often used. It describes the instantaneous variation of
a point on a curve. However the training loss and validation loss curves are not
continuous thus the derivative cannot be used as is. Instead, a discrete version of
the derivative is used.

Let T and V be the set of measurements on the training and validation sets re-
spectively. At each timestamp t0, . . . , tn, the value of the loss function x(ti) is mea-
sured on both sets, leading to T = [xT(t0), . . . , xT(tn)] and V = [xV(t0), . . . , xV(tn)]
being two time-series. Then the (discrete) derivative at the point x(ti) is defined
by Equation 3.1, which is the slope of the secant between the two neighbor points.
Note that both the timestamps t̂i in the denominator of Equation 3.1 and the loss
values x̂(ti) are normalized in the range [0, 1]. This is to ensure that the overfitting
metric is invariant to (i) the values between the timestamps but also to (ii) the val-
ues of the loss function. Thus, this metric only measures the overfitting within a
given time window, and consequently should be applied to experiments having the
same number of epochs or number of samples trained on for a fair comparison. The
computation of the overfitting score is described in Algorithm 5.

d
dt

x(ti) =
x̂(ti+1)− x̂(ti−1)

t̂i+1 − t̂i−1
(3.1)

This new proposed metric will be used later in Chapter 4 to compare different al-
gorithms, such as classical learning, Typhon, Two Levels Typhon and Ultra Typhon,
on their ability to mitigate overfitting.
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Chapter 4

Experiments

This Chapter presents several experiments using the two new Typhon algorithms,
Two Levels Typhon described in Section 4.5 and Ultra Typhon explained in Sec-
tion 4.6. Those experiments are at the core of this work, and show practically how
the assumptions and ideas developed and designed in Chapter 3 are applying to
experiments with real datasets. The setup such as the datasets and the model archi-
tectures used are all described in Section 4.1 and Section 4.2 respectively. To have
a better comparison baseline, the original Typhon algorithm [38] is also tested in
Section 4.4.

4.1 Datasets

This first Section details the two datasets used in the experiments, namely the CIFAR-
100 and CIFAR-10 [29] datasets, which contain images coming from different classes.
These two datasets have been widely used already [45, 46, 47].

4.1.1 CIFAR-100

This first dataset is used for the Two Levels Typhon algorithm experiments. The
Two Levels Typhon algorithm requires a dataset having a clear separation between
the classes into super-classes (see Section 3.1). This can be manually done for some
datasets, if they contain some common features between classes, but in this work a
dataset already meeting those requirements is used. This is the CIFAR-100 dataset [29].
This dataset regroups small 32x32 pixels color images. The training set consists of
50’000 images while the test set contains 10’000 images. The CIFAR-100 dataset is
composed of a total of 100 classes, i.e. 500 training images and 100 test images per
class, divided into 20 super-classes. Each super-class is composed of 5 (sub-)classes.
The detailed classes in this dataset are shown in Table 4.1, while some examples
images are shown in Figure 4.1. This dataset is freely available1.

No specific pre-processing is made for this dataset. All three color channels are
kept, and each of them has pixel values in the range [0, 255]. The original test set re-
mains untouched and is directly used as the test set in the experiments. However, as
there is no official validation set, the latter is created from the training set. Out of the
50’000 images in the training set, 10’000 are taken randomly to form the validation
set, while the rest forms the training set. In the end, the training set is composed of
40’000 images (400 images per class in average), the validation set of 10’000 images
(100 images per class in average) and the test set of 10’000 as well (100 images per
class).

1https://www.cs.toronto.edu/~kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html
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(A) Bee (B) Bowl (C) Chimpanzee (D) House (E) Lizard

(F) Lobster (G) Oak tree (H) Shark (I) Television (J) Tractor

FIGURE 4.1: CIFAR-100 examples images. 10 random images, 32x32
pixels, coming from different super-classes. The sub-class name is
written in caption. There are in total 20 super-classes, which are listed

with their sub-classes in Table 4.1.

Super-class Classes

aquatic mammals beaver, dolphin, otter, seal, whale
fish aquarium fish, flatfish, ray, shark, trout
flowers orchids, poppies, roses, sunflowers, tulips
food containers bottles, bowls, cans, cups, plates
fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers
household electrical devices clock, computer keyboard, lamp, telephone, television
household furniture bed, chair, couch, table, wardrobe
insects bee, beetle, butterfly, caterpillar, cockroach
large carnivores bear, leopard, lion, tiger, wolf
large man-made outdoor things bridge, castle, house, road, skyscraper
large natural outdoor scenes cloud, forest, mountain, plain, sea
large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo
medium-sized mammals fox, porcupine, possum, raccoon, skunk
non-insect invertebrates crab, lobster, snail, spider, worm
people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle
small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow
vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

TABLE 4.1: Classes and super-classes of the CIFAR-100 dataset. A
total of 100 classes are separated into 20 super-classes. Each super-

class is assigned to one decision maker in Two Levels Typhon.
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4.1.2 CIFAR-10

The second dataset, CIFAR-10, is used for the experiments with Ultra Typhon. The
power of Ultra Typhon is that it can train a model on any single dataset. In this work,
in order to make a parallel with the Two Levels Typhon, the CIFAR-10 dataset [29]
is used. This dataset is, as its sibling CIFAR-100, composed of color images of
size 32x32, divided into 10 different classes, but here with no super-classes. The
classes are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship
and truck. The training set is also containing 50’000 images and the test set 10’000.
Each class is thus composed of 5’000 training images and 1’000 test images. Fig-
ure 4.2 shows some example images from this dataset, which is freely available2.

(A) Airplane (B) Automobile (C) Bird (D) Cat (E) Deer

(F) Dog (G) Frog (H) Horse (I) Ship (J) Truck

FIGURE 4.2: CIFAR-10 examples images. These are 10 random im-
ages, 32x32 pixels, from the CIFAR-10 dataset. There is one image per

each available class, with the class label as caption.

Similarly as for the CIFAR-100 dataset, each image has three color channels, and
each of those channels has pixel values in the range [0, 255]. The original test set
is kept as the test set in the experiments. In the CIFAR-10 dataset, there is again
no official validation set, so it is created out of the training set: 10’000 images are
taken randomly to form the validation set. Ultimately, the training set is composed
of 40’000 images (4’000 images per class in average), the validation set of 10’000
images (1’000 images per class in average) and the test set of 10’000 as well (1’000
images per class).

4.2 Model architectures

As the two datasets contain images, the model trained is a convolutional neural net-
work. The chosen architecture is taken from the CIFAR-10 tutorial3 of the Caffe deep
learning framework [48]. In the rest of this work, the model architecture will thus be
referred as Caffe. The architecture of the model is composed of three convolutional
blocks, that is a convolutional layer followed by a rectified linear unit (ReLU) [49] ac-
tivation function and a pooling layer. The convolutional blocks are finally followed
by two linear (fully connected) layers. This model has 116’321 trainable parameters.

2https://www.cs.toronto.edu/~kriz/cifar.html
3http://caffe.berkeleyvision.org/gathered/examples/cifar10.html

https://www.cs.toronto.edu/~kriz/cifar.html
http://caffe.berkeleyvision.org/gathered/examples/cifar10.html
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In the experiments, the split between the feature extractor and the decision makers
is made at different place, so it can be analyzed and decided which split is better.
Again, this split location turns out to be a new hyperparameter introduced in the
original Typhon algorithm. Four different splits are used, leading to four different
models to compare. Figure 4.3 shows the convolutional neural network architecture
used for the experiments, as well as the location of the splits. Table 4.2 shows the
size of the feature extractor and of each decision maker depending on the location
of the split.
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Caffe_v2 Caffe_v1Caffe_v4 Caffe_v3

FIGURE 4.3: Convolutional neural network architecture and splits.
Neural network architecture used for the experiments. It has three
convolutional blocks (i.e. convolution, ReLU activation, and pool-
ing), followed by two linear, fully-connected layers. This architecture
has a total of 116’321 trainable parameters. Optional dropout is used
between the ReLU and the pooling layers, and between the two lin-
ear layers. The dashed lines represent the different splits between the

feature extractor (left part) and each decision maker (right part).

Parameters in the FE Parameters in each DM

Caffe_v1 116’256 65
Caffe_v2 79’328 36’993
Caffe_v3 28’064 88’257
Caffe_v4 2’432 113’889

TABLE 4.2: Size of the different models. Depending on the location
of the split in the architecture, the feature extractor (FE) and each de-
cision maker (DM) have a different number of trainable parameters.

4.3 Hardware and performance measurement

All the experiments have been run on a server with a 64-core Intel(R) Xeon(R) 6142
CPU at 2.60GHz, 6GB of RAM per core, and eight NVidia GeForce RTX 2080 Ti
GPUs at 2.1GHz with 10GB of GDDR6 vRAM each. However, to get fair results and
performance, each experiment only utilized a single CPU core and a single GPU.

To compare the multiple experiments done in this work, accuracy and F1-score
on the test set (see Section 1.4), as well as the overfitting score (see Section 3.3) are
used. Additionally, the accuracy on the training set is provided to assess the state
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of the learning process by the end of the experiment. Specific hyperparameters for
the two new algorithms, such as the architecture splitting (see Section 4.2) and the
number of heads, decision makers activated during the negative training part (see
Section 3.1.2 and Section 3.2.2) are also mentioned. Finally, the runtime for each
experiment is given.

4.4 Standard Typhon

This Section presents the performance of the original, standard Typhon algorithm,
running on both CIFAR-10 and CIFAR-100 datasets in a parallel way. This is firstly
to show the performance of the original Typhon algorithm and serves also as a com-
parison baseline for the two new single-dataset algorithms that are at the core of this
work, Two Levels Typhon and Ultra Typhon.

4.4.1 Results

In the first set of experiments, the original Typhon algorithm is used with the datasets
CIFAR-10 and CIFAR-100. Table 4.3 shows the performances of the original algo-
rithm with the different architecture splits. Classical learning experiments, with and
without the addition of dropout, are also put for comparison.

Split Accuracy F1-score Overfit Train acc. Runtime [h] # samples

Classic - 0.67|0.33 0.67|0.33 1.16|0.48 0.99|0.74 14|20 6 · 107|6 · 107

Dropout - 0.71|0.23 0.70|0.23 0.00|0.00 0.76|0.25 15|20 6 · 107|6 · 107

Typhon v1 0.64|0.27 0.64|0.26 0.00|0.00 0.72|0.35 17 6 · 107

Typhon v2 0.65|0.29 0.65|0.28 0.00|0.00 0.72|0.37 17 6 · 107

Typhon v3 0.67|0.29 0.67|0.28 0.00|0.00 0.76|0.40 17 6 · 107

Typhon v4 0.65|0.29 0.65|0.28 0.00|0.00 0.74|0.40 17 6 · 107

TABLE 4.3: Results of the original Typhon experiments. In the met-
rics, the first number stands for the CIFAR-10 test set while the second
one is for the CIFAR-100 test set. The best model to keep is selected
according the best accuracy obtained on the validation set over the
run. Dropout has a value of 0.5. Classical learning requires separated
experiments for each dataset, thus having two runtimes and number
of samples while Typhon learns both datasets in parallel. All experi-

ments used a learning rate of 5 · 10−6 and a batch size of 256.

4.4.2 Discussion and analysis

These experiments demonstrate a couple of facts:

• Typhon is able to mitigate overfitting. Looking at the overfitting score in Ta-
ble 4.3, classical learning is overfitting while Typhon shows still no sign of
overfitting, with its zero score. This means that Typhon is able to general-
ize better than classical learning. Moreover, by looking at the accuracy on the
training set, Typhon could still learn more useful and general patterns by run-
ning the experiments longer.
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• Typhon is close to dropout. Both methods, Typhon and classical learning with
a dropout value of 0.5, have a zero overfitting score, meaning both algorithms
can still learn more useful and general patterns. This is also confirmed by the
fact that there is still room for improvement in the accuracy on the training
set. However, note that the comparison with dropout is hard, as the network
is virtually smaller, less complex, during the training process since dropout
deactivates some neurons within the network, which leads naturally to less
overfitting.

• Typhon has a faster runtime compared to classical algorithms. The classical
learning algorithms require to have separated experiments for each dataset,
while Typhon is able to learn the two datasets in parallel. This has an impact
on the total, combined runtime. Indeed, in Table 4.3 the total runtime for both
datasets in classical learning is around 35 hours, while Typhon only needs 17
hours. This shows that Typhon reduces significantly the runtime in compari-
son with classical algorithms.

• Typhon improves sample efficiency. Compared to classical algorithms, Ty-
phon is able to learn similar patterns with less observations seen. Indeed,
while the accuracy values are similar, the number of samples seen by Typhon
per dataset is divided by two. In this example experiment, using a classical
algorithm, the number of samples is set to 6 · 107 for one dataset, while in Ty-
phon this number is the same but for the two datasets in parallel, making the
effective number of samples seen per dataset equals to 3 · 107. This means
that Typhon is capable of reaching similar performance by seeing two times
less input observations, which shows that it has a better sample efficiency than
classical algorithms. This additionally strengthens the hypothesis that learning
similar datasets in parallel as in Typhon is efficient.
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4.5 Two Levels Typhon

This Section describes and showcases the results of the experiments using the Two
Levels Typhon algorithm. It firstly gives the results of the experiments by show-
ing the training curves and the metrics, and it ends with a discussion and further
analysis of those results. The different hyperparameters are also given so that the
experiments can be reproduced.

4.5.1 Results

Two Levels Typhon is tested on the different splits (see Figure 4.3) in order to check
the behavior of the algorithm. Figure 4.4 shows then the training curves of those
experiments, while Table 4.4 shows the actual hyperparameters used for each exper-
iment and the metrics. Moreover, the influence of the number of activated heads
during the negative training (see Section 3.1.2 and Section 3.2.2) is studied.

Split Neg. heads Acc. F1 Overfit Train acc. Runtime [h] # samples

Classic - - 0.20 0.19 0.00 0.23 2 3 · 106

Dropout - - 0.01 0.00 0.00 0.01 2 3 · 106

2L Typhon v1 19 0.21 0.21 0.01 0.31 20 3 · 106

2L Typhon v2 19 0.30 0.29 0.18 0.58 20 3 · 106

2L Typhon v3 19 0.30 0.30 0.74 0.89 20 3 · 106

2L Typhon v4 19 0.34 0.34 0.32 0.99 20 3 · 106

2L Typhon v2 1 0.22 0.21 0.00 0.28 13 3 · 106

2L Typhon v2 5 0.29 0.29 0.01 0.52 14 3 · 106

2L Typhon v2 10 0.29 0.29 0.10 0.56 16 3 · 106

2L Typhon v2 15 0.30 0.30 0.20 0.62 18 3 · 106

2L Typhon v2 19 0.30 0.29 0.18 0.58 20 3 · 106

TABLE 4.4: Results of the Two Levels Typhon experiments. This Ta-
ble shows the results of the experiments with Two Levels Typhon (2L
Typhon), on the test set of CIFAR-100. The model to keep is selected
according to the best accuracy obtained on the validation set. Note
that the architecture in the classical training has no split, and dropout
has a value of 0.5. All experiments used a learning rate of 5 · 10−6 and

a batch size of 256.

4.5.2 Discussion and analysis

With the help of Figure 4.4 and Table 4.4, some observations can be extrapolated:

• A small feature extractor leads to higher accuracy. Over the four experiments
of Two Levels Typhon shown in Table 4.4, reducing the size of the feature ex-
tractor (see Table 4.2) results in an increased accuracy on the test set. This is
also true for the accuracy on the training set, where the smallest feature ex-
tractor, Caffe_v4, seems to have almost learned everything it could as demon-
strated by the 99% accuracy score. This could mean that the given architecture
is not able to perform better on this particular dataset, and thus it requires to
make the architecture more complex to get better results.
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FIGURE 4.4: Two Levels Typhon training curves. The graph on the
top shows the binary cross entropy loss (see Section 1.3) on the test
set of CIFAR-100 against the number of samples on which the model
has been trained, and the graph on the bottom shows its accuracy.
Classic refers to classical training while the other curves represent the
different architectures used, with a different split between the feature

extractor and the decision maker.

• A small feature extractor has a higher sample efficiency. A direct conse-
quence from the above mentioned point is that a larger feature extractor (FE)
requires more samples, observations to reach similar performance compared to
a smaller one. This is expected, since the features outputted by a larger FE are
more complex than the ones outputted by a smaller FE. Additionally, reducing
the complexity of the FE inherently increases the complexity of the decision
maker (DM), which makes the classification part more robust. Indeed, the FE
and the DM have their own complexity, as the original network’s complexity
is split between the two parts. Outside this preliminary study, the standard
practice should be for the FE and each DM to have their own architecture.
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• The location of the split between the feature extractor and the decision maker
is very impactful. By looking at the metrics of the various experiments in Ta-
ble 4.4, the size of the feature extractor and the decision maker modify conse-
quently the results of the outcome. The overfitting score is almost zero with
the Caffe_v1 architecture, then increases with Caffe_v2 and Caffe_v3 splits and
finally decreases with the Caffe_v4 architecture. As mentioned in the above
points, this has also a direct impact on the performance, such as the accuracy
and the F1-score. Consequently, the location of the split, and inherently the
complexity of both the feature extractor and the decision maker, should be
treated as a new hyperparameter to fine-tune.

• The number of heads activated during the negative training should be con-
sidered as a new hyperparameter. In the bottom of Table 4.4, results from
different number of heads activated are shown. This has, as the location of
the split, a direct impact on the performance of the algorithm. Looking at the
results, it seems that a higher number of activated heads leads to a higher ac-
curacy. However, it also increases the overfitting score, and the running time
since more heads are activated. Thus, the number of heads activated during
the negative training part should also be fine-tuned for each experiment and
each dataset, as the location of the split.
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4.6 Ultra Typhon

This new Section has a similar format than the previous one. It first presents the
overall results of the experiments, and then study them in order to reach some con-
clusion that are presented and discussed further.

4.6.1 Results

The results in this section are first presented, this time using the Ultra Typhon algo-
rithm. The training curves are shown in Figure 4.5 while the metrics and the hyper-
parameters of the experiments are shown in Table 4.5. Furthermore, the impact of
the number of heads activated during the negative training part of the algorithm is
investigated.

Split Neg.heads Acc. F1 Overfit Train acc. Runtime [h] # samples

Classic - - 0.62 0.62 0.00 0.70 2 6 · 106

Dropout - - 0.49 0.47 0.00 0.49 2 6 · 106

Ultra Typhon v1 9 0.66 0.65 0.04 0.82 13 6 · 106

Ultra Typhon v2 9 0.67 0.66 0.04 0.83 13 6 · 106

Ultra Typhon v3 9 0.67 0.67 0.06 0.89 13 6 · 106

Ultra Typhon v4 9 0.66 0.66 0.01 0.86 13 6 · 106

Ultra Typhon v2 1 0.58 0.58 0.00 0.65 10 6 · 106

Ultra Typhon v2 5 0.64 0.64 0.00 0.76 11 6 · 106

Ultra Typhon v2 9 0.67 0.66 0.04 0.83 13 6 · 106

TABLE 4.5: Results of the Ultra Typhon experiments. This Table
shows the results of the experiments with Ultra Typhon, on the test
set of CIFAR-10. The model to keep is selected according to the best
accuracy obtained on the validation set. Note that the architecture in
the classical training has no split, and dropout has a value of 0.5. All
experiments used a learning rate of 5 · 10−6 and a batch size of 256.

4.6.2 Discussion and analysis

By analyzing the Ultra Typhon algorithm with Figure 4.5 and Table 4.5, some conse-
quences are:

• Ultra Typhon has a higher sample efficiency than classical learning. With
the same number of samples seen, Ultra Typhon has both a higher accuracy
and F1-score than classical learning algorithms. Moreover, the accuracy on
the training set at the end of the experiment with Ultra Typhon is higher from
12% up to 19% compared to when using a classical algorithm. This means that
Ultra Typhon is able to learn the useful, general patterns faster than a classical
learning algorithm, resulting in a quicker convergence for this algorithm.
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FIGURE 4.5: Ultra Typhon training curves. The graph on the top
shows the binary cross entropy loss (see Section 1.3) on the test set
of CIFAR-10 against the number of samples on which the model has
been trained, and the graph on the bottom shows its accuracy. Classic
refers to classical training while the other curves represent the dif-
ferent architectures used, with a different split between the feature

extractor and the decision maker.

• Ultra Typhon is resilient against overfitting. In addition to have a higher
sample efficiency compared to classical algorithms, Ultra Typhon is also ro-
bust against overfitting. Indeed, the algorithm is capable of reaching 82% up
to 89% accuracy on the training set with almost no overfitting, as shown by the
overfitting scores in Table 4.5 but also by the curves in Figure 4.5. Furthermore,
this means that Ultra Typhon could potentially still learn more features from
the training set that are useful for generalization, thus possibly increasing fur-
ther the accuracy on the test set. This showcases that parallel transfer can be
used as a tool to mitigate overfitting.
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• The position of the split between the feature extractor and the decision maker
is important, but not as crucial as in Two Level Typhon (see Table 4.4). Indeed,
taking a look at Table 4.5 reveals that for the four different architectures, no
one is particularly more robust, or leads to better results. All experiments us-
ing Ultra Typhon obtained an accuracy around 66% on the test set of CIFAR-10.
However, this may not be the case for other architecture nor datasets. As such,
the position of the split should always be treated as an hyperparameter to op-
timize.

• The number of activated heads during the negative training should be con-
sidered as a new hyperparameter. The performance and resilience against
overfitting is changing depending on the number of activated heads. As shown
in Table 4.5, the accuracy and the F1-score can be increased by 10% by activat-
ing more heads. However, this fact could be different for other architectures
or other datasets, and could additionally lead to more overfitting. As a conse-
quence, the number of activated heads needs to be handled as a new hyperpa-
rameter.
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Chapter 5

Conclusion

This work extends the Typhon meta-learning algorithm [38] used in classification
tasks, capable of training a neural network on multiple heterogeneous datasets, into
to two different new single-dataset versions. The algorithms of the Typhon family
are based on the parallel transfer paradigm, which bridges transfer learning [35, 36]
and multi-task learning [37]. They however have the advantage to learn each task
as a separate, independent target.

The first version, Two Levels Typhon, is applicable when different classes in the
dataset can be grouped or aggregated into super-classes, that have common fea-
tures, and train one decision maker per each super-class. Each decision maker is
thus solving a multi-class classification problem. As shown in the experiments using
the CIFAR-100 dataset [29], Two Levels Typhon has a higher sample efficiency com-
pared to classical learning algorithms, implying a higher accuracy on the datasets.
This is because the algorithm take advantage of parallel transfer, which can effec-
tively transmit the knowledge learned from one decision maker to the other ones.
However, Two Levels Typhon requires more hyperparameter optimization, since
the position of the split between the feature extractor and the decision maker, as
well as the number of heads activated during the negative training part, are new
hyperparameters to fine-tune.

If super-classes are not available, Ultra Typhon splits the dataset differently, by
assigning one decision maker per each class, thus each decision maker solves a one-
class classification problem. Ultra Typhon has also a higher sample efficiency in
comparison with classical learning algorithms. This means that Ultra Typhon per-
forms better than classical algorithms while still being resilient against overfitting.
Ultra Typhon is thus robust with datasets containing little data, as it is capable of
learning features or patterns useful for generalization, where classical learning algo-
rithm would fail.

In conclusion, the content of this work has several implications. Firstly, the orig-
inal Typhon algorithm no longer requires to have multiple datasets, but can be ap-
plied on a single dataset as well, although in some applications the use of multiple
heterogeneous can be still valuable. Moreover, Typhon can be used as a mitiga-
tion tool against overfitting, achieving similar results in terms of metrics and per-
formances compared to classical learning. Typhon however has overall still a higher
overfitting score than dropout, but this should be investigated further since the mod-
els with dropout are virtually smaller, thus naturally leading to less overfitting. Fi-
nally, the whole Typhon family algorithms has a higher sample efficiency compared
to classical learning algorithms. This makes them promising candidates to use when
having datasets with sparse or little data available, such as in the medical field.
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5.1 Future work

Although this work shows some auspicious results and behaviors of the algorithms
of the Typhon family in classification tasks, more work has to be pursue. This in-
cludes firstly to apply Typhon on other datasets, but also on other neural network
architectures, such as transformers [27]. Indeed, the field of natural language pro-
cessing is a topic largely studied, in which Typhon could potentially improve the
efficiency of the learning process of large language models, such as GPT [28].

Moreover, the code-base of Typhon should be optimized further. Refactoring
needs to be applied in order to improve the runtime and the memory management
of Two Levels Typhon and Ultra Typhon, especially during the training phase. This
can be solved by trying new libraries or more optimized functions, or proposing
other, equivalent formulations of the algorithms.

Finally, other learning tasks should be explored with Typhon. For example, seg-
mentation tasks could also suffer from data scarcity, in which Typhon is a good can-
didate algorithm to use. Furthermore, in auto-encoding tasks where the bottleneck
is hard to train, Typhon could also potentially improve the learning process, due to
the higher sample efficiency of the whole Typhon family over the classical learning
algorithms.



41

Bibliography

[1] Brook Taylor. Methodus incrementorum directa & inversa. Inny, 1717.

[2] Georgi P Tolstov. Fourier series. Courier Corporation, 2012.

[3] Irving John Good. “Rational decisions”. In: Journal of the Royal Statistical Soci-
ety: Series B (Methodological) 14.1 (1952), pp. 107–114.

[4] Timothy O Hodson. “Root mean square error (RMSE) or mean absolute error
(MAE): When to use them or not”. In: Geoscientific Model Development Discus-
sions 2022 (2022), pp. 1–10.

[5] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine
learning 20 (1995), pp. 273–297.

[6] Mervyn Stone. “Cross-validatory choice and assessment of statistical predic-
tions”. In: Journal of the royal statistical society: Series B (Methodological) 36.2
(1974), pp. 111–133.

[7] Mervyn Stone. “An asymptotic equivalence of choice of model by cross-validation
and Akaike’s criterion”. In: Journal of the Royal Statistical Society: Series B (Method-
ological) 39.1 (1977), pp. 44–47.

[8] David MW Powers. “Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation”. In: arXiv preprint arXiv:2010.16061
(2020).

[9] Karimollah Hajian-Tilaki. “Receiver operating characteristic (ROC) curve anal-
ysis for medical diagnostic test evaluation”. In: Caspian journal of internal medicine
4.2 (2013), p. 627.

[10] Lee R Dice. “Measures of the amount of ecologic association between species”.
In: Ecology 26.3 (1945), pp. 297–302.

[11] Thorvald Sorensen. “A method of establishing groups of equal amplitude in
plant sociology based on similarity of species content and its application to
analyses of the vegetation on Danish commons”. In: Biologiske skrifter 5 (1948),
pp. 1–34.

[12] Paul Jaccard. “Étude comparative de la distribution florale dans une portion
des Alpes et des Jura”. In: Bull Soc Vaudoise Sci Nat 37 (1901), pp. 547–579.

[13] Paul Jaccard. “The distribution of the flora in the alpine zone. 1”. In: New phy-
tologist 11.2 (1912), pp. 37–50.

[14] Michael S Lewis-Beck and Andrew Skalaban. “The R-squared: Some straight
talk”. In: Political Analysis 2 (1990), pp. 153–171.

[15] Davide Chicco, Matthijs J Warrens, and Giuseppe Jurman. “The coefficient
of determination R-squared is more informative than SMAPE, MAE, MAPE,
MSE and RMSE in regression analysis evaluation”. In: Peerj computer science 7
(2021), e623.



42 Bibliography

[16] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas imma-
nent in nervous activity”. In: The bulletin of mathematical biophysics 5 (1943),
pp. 115–133.

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

[18] Yann LeCun et al. “A theoretical framework for back-propagation”. In: Pro-
ceedings of the 1988 connectionist models summer school. Vol. 1. 1988, pp. 21–28.

[19] Yann LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recog-
nition”. In: Neural Computation 1.4 (Dec. 1989). Conference Name: Neural Com-
putation, pp. 541–551. ISSN: 0899-7667. DOI: 10.1162/neco.1989.1.4.541.

[20] Henry J. Kelley. “Gradient Theory of Optimal Flight Paths”. In: ARS Journal
30.10 (1960). Publisher: American Institute of Aeronautics and Astronautics
_eprint: https://doi.org/10.2514/8.5282, pp. 947–954. DOI: 10.2514/8.5282.
URL: https://doi.org/10.2514/8.5282 (visited on 12/30/2023).

[21] Augustin Cauchy et al. “Méthode générale pour la résolution des systemes
d’équations simultanées”. In: Comp. Rend. Sci. Paris 25.1847 (1847), pp. 536–
538.

[22] Herbert Robbins and Sutton Monro. “A stochastic approximation method”. In:
The annals of mathematical statistics (1951), pp. 400–407.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
Jan. 29, 2017. DOI: 10.48550/arXiv.1412.6980. arXiv: 1412.6980[cs].

[24] R. Fletcher. Practical Methods of Optimization. Google-Books-ID: z3m_EAAAQBAJ.
John Wiley & Sons, July 26, 2000. 470 pp. ISBN: 978-0-471-49463-8.

[25] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

[26] Kunihiko Fukushima, Sei Miyake, and Takayuki Ito. “Neocognitron: A neu-
ral network model for a mechanism of visual pattern recognition”. In: IEEE
Transactions on Systems, Man, and Cybernetics SMC-13.5 (Sept. 1983). Confer-
ence Name: IEEE Transactions on Systems, Man, and Cybernetics, pp. 826–
834. ISSN: 2168-2909. DOI: 10.1109/TSMC.1983.6313076.

[27] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural In-
formation Processing Systems. Vol. 30. Curran Associates, Inc., 2017.

[28] Tom B. Brown et al. Language Models are Few-Shot Learners. July 22, 2020. DOI:
10.48550/arXiv.2005.14165. arXiv: 2005.14165[cs].

[29] Alex Krizhevsky and Geoffrey Hinton. “Learning multiple layers of features
from tiny images”. In: (2009). Publisher: Toronto, ON, Canada.

[30] Lutz Prechelt. “Early stopping-but when?” In: Neural Networks: Tricks of the
trade. Springer, 2002, pp. 55–69.

[31] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks
from overfitting”. In: The journal of machine learning research 15.1 (2014). Pub-
lisher: JMLR. org, pp. 1929–1958.

[32] Federico Girosi, Michael Jones, and Tomaso Poggio. “Regularization theory
and neural networks architectures”. In: Neural computation 7.2 (1995), pp. 219–
269.

[33] Mark Schmidt. “Least squares optimization with L1-norm regularization”. In:
CS542B Project Report 504.2005 (2005), pp. 195–221.

https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.2514/8.5282
https://doi.org/10.2514/8.5282
https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/1412.6980 [cs]
https://doi.org/10.1109/TSMC.1983.6313076
https://doi.org/10.48550/arXiv.2005.14165
https://arxiv.org/abs/2005.14165 [cs]


Bibliography 43

[34] Xiong Luo, Xiaohui Chang, and Xiaojuan Ban. “Regression and classification
using extreme learning machine based on L1-norm and L2-norm”. In: Neuro-
computing 174 (2016), pp. 179–186.

[35] Lisa Torrey and Jude Shavlik. “Transfer Learning”. In: Handbook of Research on
Machine Learning Applications and Trends: Algorithms, Methods, and Techniques.
IGI Global, 2010, pp. 242–264. ISBN: 978-1-60566-766-9. DOI: 10.4018/978-1-
60566-766-9.ch011.

[36] Sinno Jialin Pan and Qiang Yang. “A Survey on Transfer Learning”. In: IEEE
Transactions on Knowledge and Data Engineering 22.10 (Oct. 2010). Conference
Name: IEEE Transactions on Knowledge and Data Engineering, pp. 1345–
1359. ISSN: 1558-2191. DOI: 10.1109/TKDE.2009.191.

[37] Rich Caruana. “Multitask Learning”. In: Machine Learning 28.1 (July 1, 1997),
pp. 41–75. ISSN: 1573-0565. DOI: 10.1023/A:1007379606734.

[38] Giuseppe Cuccu et al. “Typhon: Parallel Transfer on Heterogeneous Datasets
for Cancer Detection in Computer-Aided Diagnosis”. In: 2022 IEEE Interna-
tional Conference on Big Data (Big Data). IEEE, 2022, pp. 5223–5232.

[39] Giuseppe Cuccu et al. “Hydra: Cancer detection leveraging multiple heads
and heterogeneous datasets”. In: 2020 IEEE International Conference on Big Data
(Big Data). IEEE, 2020, pp. 4842–4849.

[40] Jiyoung Lee and Giuseppe Cuccu. “P-Hydra: Bridging Transfer Learning And
Multitask Learning”. In: (2020).

[41] Jonas Fontana, Giuseppe Cuccu, and Philippe Cudré-Mauroux. “Improving
Feature-Space Generalization Using the Typhon Framework”. In: (2023).

[42] Larry M Manevitz and Malik Yousef. “One-class SVMs for document classifi-
cation”. In: Journal of machine Learning research 2.Dec (2001), pp. 139–154.

[43] Jia Ding et al. “Accurate Pulmonary Nodule Detection in Computed Tomog-
raphy Images Using Deep Convolutional Neural Networks”. In: Medical Image
Computing and Computer Assisted Intervention – MICCAI 2017. Ed. by Maxime
Descoteaux et al. Lecture Notes in Computer Science. Cham: Springer Interna-
tional Publishing, 2017, pp. 559–567. ISBN: 978-3-319-66179-7. DOI: 10.1007/
978-3-319-66179-7_64.

[44] Yutong Xie et al. “Transferable Multi-model Ensemble for Benign-Malignant
Lung Nodule Classification on Chest CT”. In: Medical Image Computing and
Computer Assisted Intervention – MICCAI 2017. Ed. by Maxime Descoteaux et al.
Lecture Notes in Computer Science. Cham: Springer International Publishing,
2017, pp. 656–664. ISBN: 978-3-319-66179-7. DOI: 10.1007/978-3-319-66179-
7_75.

[45] Alex Krizhevsky, Geoff Hinton, et al. “Convolutional deep belief networks on
cifar-10”. In: Unpublished manuscript 40.7 (2010), pp. 1–9.

[46] Ke Zhang et al. “Multiple feature reweight densenet for image classification”.
In: IEEE access 7 (2019), pp. 9872–9880.

[47] Yulin Wang et al. “Not all images are worth 16x16 words: Dynamic transform-
ers for efficient image recognition”. In: Advances in neural information processing
systems 34 (2021), pp. 11960–11973.

[48] Yangqing Jia et al. “Caffe: Convolutional architecture for fast feature embed-
ding”. In: Proceedings of the 22nd ACM international conference on Multimedia.
2014, pp. 675–678.

https://doi.org/10.4018/978-1-60566-766-9.ch011
https://doi.org/10.4018/978-1-60566-766-9.ch011
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1007/978-3-319-66179-7_64
https://doi.org/10.1007/978-3-319-66179-7_64
https://doi.org/10.1007/978-3-319-66179-7_75
https://doi.org/10.1007/978-3-319-66179-7_75


44 Bibliography

[49] Kunihiko Fukushima. “Cognitron: A self-organizing multilayered neural net-
work”. In: Biological Cybernetics 20.3 (Sept. 1, 1975), pp. 121–136. ISSN: 1432-
0770. DOI: 10.1007/BF00342633.

https://doi.org/10.1007/BF00342633

	Abstract
	Introduction
	Functions and function approximation
	Supervised learning
	Mathematical optimization
	Evaluation
	Neural networks
	Architecture
	Classification
	Training

	Deep learning
	Overfitting
	Available methods against overfitting
	Transfer learning
	Multi-task learning
	Motivation
	Contributions

	The Typhon framework
	Heterogeneous sequential transfer: Hydra
	Trying to switch from sequential to parallel transfer
	Addressing the parallel transfer problem: Typhon
	Typhon in computer-aided diagnosis

	Methods
	Datasets with super-classes: Two Levels Typhon
	Inference and evaluation
	Training

	Single-dataset version: Ultra Typhon
	Inference and evaluation
	Training

	Overfitting score

	Experiments
	Datasets
	CIFAR-100
	CIFAR-10

	Model architectures
	Hardware and performance measurement
	Standard Typhon
	Results
	Discussion and analysis

	Two Levels Typhon
	Results
	Discussion and analysis

	Ultra Typhon
	Results
	Discussion and analysis


	Conclusion
	Future work

	Bibliography

