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Abstract

The presented research work provides a complete solution for processing high velocity
streams in real-time. For the processing part, we mainly used Storm, but other tools
will also be analyzed in this thesis.

Storm is a real-time distributed computation system that is fault-tolerant and guarantees
data processing.

In order to provide all the notions for understanding the subject, this thesis also describes
the following topics :

• Big Data: very trendy topic that represents the huge amount of data created during
the last few years

• NoSQL: term used to designate database management systems that differ from
classic relational database management system (RDBMS) in some way [Per13a]

• Hadoop: nowadays the most common tool for processing huge amount of data in a
distributed manner

The architecture proposed in this thesis allows to process both Twitter and Bitly streams
and extract insights in real-time. Storm was used as computation system but, in order
to provide a complete solution, the following tools will also be used and analyzed:

• Cassandra: a NoSQL database good for both reads and writes

• Redis: an advanced key-value store

• Kafka: a high-throughput queue messaging system

Keywords: Storm, Real-Time, Big Data, Stream processing, NoSQL, Cassandra, Kafka,
Hadoop, MapReduce, Java
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1
Introduction

Over the last few years, data stored in the world has increased exponentially. Data comes
from everywhere: companies store information about their stakeholders and they use
more and more machines that log what they are doing, sensors store information about
their environment, people can share information on social platforms from everywhere
with a smartphone, etc. This phenomenon is called "Big Data" and is a very trendy
topic nowadays.

For processing this huge amount of data, new tools and approaches are required. Cur-
rently, the most used tool is definitely Hadoop. Even if Hadoop does its job very well, it
is limited to process data by batch and is certainly not a good fit for processing the latest
version of data.

More and more cases require to process data almost in real-time, which means as data
arrive, in order to react and take decisions quickly after an event happened. This kind of
computation is generally called stream processing, in other words processing a constant
flux of data, in real-time.

In stream processing, rather than the notion of volume, the notion of velocity is determi-
nant. The speed at which new data is created and needs to be process can be extremely
high. Therefore, new tools for processing this huge velocity of data are required.

One new tool is called Storm, it becomes more and more popular and seems to be really
promising. Storm does for realtime processing what Hadoop did for batch processing.
Consequently, Storm will be deeply analyzed and used in this thesis.

1.1. Motivation and Goals

Nowadays, processing big amount of data is quite common thanks to Hadoop and MapRe-
duce. However, processing internet-scale amount of data with low latency update, almost
in real-time, is really challenging for the near future. In more and more use cases it is
important to know what is happening now and take decision as quickly as possible.
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Therefore, the main goals of this thesis are:

• Provide the basic notions about Big Data;

• Explore the state of the art in real-time data stream processing

• Analyze Storm software and identify its strengths and weaknesses

• Implement specific use cases provided by the industrial partner VeriSign by devel-
oping a Storm-based prototype system

1.2. Organization

This thesis is divided into three main sections :

I Big Data Background: this section focuses on providing several concepts about
the notion of Big Data:

• Some definitions and numbers in chapter 2

• An overview of NoSQL databases and the CAP theorem in chapter 3

• A description of Cassandra, a NoSQL database used in our use case in chapter
4

• An overview of Hadoop, nowadays the most common tool for processing huge
amount of data in chapter 5.

II Real-time data processing and Storm: this section describes the notion of real-
time and tools for processing data with low latency. Storm will also be described in
detail in this section:

• A description of what is real-time and tools for processing stream of data in
chapter 6

• An introduction to Storm in chapter 7

III Storm: use cases: This last section will present the implementation done with
Storm:

• First, the input data used will be described in chapter 8

• Chapter 9 explains the first use case done

• Chapter 10 will focus on the second use case, which mixes both Twitter and
Bitly data

• The performance of the use cases and an evaluation of Storm will be done in
chapter 11
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1.3. Notations and Conventions

• Formatting conventions:

– Bold and italic are used for emphasis and to signify the first use of a term.

– SansSerif is used for web addresses.

– Code is used in all Java code and generally for anything that would be typed
literally when programming, including keywords, constants, method names,
and variables, class names, and interface names.

• The present report is divided in Chapters. Chapters are broken down into Sec-
tions. Where necessary, sections are further broken down into Subsections, and
Subsections may contain some Paragraphs.

• Figures, Tables and Listings are numbered inside a chapter. For example, a reference
to Figure j of Chapter i will be noted Figure i.j.

• As far as gender is concerned, I systematically select the feminine when possible.

• Source code is desplayed as follows:

1 Mat r i x3 f rotMat = new Mat r i x3 f ( ) ;
ro tMat . fromAngleNormalAxis ( FastMath .DEG_TO_RAD ∗ 45.0 f , new Vector3 f ( 1.0 f , 0.0 f , 0.0 f ) ) ;

3 box . se tLoca lRo ta t ion ( rotMat ) ;

Sans Serif


Part I.

Big Data Background
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2
Digging into Big Data

2.1. What is Big Data? . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. How big are data? . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1. Globally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2. By sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3. Where does that data come from? . . . . . . . . . . . . . . . . 11

2.4. The 3-Vs of Big Data . . . . . . . . . . . . . . . . . . . . . . . . 12

This chapter describes the challenge of Big Data Management from both economic and
informatics points of view.

*

"Welcome to the Age of Big Data. The new megarich of Silicon Valley, first at Google
and now Facebook, are masters at harnessing the data of the Web - online searches, posts
and messages - with Internet advertising. At the World Economic Forum last month in
Davos, Switzerland, Big Data was a marquee topic. A report by the forum, "Big Data,
Big Impact," declared data a new class of economic asset, like currency or gold." [Loh12]

*

2.1. What is Big Data?

There is not a perfect definition of Big Data. The term is used by many companies
and becomes more and more popular as shown in Figure 2.1 with Google’s tool: Google
Trend. To complete the Figure 2.1 we can also have a look at the famous Gartner’s Hype
Cycle of emerging technologies (Figure 2.2). In july 2012, according to Gartner, Big Data
leaves the "Technology Trigger" phase and enter in the "peak of inflated expectations"

6
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Figure 2.1.: The interest for the term "Big Data" on Google (december 2012)

phase. Without any doubt, Big Data will be a very popular term in the next years. At
first glance, Big Data refers to something large and full of information but let’s precise
this concept.

In some ways, we are all dealing with (big) data. Users create content like blog posts,
tweets, photos and videos on social networks. Servers continuously log messages about
what they’re doing. Scientists create detailed measurements, companies record infor-
mation about sales, suppliers, operations, customers, etc. In 2010, more than 4 billion
people (60 percent of the world’s population) were using mobile phones, and about 12
percent of those people had smartphones, whose penetration is growing more than 20
percent a year. More than 30 million networked sensor nodes are now present in the
transportation, automotive, industrial, utilities and retail sectors. The number of these
sensors is increasing at a rate of 30 percent a year. The ultimate source of data, Internet,
is therefore incomprehensibly large. A study shows that every year the amount of data
will grow by 40 percent to 2020 [Ins11].

This explosion of data has profoundly affected businesses. Traditional database systems,
like relational databases (RDBMS), show their limits. Traditional systems have failed to
scale to big data. One could wonder why? The problem is simple : while the storage
capacity of hard drives have increased massively over the years, access speed (the rate at
which data can be read from drive) is unable to keep up. In 1990, one typical drive could
store about 1000 MB of data and had a transfer speed of 4.4MB/s1. Therefore it was
possible to read the whole disk in around five minutes. Over 20 years later, one terabyte
drives are the norm but the transfer speed is around 100MB/s. Therefore, it takes more
than two and a half hours to read all the data off the disk (and writing is even slower).
The obvious way to reduce the time is to read from multiple disks at once [Whi12].

So a good definition of "Big data" may be that from a paper by the McKinsey Global
Institute in May 2011: "Big Data refers to data sets who size is beyond the ability of
typical database software tools to capture, store, manage and analyze" [Ins11].

1These specifications are for the Seagate ST-41600n.
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Figure 2.2.: The Hype Cycle of emerging technologies.

To tackle the challenges of Big Data, a new type of technologies has emerged. Most of
these technologies are distributed across many machines and have been grouped under
the term "NoSQL". NoSQL is actually an acronym that expands to "Not Only SQL".
In some ways, these new technologies are more complex than traditional databases, and
in other ways they are simpler. There isn’t any solution that fits all situations. You
must do some compromises. This point will also be analyzed in this thesis. These
new systems can scale to vastly larger sets of data, but using these systems require
also new sets of technologies. Many of these technologies were first pioneered by two
big companies: Google and Amazon. The most popular is probably the MapReduce
computation framework introduced by Google in 2004. Amazon created an innovative
distributed key-value store called Dynamo. The open source community responded in
the year following with Hadoop (free implementation of MapReduce), HBase, MongoDB,
Cassandra, RabbitMQ and countless other projects [Mar12].

Big Data is a big challenge, not only for software engineers but also for governments and
economists across every sectors. There is a strong evidence that Big Data can play a
significant role not only for the benefit of private commerce but also for that of national
economies and their citizens. Studies from McKinsey Global Institute show, for example,
that if US health care could use big data creatively and effectively to drive efficiency
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and quality, the potential value from data in the sector could reach more than $300
billion every year. Another example shows that, in the private sector, a retailer using
big data to the full has the potential to increase its operating margin by more than 60
percent [Ins11]. Therefore, another interesting definition of Big Data, more economical,
is that from IDC : "Big data technologies describe a new generation of technologies and
architectures, designed to economically extract value from very large volumes of a wide
variety of data, by enabling high-velocity capture, discovery, and/or analysis" [IDC11].

2.2. How big are data?

This section will try to give an idea of the growth of data in recent years. Big Data
has reached a critical mass in every sector and function of the economy. The rapid
development and diffusion of digital information technologies have, of course, intensified
its growth [Ins11].

This section is divided into two subsections; firstly, we will analyze the amount of data
around the whole world and, then, more locally in different sectors.

2.2.1. Globally

To start, let us go back a few years, at the start of the decade. Hal Varian and Peter
Lyman from University of California Berkeley, were pioneers in the research on the amount
of data produced, stored and transmitted. For their "How much Information?" project
that ran from 2000 to 2003, they estimated that 5 exabytes (as a reminder 1 exabyte
= 1 000 000 terabytes) of new data were stored globally in 2002, and that, more than
three times this amount, 18 exabytes, of new or original data were transmitted, but not
necessarily stored, through electronic channels such as radio, telephone, television and
internet. They estimated that the amount of new data stored doubled from 1999 to 2002,
a compound annual growth rate of 25 percent [PL03].

A few years later, in 2007, the information-management company EMC sponsored the
research firm IDC [IDC11] to produce an annual serie of reports on the "Digital Universe"
to size the amount of data created and replicated each year. This study showed that,
for the first time in 2007, the amount of digital data created in a year exceeded the
world’s data storage capacity. In other words, it was impossible to store all the data
being created, because the rate at which data generation is increasing is much faster than
the expansion of world’s data storage capacity. But reminder that a gigabyte of stored
content can generate a petabyte of transient data that we typically don’t store.

The study of IDC estimated that, in 2009, the total amount of data created and replicated
was 800 exabytes, and surpasses 1.8 zettabytes in 2011, growing by a factor of 9 in just
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Figure 2.3.: Global storage in exabytes

five years. They projected that the volume would grow by more than 40 times to 2020,
an implied annual growth rate of 40 percent2. Figure 2.3 represents this explosion of data
through a graph.

2.2.2. By sectors

There is a wide agreement that data creation is growing exponentially, but is this growth
concentrated only in specific segments of the global economy? The answer is no. The
growth of Big Data is a phenomenon that is observed in every sector.

McKinsey Global Institute estimated that, by 2009, almost all sectors in the US economy
had an average of 200 terabytes of stored data per company with more than 1000 employ-
ees. Many sectors had even more than one petabyte in mean stored data per company.
And of course, some individual companies have much higher stored data than the average
of their sector, and potentially more opportunities to capture value from big data[Ins11].

Figure 2.4 shows that financial services sectors, including investment services, securities
and banking, have on average the most digital data per firm (for example, the New York
Stock Exchange, boasts about half a trillion trades a month). Government, communi-
cations and media firms and utilities also have a significant amount of data stored per
enterprise or organization. Discrete and process manufacturing have the highest aggre-

2IDC estimates of the volume of data include copies of data, not just originally generated data
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Figure 2.4.: Repartition of data by sector in US

gate amount of data stored. However, these sectors are fragmented into a large number
of firms. Therefore they rank much lower in intensity terms.

This data comes from the US and there isn’t such a study for Europe. However, we can
assume that the numbers would be quite similar.

2.3. Where does that data come from?

The volume of data has really started to explode with the transition from analog to
digital. As shown in Figure 2.5 , in 1986 digital data represented only one percent of
data. The biggest change came in the years following 2000; in this period digital data
rose from 25% to reach 94% in 2007 [Ins11]. Since, several other factors contribute each
day to this expansion :

• Technological developments

• Social platforms

• Fusion and acquisition

• Predominance of systems ERP and CRM
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Figure 2.5.: The repartition between analog and digital data from 1986 to 2007

• Multiplication of machines

2.4. The 3-Vs of Big Data

As seen in the last sections, Big Data represents large sets of data, but the notion of
volume isn’t the only one to be considered. A high velocity and variety are generally also
associated with Big Data. Volume, velocity and variety are called the 3-Vs of Big
Data.

The velocity describes the frequency at which data are generated and caught. Due to re-
cent technological developments, consumers and companies generate more data in shorter
time. The problem with an high velocity is the following : nowadays, the most widely
used tool for processing large data sets is Hadoop and more precisely the MapReduce
framework. Hadoop processes data by batch, so when the process started, new incoming
data won’t be taking into account in this batch but only in the next one. The problem is
even bigger if the velocity is high and if the batch processing time is long. These questions
will be discussed in chapter 5.

Nowadays, companies aren’t only dealing with their own data. More and more data
necessary to perfectly understand the market are generated by third parties outside the
company. Therefore, data comes from many different sources in various types, it could
be text from social network, image data, geo location, logs, sensors data etc. The wide
variety of data is a good example of why traditional databases,that are designed to accept
always the same data structure, are not a good fit for Big Data.
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In the previous chapter, the growth of data was discussed. In this chapter, we will focus
on how big amount of data can and should be stored.

3.1. NoSQL databases

For people who have strong experiences in relational databases, it can be really disturbing
and confusing to understand some principles of non-relational databases. As said in the
previous chapter, NoSQL systems can be more complex than traditional databases, and
in other ways they are simpler. These systems can scale to vastly larger set of data but
in return we some compromises must be done. With NoSQL databases the data model
is generally much more limited than what we are used to with something like pure SQL.

NoSQL (Not only SQL) is a term used to designate database management systems that
differ from classic relational database management system (RDBMS) in some way. These
data stores may not require fixed table schemas, usually avoid join operations, do not
attempt to provide ACID properties and typically scale horizontally [Per13a].

An important aspect of the previous definition is the notion of scalability. Scalability can
be described as a desirable property of a system, a network, or a process, which indicates
its ability to either handle growing amount of work in a graceful manner or to be readily
enlarged [Per13a]. Scalability can be done in two dimensions :

• Scale up : scale vertically (increase RAM in an existing node)

• Scale out : scale horizontally (add a node to the cluster)

13
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Figure 3.1.: Relational schema for the analytics application

NoSQL databases generally scale horizontally; if the database needs more resources (stor-
age, computational power, memory, etc.), one or more nodes should be easily added to
the cluster. However, adding more machines increases the risk of failures (network issues,
insufficient disk space or memory, hardware issues, etc.). Therefore, an essential property
of a distributed system is fault-tolerance. Fault-tolerance is the property that enables a
system to continue operating properly in the event of failure of some of its components
[Wik13b].

NoSQL databases are very different in their data model but also in their architecture.
Does it mean that relational databases should no longer be used? Of course not, it’s not
possible to have one size fits all solutions. RDBMS are very powerful with reasonable
amount of data and good for joins. Furthermore the data model of traditional databases
is easy to understand, very well known and strong. Therefore, it would be very interesting
to ask ourselves what could concretely happen if we try to deal with a huge amount of
data with a classic RDBMS. This is what will be discussed in the next section.

3.2. Scaling horizontally with a traditional database

Let’s assume that we want to build a new web analytics application. The application
simply tracks the number of pageviews to any URL a customer wishes to track. The
traditional relational schema for the page views looks like Figure 3.1. Everytime an
URL tracked is viewed, the webpage pings your application and your server increments
the corresponding row in the RDBMS [Mar12].

This schema makes sense, but now let’s imagine that our application is a great success
and the traffic is growing exponentially. We will soon discover a lot of errors saying all
something like : "Timeout error on writing to the database". The database cannot keep
up with the load. Therefore, write requests to increment page views are timing out.
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For fixing this problem we have two main choices : scaling our system with a queue
and/or by sharding the database.

• Scaling with a queue : Doing only a single increment at a time to the database
is wasteful, it would be much more efficient if we batch many increments in a single
request. So, instead of having the web server hitting the database directly, you
insert a queue and a worker process between the web server and the database.
Whenever we receive a new page view, that event is added to the queue and the
worker process reads, for example, 1000 events at the time off the queue and batch
them into a single database update [Mar12].

• Scaling by sharding the database : Let’s assume that our application continues
to get more and more popular. Scaling the database with a queue is only a tem-
porary solution, our worker cannot keep up with the writes even if we try to add
more worker to parallelize the updates; the database is clearly the bottleneck.

We need to spread our data across many servers. Each server will have a subset of
the data for the table. This is known as "horizontal partitioning" or "sharding". In
order to choose a shard for each key, we need to take the hash of the key modded by
the number of shards. Then we need to write a script to map over all the rows in our
single database instance and split the data into for example four shards. Finally,
all of our application code needs to know how to find the shard for each key. So we
wrap a library around our database handling code that reads the number of shards
from a configuration file and redeploys all of our application code. [Mar12]

Even if these solutions are feasible, they are far from being easy and perfect. Some
problems could occur [Mar12]:

1. Scaling is hard. As the application becomes more and more popular, we keep
having to reshard the database into more shards to keep up with the write load.
Each time gets more and more painful as there’s much more work to coordinate.

2. Fault-tolerance issues : The more machines we have, the more chances we have
that one of them goes down. If it happens (and it will happen), the portion of data
stored by the machine that goes down is unavailable and if we didn’t setup our
system correctly, the whole system will be unavailable.

3. Corruption / human fault-tolerance issues : Imagine that while working on
the code we accidentally deploy a bug to production that increments the number of
page view by two for every URL instead of one. Many of the data in our database
will be inaccurate and there’s no way of knowing which data got corrupted.

4. Complexity pushed to application layer : Our application needs to know which
shard to look at for every key. For a query like "Top 100 URLs" you need to query
every shard and then merge the results together.
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5. Maintenance is an enormous amount of work : Scaling a sharded database is
time-consuming and error-prone. We have to manage all the constraints. What we
really want is for the database to be self-aware of its distributed nature and manage
the sharding process for us.

As we can see, trying to distribute a traditional database isn’t impossible but generally
really painful. With NoSQL databases the problems of sharding, fault-tolerance, main-
tenance and complexity are hidden because this kind of databases are generally built to
be distributed.

However managing Big Data is always hard, strictly speaking it’s actually impossible. As
seen, for storing Big Data we need distributed systems because one machine is generally
not enough and if a part of the system is down the whole system should continue to
operate. Of course we want these systems to be always available and consistent. As we
will see in the next sub-section it’s impossible to get these three properties (partition-
tolerance, availability, consistency) together.

3.3. The CAP theorem

The theorem began as a conjecture made by University of California, Berkeley computer
scientist Eric Brewer at the 2000 Symposium on Principles of Distributed Computing
(PODC). In 2002, Nancy Lynch and Seth Gilbert of MIT published a formal proof of
Brewer’s conjecture, rendering it a theorem[Wik13a].

The CAP theorem states that it is impossible for a system to provide simultaneously all
the three following properties :

• Consistency (all nodes see the same data at the same time)

• Availability (a guarantee that every request receives a response)

• Partition-Tolerance (No set of failures less than total network failure is allowed
to cause the system to respond incorrectly)

All of these properties are desirable and expected. But depending on our needs we can
pick at most two of them. We can therefore have systems that provide consistency and
availability (CA), consistency and partition-tolerance (CP) and finally availability and
partition-tolerance (AP). Let’s define in more detail these three properties.

Nowadays, most databases attempt to provide strongly consistent data. Most of the new
frameworks for designing distributed services depend on ACID databases. ACID is an
acronym for Atomic, Consistent, Isolated and Durable. Interactions with such databases
should behave in a transactional manner : "operations commit or fail in their entirety
(atomic), committed transactions are visible to all future transactions (consistent), un-
committed transactions are isolated from each other (isolated), and once a transaction is
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committed it is permanent (durable)" [MIT02]. For example, it is essential that billing
information and commercial transaction records are handled with this type of strong
consistency.

Databases are also expected to be highly available. It means that every request should
succeed and receive a response in a reasonable delay. The classic example of issues
caused by a down database is the uncertainty about if our commercial transaction has
been completed or not. This problem is exacerbated by the fact that a database is most
likely to be unavailable when it is most needed.[MIT02]

Finally, on a distributed network, it is essential to provide fault-tolerance. There are
almost an unbounded list of problems that may happen on a cluster of nodes: insufficient
disk space or memory, hardware issues, network failures etc. So when some nodes crash,
it is important that the whole service still performed as expected. Gilbert and Lynch
define partition tolerance as : "No set of failures less than total network failure is allowed
to cause the system to respond incorrectly."[MIT02]

CAP theorem comes to life as an application scales : at low transaction volumes, small
latencies to allow databases to get consistent have no noticeable affect on either the user
experience or the overall performance. But as activity increases, these few milliseconds
in throughput will grow and possibly create errors. For example, Amazon claims that
just an extra one tenth of second on their response times will cost them 1% in sales.
Google said they noticed that just a half a second increase in latency caused traffic drop
by fifth. The problem becomes even more significant with errors; imagine that we enter
our credit card number and just after validating the transaction we get an error. We
wonder whether we have just paid for something we won’t get, not paid at all, or maybe
the error is immaterial to this transaction ...[Bro]

In a distributed system, it is not possible to avoid network partitions. Therefore the
right balance between consistency and availability must be find. To illustrate this, let’s
consider two big platforms : Facebook and Ebay. If a status update is done on Facebook
it isn’t really a problem if it is not updated at the same time all around the world. Users
prefer to have a platform which is always available than fully consistent. Facebook should,
therefore, use system that provide partition-tolerance and availability (AP). Consequently
Facebook made Cassandra, an eventual consistent database. On the other hand, let’s
imagine that someone want to buy a product on Ebay and there is only one copy in
stock. Just before paying, the website shows an error saying that there is actually no
more product available. For this precise case it’s maybe not a huge issue, but at the scale
of thousands of inconsistencies, the problem become real and big. Therefore, a platform
like Ebay should use a system that provide consistency and partition-tolerance (CP).

Figure 3.2 provides a small classification (subject to discussion) of actual systems. Sys-
tems that provide consistency and availability have problems with partitions and typi-
cally deal with it with replication. Examples of CA systems include traditional RDBMSs
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Figure 3.2.: Visual Guide to recent Systems [Hur]

like MySQL or Postgres, Vertica (column-oriented), Aster Data (relational) and Green-
plum (relational). Cassandra (column-oriented/tabular), Amazon Dynamo (key-value) or
CouchDB (document-oriented) are systems that are eventually consistent, available and
tolerant to partitions (AP). Finally, systems like Google BigTable (column-oriented/tabular),
Hbase (column-oriented/tabular), MongoDB (document-oriented) and BerkeleyDB (key-
value) are consistent and tolerant to partitions (CP) but can have trouble with availability.
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This chapter focuses on Cassandra, a very well known NoSQL database. Furthermore
Cassandra is the database that we will use in our use cases with Storm in the third part
of the report.

4.1. Introduction to Cassandra

Cassandra is an open source distributed database management system. It is a NoSQL
solution initially developed at Facebook and part of the Apache Software Foundation
since 2008. Cassandra is designed to handle large amounts of data spread out across
many nodes, while providing a highly available service with no single point of failure.
In term of CAP theorem, Cassandra provides availability, partition-tolerance (AP) and
eventual consistency (or tunable consistency).

Unlike RDBMS, Cassandra does not support a full relational data model, it could be
simplified as a scalable, distributed, sparse and eventually consistent hash map [Per13a].

19
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4.2. Architecture

4.2.1. Architecture overview

"Cassandra is designed to handle big data workloads across multiple nodes with no single
point of failure. Its architecture is based in the understanding that system and hardware
failure can and do occur. Cassandra addresses the problem of failures by employing a
peer-to-peer distributed system where all nodes are the same and data is distributed
among all nodes in the cluster. Each node exchanges information across the cluster every
second. A commit log on each node captures write activity to ensure data durability.
Data is also written to an in-memory structure, called a memtable, and then written to
a data file called an SStable on disk once the memory structure is full. All writes are
automatically partitioned and replicated throughout the cluster." [Data]

Any authorized user can connect to any node in any datacenter and access data using the
CQL (Cassandra Query Language) or the CLI (Command Line Interface). "Client read
or write requests can go to any node in the cluster. When a client connects to a node
with a request, that node serves as the coordinator for that particular client operation.
The coordinator acts as a proxy between the client application and the nodes that own
the data being requested. The coordinator determines which nodes in the ring should get
the request based on how the cluster is configured." [Data]

4.2.2. Internode communication

For internode communication, Cassandra uses a protocol named gossip to discover lo-
cation and state information about other nodes in the cluster. Gossip is a peer-to-peer
communication protocol in which nodes exchange state information about themselves and
about other nodes they know about.

The gossip process runs every second and exchanges state information with a maximum
of three other nodes. The nodes exchange information about themselves and also about
other nodes that they have gossiped about. In this way, all nodes quickly learn about all
other nodes in the cluster. Each gossip message contains a version, so older information
are overwritten with the most current state. [Data]

4.2.3. Data distribution and replication

Cassandra is designed as a peer-to-peer system that makes copies of the data and repli-
cates the data among a group of nodes. Data is organized by tables and each row is
identified by a primary key. For distributing the data across the cluster, Cassandra uses
a consistent hashing mechanism based on the primary key. Therefore the primary key
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Name Murmur3 hash value
Jim -2245462676723223822
Carol 7723358927203680754
Johny -6723372854036780875
Suzy 1168604627387940318

Table 4.1.: Hash on primary key

Node Murmur3 start range Murmur3 end range
A -9223372036854775808 -4611686018427387903
B -4611686018427387904 -1
C 0 4611686018427387903
D 4611686018427387904 9223372036854775807

Table 4.2.: Data distribution based on Hash

determines which node the data is stored on. Copies of rows are called replicas. When
data is first written, it is also referred to as a replica [Data].

When creating a cluster, it is important to specify the replication strategy which de-
termines the replicas for each row of data and the snitch which defines the topology
information that the replication strategy uses to place replicas.

The Table 4.1 shows the relation between the primary key and its hash value (created
with Murmur 3).

Each node in the cluster is responsible for a range of data based on the hash value. For
example if the cluster is composed of four nodes the distribution can be represented like
the Table 4.2.

Then Cassandra places the data on each node according to the value of the hash on the
primary key and the range that the node is responsible for. For example, the row that
have the primary key "Johny" will be stored on the node A.

4.3. Data Model

The Cassandra data model is a dynamic schema, column-oriented data model. Unlike
a relational database, it is not necessary to model all of the columns required by the
application, each row is not required to have the same set of columns. The different
components of the data model can be represented like the following :

Keyspace > Column Family > Row > Column Name = Value

Figure 4.1 compares the SQL model and the Cassandra data model.
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Figure 4.1.: Relational VS Cassandra Data Model

A Keyspace can be compared to a database in SQL words. The Keyspace defines the
replication factor and the network topology. The Listing 4.1 describes how to create a
new keyspace with the command line interface (CLI).

1 CREATE KEYSPACE demo
WITH placement_st rategy = ’ org . apache . cassandra . l o c a t o r . SimpleStrategy ’

3 AND s t ra tegy_op t i ons = { r e p l i c a t i o n _ f a c t o r : 1 } ;

Listing 4.1: Creating a keyspace

A Column Family is the equivalent to an SQL table. When creating a new column family
it is recommended to specify the comparator and the validator. The validator represents
the data type for a column value and the comparator represents the data type for a
column name. The Table 4.3 lists all the data types in Cassandra and the Listing 4.2
shows how to create a new column family with information about column metadata with
the command line interface (CLI).

1 CREATE COLUMN FAMILY users
WITH comparator = UTF8Type

3 AND key_va l i da t i on_c lass =UTF8Type
AND column_metadata = [

5 { column_name : ful l_name , v a l i d a t i o n _ c l a s s : UTF8Type }
{ column_name : email , v a l i d a t i o n _ c l a s s : UTF8Type }

7 { column_name : s ta te , v a l i d a t i o n _ c l a s s : UTF8Type }
{ column_name : gender , v a l i d a t i o n _ c l a s s : UTF8Type }

9 { column_name : b i r th_year , v a l i d a t i o n _ c l a s s : LongType }
] ;

Listing 4.2: Creating a Column Family

A column family contains rows. A row is defined by a unique key. There are two strategies
of key partitioner on the key space. A partitioner determines how data is distributed
across the cluster. A partitioner is a hash function for computing the token of a row key.
The two strategies are :

• RandomPartitioner : Uniformly distributes data across the cluster based on Mur-
murhash or md5 hash values.
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Internal Type CQL Name Description
BytesType blob Arbitrary hexadecimal bytes (no validation)
AsciiType ascii US-ASCII character string
UTF8Type text, varchar UTF-8 encoded string
IntegerType varint Arbitrary-precision integer
Int32Type int 4-byte integer

InetAddressType inet IP address string in xxx.xxx.xxx.xxx form
LongType bigint 8-byte long
UUIDType uuid Type 1 or type 4 UUID

TimeUUIDType timeuuid Type 1 UUID only (CQL3)
DateType timestamp Date plus time, encoded as 8 bytes since epoch

BooleanType boolean true or false
FloatType float 4-byte floating point
DoubleType double 8-byte floating point
DecimalType decimal Variable-precision decimal

CounterColumnType counter Distributed counter value (8-byte long) (Only
for column value)

Table 4.3.: Data Types in Cassandra

• ByteOrderedPartitioner : Keeps an ordered distribution of data lexically by key
bytes.

The ByteOrderedPartitioner allows ordered scan by row key. For example if primary keys
are username it is possible to scan rows for user whose name fall between Jack and John.
However, using an ordered partitioner is not recommended for the following reasons :
(i) Difficult load balancing (ii) Sequential writes can cause hot spots (iii) Uneven load
balancing for multiple tables [Data].

The column names could be seen as SQL columns. In the Listing 4.2, column names
are declared. However, it is not mandatory. If the column names cannot be known in
advance, in case of dynamic tables, a default validation class can be specified instead of
defining per column data types. An important aspect of column names is that they are
ordered and are often also used as values.

Since Cassandra 0.8.1, it is possible to use composite column. Composite comparators
can be considered as a comparator composed of several other types of comparators. Com-
posite comparator provides the following benefits for data modeling : (i) custom inverted
search indexes: allow more control over the column family than a secondary index (ii) a
replacement for super columns (column of columns) (iii) grouping otherwise static skinny
rows into wider rows for greater efficiency [Datb]. Figure 4.2 gives an example of a com-
posite column with empty values for the column family "Timeline" that will be used in
the third part of this thesis.

Finally, the values can be of all types listed in Table 4.3. When setting a column in
Cassandra, it is possible to set an expiration time, or time-to-live (TTL) attribute.
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Figure 4.2.: Composite Column

4.4. Query Model

Queries on data can be done in different ways:

• Thrift API

– CLI (Command Line Interface)

– Higher level third-party librairies

∗ Hector (java)

∗ Pycassa (python)

∗ Phpyandra (php)

∗ Astynax (java)

∗ Helenus (NodeJS)

• CQL (Cassandra Query Language)

Cassandra CLI is a very good tool for analyzing data and creating new keyspaces or col-
umn families on your cluster. The following command shows how to connect to Cassandra
CLI :
$ cassandra−c l i −host hostname −po r t 9160

The Listing 4.1 and Listing 4.2 show how to create a keyspace and a column family using
CLI. When creating the keyspace, we specified the replica placement strategy (in this
case "SimpleStrategy") and the replication factor.

When using a programming language to query or insert data into Cassandra, third-party
libraries must be used. We will describe that which we will use in our use case : Hector,
a java client for Cassandra.

The class in the Listing 4.31 shows how to insert a single column into Cassandra and
make a query on this column.

1This example has been taken from : https://github.com/zznate/hector-
examples/blob/master/src/main/java/com/riptano/cassandra/hector/example/InsertSingleColumn.java
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1 public class Inser tS ingleColumn {

3 private s t a t i c S t r i n g S e r i a l i z e r s t r i n g S e r i a l i z e r = S t r i n g S e r i a l i z e r . get ( ) ;

5 public s t a t i c void main ( S t r i n g [ ] args ) throws Except ion {
C lus te r c l u s t e r = HFactory . getOrCreateCluster ( " Tes tC lus te r " , " l o c a l h o s t :9160 " ) ;

7

Keyspace keyspaceOperator = HFactory . createKeyspace ( " Keyspace1 " , c l u s t e r ) ;
9 t ry {

Mutator <St r ing > mutator = HFactory . c reateMuta tor ( keyspaceOperator ,
S t r i n g S e r i a l i z e r . get ( ) ) ;

11 mutator . i n s e r t ( " j s m i t h " , " Standard1 " , HFactory . createStr ingColumn ( " f i r s t " , " John " )
) ;

13 ColumnQuery<St r ing , S t r ing , S t r ing > columnQuery = HFactory . createStr ingColumnQuery
( keyspaceOperator ) ;

columnQuery . setColumnFamily ( " Standard1 " ) . setKey ( " j s m i t h " ) . setName ( " f i r s t " ) ;
15 QueryResult <HColumn<St r ing , S t r ing >> r e s u l t = columnQuery . execute ( ) ;

17 System . out . p r i n t l n ( "Read HColumn from cassandra : " + r e s u l t . get ( ) ) ;
System . out . p r i n t l n ( " V e r i f y on CLI w i th : get Keyspace1 . Standard1 [ ’ j s m i t h ’ ] " ) ;

19

} catch ( HectorExcept ion e ) {
21 e . p r in tS tackTrace ( ) ;

}
23 c l u s t e r . getConnectionManager ( ) . shutdown ( ) ;

}
25

}

Listing 4.3: Insert a single column using Hector

Finally, it is possible to use CQL to query Cassandra. CQL is an acronym for Cassandra
Query Language and is really close to SQL. However as Cassandra is a NoSQL database
it doesn’t support joins or subqueries. The easiest way to make queries using CQL is to
use cqlsh, a Python-based command-line client.
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This chapter describes one of the most used tool for processing Big Data: Hadoop.
Although Hadoop is really powerful and robust, it also suffers from some deficiencies.

5.1. Introduction to Hadoop

Hadoop is an open source framework for writing and running distributed applications
which are capable of batch processing large sets of data. Hadoop framework is mainly
known for MapReduce and its distributed file system (HDFS). The MapReduce algo-
rithm, that consists of two basics operations : "map" and "reduce" is a distributed data
processing model that runs on large cluster of machines.

Hadoop started out as a subproject of Nutch created by Doug Cutting. Nutch is itself
an extension of Lucene, a full-featured text indexing and searching library. Nutch tried
to build a complete web search engine using Lucene as its core component. Around
2004, Google published two papers describing the Google File System (GFS) and the
MapReduce framework. Google claimed to use these technologies for scaling its own
search systems. Doug Cutting immediately saw the applicability of these technologies to
Nutch and started to implement the new framework and ported Nutch to it. The new
version of Nutch boosted its scalability. Then Doug Cutting created a dedicated project
that brought together an implementation of MapReduce and a distributed file system.
Hadoop was born. In 2006, Cutting was hired at Yahoo! to work on improving Hadoop
as an open source project [Lam11].
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Figure 5.1.: Hadoop basic architecture

It is important to notice that the main goal of Hadoop is not to speed up data processing
but to make possible to process really huge amount of data by splitting these data in
smaller subsets of data. As shown in Figure 5.1, typically, Hadoop takes as input files
in HDFS, does some computation with the MapReduce framework and outputs files in
HDFS.

A cluster running Hadoop means running a set of daemons on the different servers of the
network. The daemons include :

• NameNode : it is the master of HDFS that directs the slave DataNodes daemons.
It is recommended to run the NameNode on it’s own machine because the daemon
is memory and I/O intensive. The negative aspect to the NameNode is that it is a
single point of failure.

• DataNode : It is responsible of writing and reading HDFS blocs to actual files
on the local filesystem. A DataNode may communicate with other DataNodes to
replicate its data for redundancy.

• Secondary NameNode : it is an assistant daemon for monitoring purposes.

• JobTracker : Manages MapReduce job execution. It is the liaison between the
application and Hadoop. The JobTracker daemon determines the execution plan,
assigns nodes to different tasks. There is only one JobTracker per Hadoop cluster.

• TaskTracker : Manages the execution of individual tasks on the machine. Commu-
nicates to JobTracker in order to obtain task requests and provide task updates.

5.2. Hadoop File System (HDFS)

HDFS stands for Hadoop distributed file system. HDFS is a filesystem designed for
large-scale distributed data processing under MapReduce. It is highly fault-tolerant and
is designed to be deployed on low-cost hardware. The core abstraction in HDFS is the
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Figure 5.2.: HDFS architecture [Fouc]

file. Data is stored in blocks distributed and replicated over many nodes and it is capable
to store a big data set, (e.g 100TB) as a single file. The block size is often range from
64MB to 1GB [Lam11].

Hadoop provides a set of command line utilities that work similarly to the basics Linux
file commands. A command in Hadoop takes the form of : hadoop fs -cmd <args>. It is
therefore possible to copy data from the local filesystem to HDFS. HDFS also provides
an API with which data can be accessed and new data can be appended to existing files.

HDFS is written in Java and was designed for mostly immutable files and may not be
suitable for systems requiring concurrent write operations.

The Figure 5.2 gives an overview of the most important HDFS components.

5.3. MapReduce

MapReduce is a data processing model. Its biggest advantage is the easy scaling of
data processing over many computing nodes. The primitives to achieve data processing
with MapReduce are called mappers and reducers. The data model is quite strict and,
sometimes, decomposing a data processing application into mappers and reducers is not
so easy. But once the application is written in the MapReduce form, scaling it to run
over thousands of machines in a cluster is trivial [Lam11].

The Figure 5.3 shows a very common example of a MapReduce job: word count. A
MapReduce job takes as input files in HDFS. The mapper is responsible for splitting
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Figure 5.3.: MapReduce word count example

lines in the files word by word. Then the data model in MapReduce is based on key -
value pairs. The word (the key) is mapped with a value (the number one in this example).
The last step in the mapper is done by the partitioner. The partitioner decides the target
reducer for the key value pairs. Then, in the mapper the key value pairs are sorted and
grouped by key. Finally, the final result is composed of files in HDFS.

5.4. Hadoop limitations

Actually, Hadoop does its job very well; processing huge set of data. But the model
has some limitations. Firstly, the data model is quite restrictive, it is not always easy
to transform our problems into key value pairs. Moreover, Hadoop can only process a
finished set of data, it means that MapReduce can only process data by batch. Therefore,
when a batch is finished, data is already aged by, at least, the time required by the batch.
Hadoop is definitely not a good fit for processing the latest version of the data.

The Figure 5.4 shows this limitation of processing data by batch. Once the "Batch1" is
terminated data available for the end-user is aged by a least "t1", until the second batch
will be terminated.
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Figure 5.4.: MapReduce is limited to batch processing
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This chapter describes the challenges of real time data processing in the context of Big
Data.

6.1. Real time data processing

As seen before, Hadoop is the most widely used tool for processing large data sets.
However, Hadoop is limited to processing data by batch. When a job is terminated,
data produced are already aged by, at least, the time required by the batch. A solution
would be to add always more nodes to reduce the batch time or get the batch size ever
smaller and smaller. But when you get to the batch size of one it doesn’t make any sense.
Anyway Hadoop will never be a good fit for real-time computing as Yahoo CTO Raymie

32



6.1. Real time data processing 33

Figure 6.1.: Real-time : processing the latest version of the data

Stata explained : "With the paths that go through Hadoop [at Yahoo!], the latency is
about fifteen minutes. [...] It will never be true real-time. It will never be what we call
"next click," where I click and by the time the page loads, the semantic implication of
my decision is reflected in the page" [Met].

So what can be considered as "real-time"? Firstly, it is important to emphasize that this
term can have two different meanings. Real-time can be considered from the point of
view of the data or from the point of view of the end-user.

Real-time from the point of view of the data means processing the latest version of the
data, processing the data as it arrives. The Figure 6.1 shows this notion of real-time,
processing data as it arrives. At time t0, an event happens, at time t1 the event is
completely processed by the system and readable for the end-user or the application.
What is the maximum time between t0 and t1 for which we can say that the event is
processed in real-time? Actually the answer differs for each situation and there is no
perfect definition of what should be true real-time. For instance, if a real-time system
is used when the driver pushes the brake, analyze the situation and brakes. It will be
better that, in this situation, it means a few milliseconds. In contrast, if a real-time
system is used to detect trends in Twitter stream, the notion of real-time can be delayed
by a few seconds. Nowadays, this term is quite a buzzword and is often misused. But
generally, when speaking about real-time system, the maximum latency shouldn’t exceed
a few seconds.

The second notion of real-time, from the point of view of the end-user means getting
a response of a query in real-time (i.e with low latency) as shown in Figure 6.2. The
difference between t1 and t0 should be as small as possible. This notion of real-time can
be compared as REST services or any other RPC, as opposed to batch processing when
the output is available only some minutes or hours later [Per13b].

Before exploring solutions for doing real-time computing let’s analyze why having infor-
mations in real-time could be a great opportunity. Processing data as it arrives give the
opportunity to have information about what happen now in the business. For example, it
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Figure 6.2.: Real-time : getting response of query in real-time

is possible to aggregate data and extract trends about the actual situation. It is possible
to know how many products have been sold during the last few minutes, analyze stocks
and take decisions in real-time, integrate data in a centralized data warehouse, etc.

Being able to process data with low latency, almost immediately is also really useful for
different possibilities : for example it is possible to provide recommendations for an user
on a website based on its history. Huge amount of data can be processed and the results
are available for the end user almost in real-time.

More generally, some questions are essential for a company. The first is what happens in
the business, bring to the light the business situation, trends, patterns and exceptions.
Then it is as important to know why it happens and finally the last question would be
what is likely to happen in the future [MS]. Being able to answer these questions is already
good and not easy but answering these questions based on what is happening now will
definitely be the panacea. Taking the right decision at the right moment could be a real
advantage. A lot of answers are present in the data, the goal is to ask the right questions
and have the right tools to meet them.

Even if there is no standard system for real-time computing yet, a lot of systems with
different approaches are emerging. The following section will give an overview of these
systems.

6.2. Real-time data processing systems

Firstly, it is important to distinguish what is the goal of a real-time system in the context
of Big Data: process data in real-time or get response in real-time. Processing data in
real-time is generally called "stream processing". A stream is an unbounded source of
events. The goal of a stream processing system is to do transformation on these streams
of data in real-time and to make processed data directly available for the end-user or the
application.
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On the oder hand, nowadays, a lot of systems try to process large amount of data with
low latency, almost in real-time, as opposed to Hadoop and MapReduce for example.

This chapter will give an overview of these tools from both side: stream processing and
low latency response.

From the side of stream processing, two main systems are emerging : Storm and Yahoo
S4. Storm tends to become the standard tool for stream processing. Apache Drill and
Cloudera Impala are both based on Google Dremel and try to process petabyte of data
and trillions of records in seconds. Other approaches, like MapReduce Online, tries to
improve MapReduce to get early results of the batch.

6.2.1. MapReduce Online

MapReduce Online proposes a modified MapReduce architecture that allows data to be
pipelined between operators. This extends the MapReduce programming model beyond
batch processing and supports online aggregation, which allows users to see early returns
from a job as it is being computed. The Hadoop Online Prototype (HOP) also supports
continuous queries, therefore applications such as event monitoring and stream processing
can be written [TC09].

The biggest difference between the original MapReduce algorithm and MapReduce Online
is that intermediate data is no more temporary materialized in a local file (on each node)
but is pipelined between operators, while preserving the programming interfaces and fault
tolerance models of previous MapReduce frameworks.

To validate this architecture, a pipelined version of Hadoop was designed, the Hadoop
Online Prototype. Pipelining provides many advantages [TC09]:

• Since reducers begin processing data as soon as it is produced by mappers, they
can generate and refine an approximation of their final answer during the course of
execution.

• Pipelining extends the domain of problems to which MapReduce can be applied,
especially for event monitoring and stream processing.

• Pipelining boosts the performance. Data is delivered to downstream operators more
promptly, which can increase the possibilities for parallelism, improve utilization,
and reduce response time.

6.2.2. Apache Drill

"Apache Drill (incubating) is a distributed system for interactive analysis of large-scale
datasets, based on Google’s Dremel. Its goal is to efficiently process nested data. It is a
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Figure 6.3.: Overview of Drill’s architecture

design goal to scale to 10,000 servers or more and to be able to process petabyes of data
and trillions of records in seconds" [Foua].

It is important to not be confused, Apache Drill is not a tool to process a stream of data,
process data in real-time. But its goal is to get a response of queries on big data sets,
almost in real-time.

Figure 6.3 gives an overview of the high-level architecture of Drill. There are essentially
three parts [Foua]:

• User part : Allows direct interaction with interfaces such as command line interface
(CLI) and a REST interface. Or allows application to interact with Drill.

• Processing part : Drill’s core and pluggable query languages (needs parser that can
turn the respective query language into Drill’s logical plan).

• Data source part : pluggable data sources, either local or in a cluster setup.

The basic execution flow of Drill is the following : A user or machine generated query is
created and handed to a query parser. Then the query is converted into a logical plan
which describes the basic dataflow of the query operation. The logical plan is converted
into a physical (or execution) plan through an optimizer and the execution engine is
responsible for executing the plan.
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6.2.3. Cloudera Impala

Impala is another tool based on Google Dremel and is therefore quite similar to Apache
Drill. Its main goal is to query data, whether stored in HDFS or HBase in real-time.
Impala uses the same metadata, SQL syntax, ODBC driver and user interface as Apache
Hive, providing a unified platform for both batch oriented and real-time queries [MK].

In order to avoid latency, Impala circumvents MapReduce to directly access the data
through a specialized distributed query engine that is quite similar to those found in
parallel RDBMSs [MK].

6.2.4. StreamBase

StreamBase is a company founded in 2003 to commercialize a project called "Aurora" de-
veloped by Mike Stonebraker at MIT. StreamBase has been recently acquired by TIBCO
software on June 11, 2013 and the company name will now be TIBCO StreamBase.

StreamBase is mainly composed of two commercial products : StreamBase LiveView and
StreamBase CEP. StreamBase LiveView is a "push-based real-time analytics solution that
enables business users to analyze, anticipate and alert on important business events in
real-time, and act on opportunities or threats as they occur [Str]." The main use cases
for StreamBase LiveView are mainly in financial domains : trade execution consulting,
trade risk management, FX liquidity analysis, transaction cost analysis, etc [Str].

StreamBase CEP (complex event processing) combines a visual application development
environment and an low-latency high-throughput event server. StreamBase CEP can
be used to develop application for : algorithmic trading, pricing and analytics, fraud
detection, market data management, ... [Str]

6.2.5. IBM InfoSphere

IBM InfoSphere is a commercial product that enables a set of tools for information inte-
gration and management [Wik13c].

The main tools include:

• IBM InfoSphere Information Server: is the core data integration

• IBM InfoSphere Streams: "is an advanced computing platform that allows user-
developed applications to quickly ingest, analyze and correlate information as it
arrives from thousands of real-time sources. The solution can handle very high
data throughput rates, up to millions of events or messages per second" [IBM].

• IBM InfoSphere BigInsights: is a tool on the top of Hadoop. It simplifies the use
of Hadoop through "Big SQL", a SQL interface for Hadoop
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• IBM InfoSphere Warehouse: is a data warehousing and analytics software platform
based on IBM DB2, a scalable relational database

IBM provides a fully integrated solution that contains a classical data warehouse, an
Hadoop platform and a stream processing engine.

6.2.6. Truviso

Even if Truviso seems to be a quite promising tool there is not a lot of information about
it. "Truviso is a continuous analytics, venture-backed, startup headquartered in Foster
City, California developing and supporting its solution leveraging PostgreSQL, to deliver
a proprietary analytics solutions for net-centric customers." [Wik13d]

Truviso combines a stream processing engine, a Java based integration framework and a
visualization front end based on Adobe Flex. The processing engine is embedded into the
open-source PostgreSQL database, uses SQL to continuously query events as they flow
past[Din07].

In order to enable SQL to query infinite data streams, Truviso extended it in two ways.
First it adds windowing capabilities to restrict the amount of data that it would be
exposed to in any instant. Then, Truviso adds some syntactic to define event patterns
that we might want to expect[Din07].

Truviso was acquired by Cisco on May 4, 2012.

6.2.7. Yahoo S4

As Storm, Yahoo S4 is a tool for processing streams in real-time. S4 was initially released
by Yahoo! in October 2010. It is now an Apache Incubator project since September 2011
and is therefore licensed under the Apache 2.0 license.

S4 is a general purpose, near real-time, distributed, decentralized, scalable, event-driven,
modular platform that allows programmers to easily implement applications for process-
ing continuous unbounded streams of data [Foud].

6.2.8. Storm

Storm is probably the open-sourced tool the most used for streams processing. Storm
will be described more deeply in chapter 7.
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Figure 6.4.: The lambda architecture

6.3. The Lambda architecture

We have seen how Hadoop works and its batch processing approach. We have also had
an overview of stream processing tools. Now let’s analyze an approach that mixes both
approaches, batch processing and real-time data processing. This approach is called the
"Lambda Architecture" and has been created by Nathan Marz, the main developer of
Storm.

This approach is divided in three layers :

• The batch layer

• The serving layer

• The speed layer

The Figure 6.4 gives an overview of this approach.

All new data is sent to both the batch and the speed layer. In the batch layer, new data
is appended to the master data set. The master dataset is a set of files in HDFS and
contains the rawest information that is not derived from any other information. It is an
immutable append-only set of data [Mar12].

The batch layer precomputes query functions from scratch continuously, in a "while(true)"
loop. The results of the batch layer are called "batch views" [Mar12].

The serving layer indexes the batch views produced by the batch layer. Basically, the
serving layer is a scalable database that swaps in new batch views as they are made
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available. Due to the latency of the batch layer, the results available from the serving
layer are always out of date by a few hours [Mar12].

The speed layer compensates for the high latency of updates to the serving layer. This
layer uses Storm to process data that have not been taking into account in the last batch
of the batch layer. This layer produces the real-time views that are always up to date and
stores them in databases that are good for both read and write. The speed layer is more
complex than the batch layer but that complexity is compensated by the fact that the
realtime views can be continuously discarded as data makes its way through the batch
and serving layers [Mar12].

Finally, queries are resolved by merging the batch and real-time views.

This approach becomes quite popular and has many benefits. First, the whole approach
can be built with open-source tools, that means no license costs. Then the batch views
are always recomputed from scratch, it is therefore possible to adjust the granularity of
the data in function of its age. An other benefit of recomputing data from scratch is that
if the batch views or the real-time views are corrupted, as the main data set is append
only, it is easy to restart from scratch and recover from the buggy state. Last but not
least, the end-user can always query the latest version of the data due to the speed layer
[Per13b].
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This chapter describes the basis of Storm. This chapter is mainly inspired from the
Storm’s wiki available at the address https://github.com/nathanmarz/storm/wiki

7.1. What is Storm?

Storm is a distributed real-time computation system that is fault-tolerant and guarantees
data processing. Each of these key words will be describe later in this chapter. Storm was
created at Backtype, a company acquired by Twitter in 2011. It is a free and open source
project licensed under the Eclipse Public License. The EPL is a very permissive license,
allowing you to use Storm for either open source or proprietary purposes. Storm makes
it easy to reliably process unbounded streams of data, doing for realtime processing what
Hadoop did for batch processing. Storm is very simple and was designed from the ground
up to be usable with any programming language.[Marb]

Storm can be used for a lots of different use cases :
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1. Stream processing : Storm can be used to process a stream of new data and
update databases in realtime.

2. Continuous computation : Storm can do a continuous query and stream the
results to clients in realtime.

3. Distributed RPC : Storm can be used to parallelize an intense query on the fly.

If setup correctly storm can also be very fast: a benchmark clocked it at over a million
tuples processed per second per node [Marc].

7.2. Components of a Storm cluster

A Storm cluster can be compared to a Hadoop cluster. Whereas on Hadoop you run
"MapReduce jobs", on Storm you run "topologies". The main difference between "jobs"
and "topologies" is that a MapReduce job eventually finishes and processes a finished
dataset, whereas a topology processes messages forever (or until you kill it) as they
arrive, in real-time [Mar11].

There are two kinds of nodes on a Storm cluster, the master and the worker nodes. The
master node runs a daemon called "Nimbus". Nimbus can be compared to the Hadoop’s
JobTracker and is responsible for distributing code around the cluster, assigning tasks to
machines and monitoring failures.

Each worker node runs a daemon called the "Supervisor". The supervisor listens for
work assigned to its machine and manages worker processes as necessary, based on what
Nimbus has assigned to it. Each worker process executes a subset of a topology. A
running topology consists of many worker processes distributed across many machines.

All coordination between Nimbus and the Supervisors is done through Zookeeper. Zookeeper
is a centralized service for maintaining configuration information, naming, providing dis-
tributed synchronization and group services.

7.3. Streams and Topologies

The core abstraction in Storm is the "stream". A stream is just an unbounded sequence
of tuples. A tuple is a named list of values, and a field in a tuple can be an object of
any type. Storm provides the primitives for transforming a stream into a new stream in
a distributed and reliable way.

The role of a storm project is to process streams. In order to process these streams we
have spouts and bolts.

A spout is simply a source of streams. A spout can read tuples from different sources,
for example a queue system (like Kestrel or Kafka) an API or simply a plain text file,
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Figure 7.1.: An example of a simple Storm Topology

and emit them as a stream. A lot of different spouts are available at the address https:
//github.com/nathanmarz/storm-contrib

A bolt does single-step stream transformations. A bolt consumes any number of streams,
does some computation and possibly emits new streams. A bolt can receive its stream
from a spout or another bolt.

The spouts and bolts are packaged into a "topology" which is the top-level abstraction
that you submit to Storm clusters for execution. A topology is a graph of stream trans-
formations where each node is either a spout or a bolt. A topology representation is
shown in Figure 7.1. Edges in the graph indicate which bolts are subscribing to which
streams.

In Storm, and in stream processing in general it is really important that the tasks are
able to process the data at a rate higher than new data arrives. Otherwise, the tuples will
wait to be processed and possibly timeout and failed to be processed. Hopefully, each
process in a Storm topology can be executed in parallel. In a topology, we can specify
for each process how much parallelism we want, and then Storm will spawn that number
of thread across the cluster in order to do the execution.

The notion of parallelism is not so easy to understand. Therefore, it will be described
deeper in the next section.

https://github.com/nathanmarz/storm-contrib
https://github.com/nathanmarz/storm-contrib
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Figure 7.2.: Relationships of worker processes, executors and tasks. [Nol12]

7.4. Parallelism hint

The following example shows how the parallelism hint is specified for a bolt :
b u i l d e r . s e t B o l t ( " BoltName " , new BoltName ( ) , 2)

2 . shu f l l eGroup ing ( " Prev iousBo l t " ) ;

First with the method setBolt we add a new bolt to the topology, we specify a name for
this bolt and a new instance of this bolt is declared. The number "two" represents the
number of parallelism that we want to use for this bolt. The notion of grouping will be
covered later in this chapter.

In order to run a topology, Storm distinguishes three main entities :

• Worker processes

• Executors

• Tasks

The Figure 7.2 describes the relationships between these entities.

A worker process belongs to a specific topology and executes a subset of a topology. Many
worker processes may be run on a machine in a Storm cluster. Each worker process runs
executors for a specific topology [Nol12].

An executor is nothing else than a thread spawned by a worker process. It may run one
or more tasks for the same spout or bolt. The number of executors for a component can
change over time. What we called parallelism hint in Storm actually corresponds to the
number of executors, so the number of threads.
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Finally, the tasks perform the data processing. Even if the number of executors for a
component can change over time, the number of tasks for a component is always the
same as long as the topology is running. By default, Storm will run one task per thread
[Nol12].

In the beginning of this section we saw how to specify the number of parallelism hints, so
the number of executors (threads) for a specific bolt. In order to specify the number of
worker processes to create for the topology across machines, the method "setNumWork-
ers" of the class config must be used.

For specifying the number of tasks to create per component, we should use the method
"setNumTasks" as shown in the following sample code :
b u i l d e r . s e t B o l t ( " BoltName " , new BoltName ( ) , 2)

2 . setNumTasks ( 4 )
. shu f l l eGroup ing ( " Prev iousBo l t " ) ;

In the above example, Storm will run two tasks (4/2) per executor, i.e. per thread.

The understanding of parallelism in a Storm topology should now be clear. But another
question arises: how to send tuples between set of tasks? To which task of a Bolt a
specific tuple should go? The next section will answer this question.

7.5. Stream groupings

To introduce the notion of stream grouping, let’s take an example. We could imagine
that a bolt sends tuples with the following fields : timestamp, webpage. This could be a
simple clickstream. The next bolt which has a parallelism hint of four is responsible for
counting the clicks by webpage. It is therefore mandatory that the same webpages go to
the same task. Otherwise, we will need to merge the results in a further process and this
is not the goal. Therefore, we need to group the stream by the field webpage.

The different kinds of stream grouping are described in the Table 7.1.

In most cases shuffle and fields grouping will be mainly used.

It is also possible to implement our own stream grouping by implementing the "Custom-
StreamGrouping" interface.

7.6. Fault-tolerance in Storm

Fault-tolerance is the property that enables a system to continue operating properly in
the event of failure of some of its components [Wik13b]. Especially in case of distributed
system, where big clusters can be composed of hundreds or even thousand nodes, it is
essential that the system can handle failures. The list of things that can go wrong is
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Name Description
Shuffle grouping Tuples are randomly distributed across the bolt’s tasks in a way

such that each bolt is guaranteed to get an equal number of
tuples.

Fields grouping The stream is partitioned by the fields specified in the grouping.
All grouping The stream is replicated across all the bolt’s tasks. Use this

grouping with care.
Global grouping The entire stream goes to a single one of the bolt’s tasks. Specif-

ically, it goes to the task with the lowest id.
None grouping This grouping specifies that you don’t care how the stream is

grouped. Currently, none groupings are equivalent to shuffle
groupings. Eventually though, Storm will push down bolts with
none groupings to execute in the same thread as the bolt or spout
they subscribe from (when possible).

Direct grouping This is a special kind of grouping. A stream grouped this way
means that the producer of the tuple decides which task of the
consumer will receive this tuple. Direct groupings can only be
declared on streams that have been declared as direct streams.
Tuples emitted to a direct stream must be emitted using one
of the emitDirect methods. A bolt can get the task ids of its
consumers by either using the provided TopologyContext or by
keeping track of the output of the emit method in OutputCol-
lector (which returns the task ids that the tuple was sent to).

Local or shuffle grouping If the target bolt has one or more tasks in the same worker
process, tuples will be shuffled to just those in-process tasks.
Otherwise, this acts like a normal shuffle grouping.

Table 7.1.: Built-in Stream grouping [Marb]
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almost unbounded. It can be hardware issues, for example a hard disk can be broken
or the fan doesn’t work anymore etc. Problems can also come from the network, the
software, user’s code, etc.

How does Storm react in case of failures? In order to answer this question, let’s analyze
the different situations that could happen.

First, if a worker dies, the supervisor will restart it. But if it continuously fails and is
unable to heartbeat to Nimbus, Nimbus will reassign this worker to another machine
[Marb].

If the whole node dies, the tasks assigned to that machine will time-out and Nimbus will
reassign those tasks to other machines [Marb].

If Nimbus or Supervisor deamons die, no worker processes will be affected. This is in
contrast to Hadoop, where if JobTracker dies, all the running jobs are lost. To ensure
that the system works properly, Nimbus and Supervisors deamons must be run under
supervision. So in case they die, they simply restart as if nothing happened. Storm is a
fail-fast system, which means that the processes will halt whenever an unexpected error
is encountered. Storm is designed so that it can safely halt at any point and recover
correctly when the process is restarted. This is why Storm keeps no state in-process.
Therefore, if Nimbus or the Supervisors restart, the topologies are unaffected [Marb].

In our use cases, the tool used to supervise processes is called "supervisord". Supervisord
is a client/server system that allows its users to control a number of processes. Don’t be
confuse, even if the name is the same, "Supervisor" the tool used to supervise processes
has nothing to do with the Storm’s deamon called supervisor!

Therefore, Nimbus is not really a single point of failure. If the Nimbus node is down, the
workers will still continue to function. Additionally, supervisors will continue to restart
workers if they die. However, without Nimbus, workers won’t be reassigned to other
machines when necessary [Marb].

7.7. Guaranteeing message processing

In a topology, it is possible to guarantee that each message coming off a spout will be
fully processed. First, let’s define the term "fully processed". The spout tuple (the tuple
coming off the spout) can spawn many tuples. Consider the following example :

1 TopologyBui lder b u i l d e r = new TopologyBui lder ( ) ;

3 b u i l d e r . setSpout ( " l i n e s " , new readFi leSpout ( ) , 1) ;
b u i l d e r . s e t B o l t ( " s p l i t " , new s p l i t B o l t ( ) , 2) .

5 shuf f leGroup ing ( " l i n e s " ) ;
b u i l d e r . s e t B o l t ( " count " , new countBo l t ( ) , 4) .

7 f i e ldsGroup ing ( " s p l i t " , new F ie lds ( " word " ) ) ;
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Figure 7.3.: Tree of tuples

This simple sample topology reads a file line by line. Each line is emitted as a tuple. A
bolt splits the lines word by word and the last bolt emits, for each word, the number of
times it has been seen. The tuple tree will look like the Figure 7.3 [Marb].

Storm considers a spout tuple fully processed when every tuple in the tree has been
processed. A spout tuple is considered as failed when its tree of tuples fails to be processed
within a specified timeout. This timeout can be configured (carefully) and is 30 seconds
by default. In other words, if the spout tuple is still in the topology after the timeout, it
will fail [Marb].

The following listing represents the interface that spouts implement :
1 public inter face ISpout extends S e r i a l i z a b l e {

void open (Map conf , TopologyContext context , SpoutOutputCol lec tor c o l l e c t o r ) ;
3 void nextTuple ( ) ;

void c lose ( ) ;
5 void ack ( Object msgId ) ;

void f a i l ( Object msgId ) ;
7 }

First, Storm processes tuple after tuple in the nextTuple() method. The spout uses
SpoutOutputCollector provided in the open method to emit a tuple and for each tuple a
message id. Emitting a tuple in the nextTuple method looks like :

1 _ c o l l e c t o r . emit (new Values ( " f i e l d s 1 " , " f i e l d s 2 " , 3) , msgId ) ;

Then the tuple is consumed by the bolts and Storm tracks the tree of tuples generated. If
Storm detects that a tuple is fully processed, it will call the ack method on the originated
spout task with the message id that the spout provided. In contrast, if the tuple times-out,
Storm will call the fail method on the spout [Marb].
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For example when using a queue messaging system, tuples in the topology will be in a
pending state in the queue. If the tuple is fully processed the ack method removes the
tuple from the queue. Otherwise the fail method tells the queue that the message with a
specific id needs to be replayed.

The user needs to do two things in order to benefit from Storm reliability capabilities.
First, tell Storm whenever a new link in the tree of tuples is created. Second, tell Storm
when a tuple’s process is over. Therefore, Storm can detect when the tree of tuples is
fully processed and can ack or fail the spout in consequence [Marb].

Specifying a link in the tuple tree is called anchoring. Anchoring is done when the tuple is
emitted. The following listing represents the "execute" method of a bolt in which tuples
are anchored when they are emitted:

1 public void execute ( Tuple tup l e ) {
S t r i n g sentence = tup le . g e t S t r i n g ( 0 ) ;

3

for ( S t r i n g word : sentence . s p l i t ( " " ) ) {
5 _ c o l l e c t o r . emit ( tup le , new Values ( word ) ) ; / / Spec i f y ing the i npu t t up l e as the f i r s t

argument to emit anchored tup le
}

7 _ c o l l e c t o r . ack ( t up l e ) ; / / Ack the tup l e i n the t ree o f t up l e
}

Since the word tuple is anchored, the spout tuple at the root of the tree will be replayed
later on if the word tuple failed to be processed downstream. In contrast, the following
listing emit an unanchored tuple :
_ c o l l e c t o r . emit (new Values ( word ) ) ;

Therefore, if the tuple fails to be processed downstream, the spout tuple (the root tuple)
won’t be replayed. Depending on the use case, it can be useful to emit unanchored tuples.

Finally, we need to specify when a tuple’s process is over. This is done by using the ack
and fail method on the OutputCollector. The fail method can be called to immediately
fail the spout tuple. For example, if the tuple failed to be stored in the database we can
explicitly fail the input tuple. Therefore, the tuple can be replayed faster than waiting
for the tuple to time-out.

It is essential that each tuple is either acked or failed. Storm uses memory to track the
tuples. Therefore, if tuples are not acked or failed, the task will eventually run out of
memory.

Storm has an interface called BasicBolt that automatically anchors the tuple when emit-
ting and acks it at the end of the "execute" method. The split sentence example can be
written as a BaseBasic bolt like the following listing :

1 public class Spl i tSentence extends BaseBasicBolt {
public void execute ( Tuple tup le , Bas icOutpu tCo l lec to r c o l l e c t o r ) {

3 S t r i n g sentence = tup le . g e t S t r i ng ( 0 ) ;

5 for ( S t r i n g word : sentence . s p l i t ( " " ) ) {
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c o l l e c t o r . emit (new Values ( word ) ) ;
7 }

}
9 public void dec la reOutpu tF ie lds ( Outpu tF ie ldsDec la re r dec la re r ) {

dec la re r . dec lare (new F ie lds ( " word " ) ) ;
11 }

}

The execute method does exactly the same as the previous example, the tuple is anchored
when emitted and acked at the end of the execute method.

In order to track the tree of tuples, Storm has a set of special "acker" tasks. When
an acker sees that the tree is fully processed it sends a message to the spout task that
created the spout tuple. By default, Storm uses one acker task but this number can
be specified in the topology configuration using config.TOPOLOGY_ACKERS. It is
generally recommended to setup the number of ackers equal to the number of workers
[Marb].

7.7.1. Transactional topologies

Storm guarantees that the tree of tuple for a specific spout tuple will be fully processed.
Now let’s say that a part of the tuple of the tree has been processed, and then a tuple
of the tree fails to be processed. Therefore, the spout tuple will be replay and the tuples
that have already been processed will be processed again. It can be a problem if, for
example we want to count the occurrences of words in a sentence. Some words will be
counted more than once.

A transactional topology guarantees that tuples will be processed exactly once.

7.8. Trident

Trident is a high-level abstraction on top of Storm like Pig or Hive in Hadoop. Trident
contains joins, aggregations, grouping, functions and filters. In addition Trident adds
primitives for doing stateful incremental processing on top of any database or persistent
store [Marb].

Let’s look at an illustrative example of Trident that will do two things [Marb]:

1. Compute streaming word count from an input stream of sentences

2. Implement queries to get the sum of the counts for a list of words

The following listing represents the implementation of a such wordcount example :
Tr identTopology topology = new Tr identTopology ( ) ;

2 Tr iden tS ta te wordCounts =
topology . newStream ( " spout1 " , new spout ( ) )

4 . each (new F ie lds ( " sentence " ) , new S p l i t ( ) , new F ie lds ( " word " ) )
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. groupBy (new F ie lds ( " word " ) )
6 . pe rs is ten tAggrega te (new MemoryMapState . Factory ( ) , new Count ( ) , new F ie lds ( " count " ) )

. p a r a l l e l i s m H i n t ( 6 ) ;

First, a TridentTopology object is created. Then, TridentTopology has a method called
"newStream" that simply creates a new stream of data into the topology reading from an
input source. An input source can be from different types as in a typical Storm topology.
For example it can be queue brokers like Kestrel of Kafka or a simple spout that reads
information from an external source [Marb].

Then Trident processes the stream as small batches of tuples. Depending on the incoming
throughput, the size of batches can vary from thousands to millions of tuples [Marb].

Back to our example, the spout emits a stream that contains one field called "sentence".
The next line applies the split function that is responsible for splitting the sentence word
by word. The following listing describes the implementation of the split function :

1 public class S p l i t extends BaseFunction {
public void execute ( Tr iden tTup le tup le , T r i d e n t C o l l e c t o r c o l l e c t o r ) {

3 S t r i n g sentence = tup le . g e t S t r i n g ( 0 ) ;
for ( S t r i n g word : sentence . s p l i t ( " " ) ) {

5 c o l l e c t o r . emit (new Values ( word ) ) ;
}

7 }
}

The implementation is really straightforward. The class extends "BaseFunction" and the
execute method simply splits the string sentence and emits each word.

The stream is grouped by the field called "word" and then each group is persistently
aggregated using the Count aggregator. The persistentAggregate function knows how to
store and update the results of the aggregation in a source of state. In this example, the
word counts are kept in memory but it would have been really easy to use Cassandra,
for example. The values stored by persistentAggregate represent the aggregation of all
batches ever emitted by the stream [Marb].

Finally, the last line specifies the number of parallelism hints to use.

7.9. Storm UI

Storm UI is a web interface that shows information about Storm’s cluster and running
topologies. It is the good place to analyze the performance of our running topologies and
see what’s going wrong in case of problems.

In order to enable Storm UI, it is necessary to run a deamon called "UI" on the nimbus
host. The Storm UI is accessible to the url : http://{nimbus host}:8080



Part III.

Storm : use cases

52



8
Input data

8.1. Twitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.1.1. Public streams . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.1.2. Data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.1.3. Rate limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.1.4. Other providers of Twitter data . . . . . . . . . . . . . . . . . . 55

8.2. Bitly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.3. Link between Twitter and Bitly . . . . . . . . . . . . . . . . . . 57

This chapter describes the type of data that is mainly used for running Storm topologies.

8.1. Twitter

Twitter provides a full range of tools for developers. As Storm is mainly used as a stream
processing system, we first tried to use, the streaming API. The sets of streaming APIs
offered by Twitter give developers low latency access to Twitter’s global stream of Tweet
data.

Twitter offers several streaming endpoints [Twi]:

• Public streams : streams of the public data flowing through Twitter. Suitable for
following specific topics, users and data mining.

• User streams : containing roughly all the data corresponding with a single user’s
view of Twitter.

• Site streams : multi-version of user streams. Site streams are intended for servers
which must connect to Twitter on behalf of many users.

53
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Parameter Description
follow A comma separated list of user IDs, indicating the users

to return statuses for in the stream.
track Keywords to track. Phrases of keywords are specified by

a comma-separated list.
locations Specifies a set of bounding boxes to track.
delimited Specifies whether messages should be length-delimited.

stall_warnings Specifies whether stall warnings should be delivered.

Table 8.1.: Parameters for the "POST statuses/filter" endpoint

8.1.1. Public streams

Public streams are the most suitable streams for doing some global analysis in real-time
on Twitter. Public streams are divided in three endpoints :

• POST statuses/filter

• GET statuses/sample

• GET statuses/firehose

The "POST statuses/filter" endpoint returns statuses that match one or more filter pred-
icates. Multiple parameters can be specified for filtering the stream as shown in the
Table 8.1. At least one predicate parameter (follow, track, locations) must be specified.

The resource URL for accessing this endpoint is the following :

https://stream.twitter.com/1.1/statuses/filter.json

And parameters can be added, for example : track=foo&user=1234.

Then the "GET statuses/sample" endpoint returns a small random sample of all public
statuses. For example, this endpoint is good for having information about what are the
trending topics of the moment. The resource URL is :

https://stream.twitter.com/1.1/statuses/sample.json

Finally, the firehose endpoint returns all public statuses. However this endpoint requires
special permission to access.

8.1.2. Data format

If nothing is specified, the data format returned is JSON. The Listing 8.1 is an example
of a status update (a tweet) encoded in JSON.

The data contains information about the tweet : date of creation, text of the tweet,
location from where the tweet has been posted, eventual hashtags, urls or user mentions,
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etc. If the tweet is a retweet, information about the original tweet is also present. Besides
information about the tweet, data also contains information about the user who posted
the tweet.

8.1.3. Rate limit

The firehose is a source of all public streamed tweets. Typical accounts have access
to around 1% of its totality. When using the filter endpoint, if the overall amount of
matching tweets exceeds this limit of 1%, a rate limit notice telling how many tweets
were not served will be display. It is difficult to increase this rate limit for the Twitter
API; the best choice will be to look at other providers of Twitter data.

8.1.4. Other providers of Twitter data

The Twitter API is good if our needs don’t exceed the rate limit. Otherwise, it will be
better to choose an other provider. As we will see in our use cases, we will need much
more than 1% of the whole stream. GNIP1 is the largest provider of social data and is
a partner of Twitter since 2010. GNIP provides the full Twitter firehose and, for our
use case, we got the whole Twitter data for june 2012. Although the syntax is slightly
different from Twitter, the main attributes and information are the same.

The GNIP dataset is a set of compressed text files. The files are distributed across
folders, one per day. The whole dataset is about 800GB of compressed text files. The
main difficulty with this dataset is that Storm is designed to process streams and not a
finished set of data. To bypass this problem, we will simulate a stream by reading the
files line by line and pushing them to a messaging queue system named Kafka. All the
details will be described in chapter 10.

8.2. Bitly

Bitly.com is a very well known link shortener. It is mainly used for shortening links,
especially on Twitter. For example, if someone wants to post a tweet containing a link
to Wikipedia page of Albert Einstein, he can shortenize the link http://en.wikipedia.
org/wiki/Albert_Einstein with Bitly. The final URL will be http://bit.ly/4za3r.
In this url, "4za3r" is the code used by Bitly to match the shortened URL with the
original one. In this report, we will simply call this code the Bitly code.

Bitly is hosted by Verisign and this is why this company can access the whole bitly
stream. The bitly stream is actually separated in two streams : bitly encode and bitly

1http://www.gnip.com

http://en.wikipedia.org/wiki/Albert_Einstein
http://en.wikipedia.org/wiki/Albert_Einstein
http://bit.ly/4za3r
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{
2 " c reated_at " : " Sat Apr 13 16:15:44 +0000 2013 " ,

" i d " :323107241500753920 ,
4 " i d _ s t r " : " 323107241500753920 " ,

" t e x t " : "My car needs a shower asap , thank you dust storm f o r t h a t : ) " ,
6 " source " : " \ u003ca h re f = \ " h t t p : \ / \ / t w i t t e r . com \ / download \ / iphone \ " r e l = \ " no fo l low \ " \

u003eTwi t ter f o r iPhone \ u003c \ / a \ u003e " ,
" t runca ted " : false ,

8 " i n _ r e p l y _ t o _ s t a t u s _ i d " : null ,
" i n _ r e p l y _ t o _ s t a t u s _ i d _ s t r " : null ,

10 " i n_ rep l y_ to_use r_ id " : null ,
" i n _ r e p l y _ t o _ u s e r _ i d _ s t r " : null ,

12 " in_reply_to_screen_name " : null ,
" user " : {

14 " i d " :112814547 ,
" i d _ s t r " : " 112814547 " ,

16 "name" : " Farah " ,
" screen_name " : " Farah327 " ,

18 " l o c a t i o n " : "www. changebyfas . com" ,
" u r l " : null ,

20 " d e s c r i p t i o n " : " Designer , engineer−to−be , ent repreneur . \ nInstagram : @changebyfas &
@thedesignerkw " ,

" p ro tec ted " : false ,
22 " fo l l owers_coun t " :644 ,

" f r i ends_coun t " :592 ,
24 " l i s t e d _ c o u n t " : 1 ,

" c reated_at " : " Tue Feb 09 20:05:32 +0000 2010 " ,
26 " f avou r i t es_coun t " :14 ,

" u t c _ o f f s e t " :−18000,
28 " time_zone " : " Qui to " ,

" geo_enabled " : false ,
30 " v e r i f i e d " : false ,

" s ta tuses_count " :25940 ,
32 " lang " : " en " ,

" con t r ibu to rs_enab led " : false ,
34 " i s _ t r a n s l a t o r " : false ,

" p ro f i l e_background_co lo r " : "C0DEED" ,
36 " pro f i le_background_image_ur l " : " h t t p : \ / \ / a0 . twimg .com \ / images \ / themes \ / theme1 \ / bg . png " ,

" p ro f i le_background_ image_ur l_h t tps " : " h t t ps : \ / \ / s i 0 . twimg .com \ / images \ / themes \ / theme1 \ / bg .
png " ,

38 " p r o f i l e _ b a c k g r o u n d _ t i l e " : false ,
" p r o f i l e _ i m a g e _ u r l " : " h t t p : \ / \ / a0 . twimg .com \ / p ro f i l e_ images \/3477060504\/88078

ca8e010538a10717b907514e888_normal . jpeg " ,
40 " p r o f i l e _ i m a g e _ u r l _ h t t p s " : " h t t ps : \ / \ / s i 0 . twimg .com \ / p ro f i l e_ images \/3477060504\/88078

ca8e010538a10717b907514e888_normal . jpeg " ,
" p r o f i l e _ b a n n e r _ u r l " : " h t t ps : \ / \ / s i 0 . twimg .com \ / p ro f i l e_banners \/112814547\/1358855945 " ,

42 " p r o f i l e _ l i n k _ c o l o r " : " 0084B4" ,
" p r o f i l e _ s i d e b a r _ b o r d e r _ c o l o r " : "C0DEED" ,

44 " p r o f i l e _ s i d e b a r _ f i l l _ c o l o r " : "DDEEF6" ,
" p r o f i l e _ t e x t _ c o l o r " : " 333333 " ,

46 " prof i le_use_background_image " : true ,
" d e f a u l t _ p r o f i l e " : true ,

48 " de fau l t _p ro f i l e_ image " : false ,
" f o l l o w i n g " : null ,

50 " fo l l ow_reques t_sen t " : null ,
" n o t i f i c a t i o n s " : nul l

52 } ,
" geo " : null ,

54 " coord ina tes " : null ,
" p lace " : null ,

56 " c o n t r i b u t o r s " : null ,
" re tweet_count " : 0 ,

58 " f a v o r i t e _ c o u n t " : 0 ,
" e n t i t i e s " : {

60 " hashtags " : [ ] ,
" u r l s " : [ ] ,

62 " user_mentions " : [ ]
} ,

64 " f a v o r i t e d " : false ,
" retweeted " : false ,

66 " f i l t e r _ l e v e l " : "medium" ,
" lang " : " en "

68 }

Listing 8.1: A Tweet encoded in JSON
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{
2 " a " : " Moz i l l a \ / 5 . 0 ( Symbian \ / 3 ; Series60 \ / 5 . 2 NokiaN8−00\/014.002; P r o f i l e \ / MIDP−2.1

Con f i gu ra t i on \ / CLDC−1.1 ) AppleWebKit \ / 525 (KHTML, l i k e Gecko ) Version \ / 3 . 0 BrowserNG
\ / 7 . 2 . 8 . 1 0 3gpp−gba " ,

" c " : "CR" ,
4 " nk " : 1 ,

" t z " : " America \ / Costa_Rica " ,
6 " gr " : " 08 " ,

" g " : " 9aL4Ni " ,
8 " h " : " cbzia0 " ,

" k " : " 504ede68−002e2−02553−3d1cf10a " ,
10 " l " : " o v i l a " ,

" a l " : " es ; q=1.0 , n l ; q=0.5 ,en−us , en ; q=0.5 , f r−ca , f r ; q=0.5 , pt−br , p t ; q=0.5 " ,
12 " hh " : " b i t . l y " ,

" r " : " d i r e c t " ,
14 " u " : " h t t p : \ / \ / ov i . l a \ / pub l i c −1−3\/ t rk temp " ,

" t " : 1348463726,
16 " hc " : 1270420113,

" cy " : "San J o s " ,
18 " l l " : [ 9.933300 , −84.083298 ] ,

" i " : " 92f1f55de2ca9383ce827ed65324ee1d "
20 }

Listing 8.2: A Bitly tuple in JSON

decode. The bitly encode stream contains every new short link created and the bitly
decode stream contains all the clicks on the shortened links.

In our use cases, we will mainly use the bitly decode stream. For a better understanding,
the bitly decode stream will be called "bitly clicks" stream in this report. The Bitly decode
is encoded in JSON and, as shown in the Listing 8.2, several attributes are present. For
instance, there are information about the browser used, the Bitly code, the timestamp
when the user clicked on the link and several geolocation information.

For our use cases we got the whole Bitly stream for june 2012 from VeriSign . This dataset
consists of compressed text files and folders. The files are distributed in directories, one
per day. The directories contain, generally one file per hour, so 24 files per directory. One
month of Bitly stream represents about 30GB of compressed text files.

The compression used for the Bitly and Twitter (GNIP) files is LZO (Lempel-Ziv-Oberhumer).

8.3. Link between Twitter and Bitly

Bitly and Twitter are often used together. A tweet is limited to 140 characters. Therefore,
when we want to post a tweet containing a link, the URL should be as short as possible.
A good solution would be to first shorten the link with Bitly, and then post the shortened
URL. Even if Twitter uses now its own link shortener on twitter.com, several applications
for posting tweets still use Bitly as link shortener.

Having both Bitly and Twitter streams can be really interesting for doing different anal-
ysis. For instance, it will be possible to get tweets that contain a Bitly link and then
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establish the timeline of the tweet, retweets and clicks. Having this information, it will
also be possible to provide some advices on when and how to post a tweet.
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This chapter explains the development of a specific topology. Each component of a
topology will be described.

9.1. Description of this use case

With this topology, we only used the bitly clicks stream to do some simple computation.
This use case is a very good example to explore what can be done with Storm, test
different possibilities, discover the possible issues and understand the main principles.
Moreover, some bolts could be reused for other use cases.

As often when starting with a new tool, the first goal is to be able to run the project in
local without any errors. Storm gives you the possibility to test your topology in local
very easily. Before describing how to run a topology in local, let’s analyze what should
be present in our new topology. As seen in chapter 7 a topology is composed of spouts
and bolts. Each spout and each bolt is declared in a specific java class and, therefore,
in a specific file. A good practice would be to group every bolt and every spout under a
specific package.

In addition to spouts and bolts classes, a main method must be present in order to be
able to run the topology. This main method is responsible for :

• Setting all the configuration parameters. For example the number of workers, the
maximum number of pending tuples, the tuple timeout, etc.

59
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public class Bi t l yTopo logy {
2

/∗−−−−−− CONFIGURATION −−−−−−−−−∗ /
4 private s t a t i c f i n a l i n t t imeToStore = 10; / / seconds

private s t a t i c f i n a l i n t maxSpoutPending = 100000;
6 private s t a t i c f i n a l i n t numWorkers = 2;

private s t a t i c f i n a l i n t numAckers = 1;
8 private s t a t i c f i n a l i n t messageTimeout = 30; / / seconds

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /
10

private s t a t i c Loca lC lus te r c l u s t e r ;
12

public s t a t i c void main ( S t r i n g [ ] args ) throws I n te r rup tedExcep t ion , A l readyAl iveExcept ion ,
Inva l idTopo logyExcept ion {

14 TopologyBui lder b u i l d e r = new TopologyBui lder ( ) ;

16 b u i l d e r . setSpout ( " inputStream " , new HttpStream ( ) ) ;

18 b u i l d e r . s e t B o l t ( " getValues " , new GetValuesFromJson ( ) , 2) .
shu f f leGroup ing ( " inputStream " ) ;

20 b u i l d e r . s e t B o l t ( " count " , new Count ingBol t ( ) ,2 ) .
f i e ldsGroup ing ( " getValues " , new F ie lds ( " user_ id " ) ) ;

22 b u i l d e r . s e t B o l t ( " s torage " , new StoreToFi le ( ) ,1 ) .
shu f f leGroup ing ( " count " ) ;

24

/∗−−−−−− SETUP CONFIG −−−−−−−−∗ /
26 Conf ig conf = new Conf ig ( ) ;

conf . setNumWorkers ( numWorkers ) ;
28 conf . setMaxSpoutPending ( maxSpoutPending ) ;

conf . setMessageTimeoutSecs ( messageTimeout ) ;
30 conf . setDebug ( true ) ;

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /
32

/∗−−−−− LOCAL CLUSTER −−−−−−−∗ /
34 c l u s t e r = new Loca lC lus te r ( ) ;

conf . setDebug ( fa lse ) ;
36 c l u s t e r . submitTopology ( " B i t l yTopo logy " , conf , b u i l d e r . createTopology ( ) ) ;

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /
38 }

}

Listing 9.1: The main method of a Storm Topology

• Setting the different spouts and bolts, specifying which bolt subscribes to which
spout(s) or bolt(s)

• Running the topology in local or in a cluster of machines

A simplified example of a main method of a topology is shown in Listing 9.1

From lines four to eight, we simply declare some configuration variables. TopologyBuilder
in line 14 exposes the java API to specify a topology to be executed by Storm. Then,
we define then our spout and bolts with the method setSpout or setBolt. Each Bolt
must also subscribe to specific streams of another component (Bolt or Spout). Saying de-
clarer.shuffleGrouping("getValues") means that this Bolt subscribes to the default stream
of the bolt called "getValues".

It is possible for a bolt to emit more than one stream and also to subscribe to more than
one stream. Consider the following example :

1 s e t B o l t ( " BoltC " , new BoltC ( ) , 4)
. shu f f leGroup ing ( " Bol tA " , " stream1 " )
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3 . shu f f leGroup ing ( " Bol tA " , " stream2 " )
. f i e ldsGroup ing ( " Bol tB " , new F ie lds ( " co l o r " ) ) ;

In this example, the BoltC subscribes to the stream1 and stream2 of BoltA and also
to the default stream of BoltB. Due to shuffle grouping, the tuples from "BoltA" are
randomly distributed across the tasks of "BoltC". The stream of BoltB is grouped by
the field named "color". It means that tuples with the same "color" will always go to the
same task.

Lines 26 to 30 in the Listing 9.1 are used to set the configuration parameters. The four
following configurations are very common :

• TOPOLOGY_WORKERS (set with setNumWorkers) : "How many processes should
be spawned around the cluster to execute this topology. Each process will execute
some number of tasks as threads within them. This parameter should be used in
conjunction with the parallelism hints on each component in the topology to tune
the performance of a topology."

• TOPOLOGY_MAX_SPOUT_PENDING (set with setMaxSpoutPending) : "The
maximum number of tuples that can be pending on a spout task at any given time.
This config applies to individual tasks, not to spouts or topologies as a whole. A
pending tuple is one that has been emitted from a spout but has not been acked or
failed yet. Note that this config parameter has no effect for unreliable spouts that
don’t tag their tuples with a message id."

• TOPOLOGY_MESSAGE_TIMEOUT_SECS (set with setMessageTimeoutSecs)
: "The maximum amount of time given to the topology to fully process a message
emitted by a spout. If the message is not acked within this time frame, Storm will
fail the message on the spout. Some spouts implementations will then replay the
message at a later time."

• TOPOLOGY_DEBUG (set with setDebug) : "When set to true, Storm will log
every message that’s emitted." [Mara]

Storm has two modes of operations : local and distributed mode. For this use case, only
the local mode will be used. In local mode, Storm simulates worker nodes with threads.
This mode is really useful for developing and testing topologies. In Listing 9.1, the lines
34 to 36 are responsible for running the topology in local mode.

Now that we are able to run a simple topology in local mode, let’s analyze the Figure 9.1
that represents the schema of this use case. Initially, we will go quickly through the
topology and we will then analyze each part more deeply.

The start, as always in Storm, is the Spout, called "input Stream" in the Figure 9.1. The
Spout simply reads a file line by line capturing through a streaming server. Then the
values are extracted form the JSON line. Only a few fields are required for this use case,
we will mainly use the final URL and the timestamp. An implementation of a bloom
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Figure 9.1.: Schema of the Bitly Topology

filter is used as a blacklist. Each URL is tested in order to know if it is blacklisted or
not. The topology is then separated in two distinct branches. The first one counts the
number of time distinct top and second level domain appears and regularly stores the
results. The second branch tries to get the title of the webpage of the final URL, splits
this URL, counts each word and regularly stores the results.

The following sections will precise each component of this topology.

9.2. Spout implementation

As said before, the spout is the source of streams in a topology. In this use case, the
spout reads tuples from an external source and emits them into the topology.

The external source is a text file of 3GB streamed through HTTP with a Java application.
The spout implementation is straightforward. There are three or five methods to imple-
ment; it depends on whether the spout is reliable or not. A reliable spout replays tuples
that failed and an unreliable one doesn’t. In our case, we chose to implement a reliable
spout; therefore, the five methods are : open(), nextTuple(), declareOutputFields(), ack()
and fail(). The implementation of this spout is shown in Listing 9.2.

The open method is responsible for connecting the external source to the topology (lines
39 to 53 in the Listing 9.2).

The most important method of the spout is nextTuple. Its function is to emit tuples into
the topology. Since the spout is reliable, the failed tuples must be replayed. In order to
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do this, we used two different hashmaps : "pendingTuples" and "toSend". When a tuple
is read, it is put into both hashmaps (lines 19 and 20). Each iteration of the nextTuple
method, all values in the toSend hashmap are emitted (lines 26 to 28) and the hashmap
is cleared (line 29). The tuples can either succeed or failed. If a tuple is successfully
completed through the topology, the ack() method of the spout is called and removes the
tuple from the SpoutPendingTuples hashmap (line 56). In case a tuple failed, the fail()
method is called, it retrieves the tuple from the SpoutPendingTuples hashmap and puts
it again into the toSend hashmap in order to be emitted.

The last method to implement is declareOutputFields(). It simply declares the name of
the fields present in the tuples. In our case, only one string field containing the JSON
line is emitted.

9.3. Values extraction and blacklist check

After the tuples have been emitted into the topology, but before being used and analyzed,
the tuples go through two different bolts : "Values extract" and "Blacklist" as shown in
Figure 9.1.

The bolt "Values extract" parses the JSON line, keeps some key value pairs and emit
them. In this topology we didn’t need a lot of information; the URL of the link and a
timestamp.

Then, there is an implementation of a Bloomfilter that tests if the URL is in a blacklist or
not. A Bloomfilter is used to test whether an element is member of a set or not. Its main
goal is to speed the process and avoid to always ask the disk. The blacklist is loaded into
the Bloomfilter in memory in the "prepare" method of the bolt. A Bloomfilter has two
configuration parameters : the number of expected entries and the percentage of false
positive. When we ask a Bloomfilter to know if a element is member of a set and the
response is "no", we have the guarantee that the element in not in the set. But if the
response is "yes", it can be a false positive. Therefore, when the response is positive, it is
recommended to check on the disk if the element is really present. The Figure 9.2 shows
this notion of false positive.

It was interesting from the point of view of VeriSign (who handles the domain in .com
and .net) to be able to check in real-time if a domain is blacklisted.

9.4. SLD/TLD count and get webpage title

After the bolt "Blacklist", the topology is divided into two different branches. The branch
on the top is responsible for counting the second level domain (SLD) e.g "google.com",
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public class HttpStream extends BaseRichSpout {
2

private BufferedReader reader ;
4 private SpoutOutputCol lec tor _ c o l l e c t o r ;

6 private f i n a l S t r i n g URL = " h t t p : / / minux . web4nuts . com:55555/ decode_2012−09−24_06−15. t x t ?1 " ;

8 Map<In teger , S t r ing > SpoutPendingTuples ;
Map< In teger , S t r ing > toSend ;

10

i n t i =1; / / using f o r msgID
12

@Override
14 public void nextTuple ( ) {

t ry {
16 S t r i n g i n ;

i n = th is . reader . readLine ( ) ;
18 i f ( i n != nul l ) {

SpoutPendingTuples . put ( i , i n ) ;
20 toSend . put ( i , i n ) ;

}
22 else {

System . out . p r i n t l n ( " Nothing to read , wa i t 10 sec . " ) ;
24 Thread . s leep (1000) ;

}
26 for (Map. Entry < In teger , S t r ing > en t ry : toSend . ent rySet ( ) ) {

_ c o l l e c t o r . emit (new Values ( en t r y . getValue ( ) ) , en t ry . getKey ( ) ) ; / / emit a l l the tup les
from the toSend HashMap

28 }
toSend . c l ea r ( ) ; / / c l ea r the HashMap

30 } catch ( Except ion e ) {
System . e r r . p r i n t l n ( " E r ro r reading l i n e "+e . getMessage ( ) ) ;

32 }
i += 1 ;

34 }

36 @Override
public void open (Map conf , TopologyContext context ,

38 SpoutOutputCol lec tor c o l l e c t o r ) {
th is . _ c o l l e c t o r = c o l l e c t o r ;

40

th is . SpoutPendingTuples = new HashMap<In teger , S t r ing > ( ) ;
42 th is . toSend = new HashMap<In teger , S t r ing > ( ) ;

44 t ry {
URL u r l = new URL(URL) ;

46 th is . reader = new BufferedReader (new InputStreamReader ( u r l . openStream ( ) ) ) ;
}

48 catch ( IOExcept ion e ) {
System . e r r . p r i n t l n ( " E r ro r i n communication wi th server [ "+e . getMessage ( ) + " ] " ) ;

50 }
}

52

@Override
54 public void ack ( Object i d ) {

/ / System . out . p r i n t l n ( "OK ack f o r "+ i d +" Size : "+ SpoutPendingTuples . s ize ( ) ) ;
56 SpoutPendingTuples . remove ( i d ) ; / / Remove the tup l e acked from the Map

}
58

@Override
60 public void f a i l ( Object i d ) {

I n tege r msgID = ( In tege r ) i d ;
62 toSend . put ( msgID , SpoutPendingTuples . get ( msgID ) ) ; / / Resend the tup l e t h a t f a i l e d

System . e r r . p r i n t l n ( i d + " f a i l e d " ) ;
64 }

66 @Override
public void dec la reOutpu tF ie lds ( Outpu tF ie ldsDec la re r dec la re r ) {

68 dec la re r . dec lare (new F ie lds ( " s t r " ) ) ;
}

70

}

Listing 9.2: Spout’s implementation
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Figure 9.2.: Bloomfilter: false positive

"unifr.ch" and the top level domain (TLD) e.g ".ch", ".com". Then, every thirty minutes
the results are stored in MySQL. The table in MySQL is very straightforward and has
three fields : TLD/SLD, count, timestamp.

However, each tuple has a timeout. By default, it is thirty seconds. Therefore, if a tuple
is still in the topology after thirty seconds, it will fail to be processed. In our case, the
tuples wait until thirty minutes before being stored in the database. Consequently almost
all the tuples in this topology will fail. In order to avoid this situation, the bolts after
"SLD count", "TLD count" and "Word count" must be unanchored.

The notion of anchoring has been described in section 7.7. It means that the unanchored
bolts (in red in the Figure 9.1) don’t track the tuples. If a tuple failed to be processed
in an unanchored bolt, it won’t be considered as failed in the topology and won’t be
replayed.

Counting the number of occurrences of the SLD can be a useful use case for VeriSign, in
order to detect, in real-time, possible attacks on domains.

The branch on the bottom tries to get the title of the webpage redirected by the bitly
url. Then, a bolt splits the title word by word and another one cleans the words. The
words are counted and emitted every thirty minutes. If the number of occurrences for a
word reaches a threshold, the word and its count are saved in MySQL. The goal was to
design a really simple trend detection in the bitly links.

However, the bolt that tries to get the webpage title was definitely the bottleneck of this
topology. First, let’s analyze its implementation. In order to get the connection with
the server, the library HttpClient is used. A timeout of 500 milliseconds is setup, so
that if the server cannot be reached during this timeout, the connection is aborted and
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nothing is emitted. On the other hand, if the server can be reached, a BufferedReader
reads the 5000 first characters of the response. If a "title" tag is matched inside this 5000
characters, a tuple containing the string inside the tag is emitted.

Even if the implementation of the bolt tries to limit the latency with a timeout and
reads only the first 5000 characters, the bolt is significantly slower than the others, and
is consequently the bottleneck. In Storm and in stream processing in general, it is really
important to be able to process data at a higher rate that new data arrival rate.

There are three main possibilities to handle a bottleneck :

1. Increase the parallelism hint of the bolt

2. Reduce the number of tuples in the topology with the maxSpoutPending parameter

3. Increase tuple’s timeout

The first possibility is probably the most common, add threads in order to parallelize the
process. However, if it is not enough, another possibility is to throttle the spout and the
rate at which new data arrives with the configuration parameter called "setMaxSpout-
Pending". If the number of maxSpoutPending is set to one, only one tuple at a time will
be processed in the topology. The last possibility is to increase the tuple’s timeout with
the configuration parameter called "setMessageTimeoutSec". However, this parameter
should be handled with care because if the timeout is too long, out of memory exceptions
can occur.

A good practice would be to use a queue messaging system like Kafka or Kestrel between
the input stream and the topology. Therefore it will be possible to handle peak in the
stream throughput. Such a system will be used in the next use case.
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This second use case mixes data from Twitter and Bitly

10.1. Description

The Twitly topology uses both Twitter and Bitly streams. From the Twitter side, the
goal is to process and store tweets that contain a Bitly link. From the Bitly side, the goal
is to store links that are present in the Twitter stream.

The goal is then to analyze the timeline of the tweets, retweets and clicks. During this
chapter the term "click" refers to a click on a bitly link present in a tweet.

Initially, the Twitter API was used for capturing the Twitter stream. The idea was
to search for tweets that contain a Bitly link with the following endpoint : https:
//stream.twitter.com/1.1/statuses/filter.json?track=bit,ly.

Even if this option was working well, the number of tweets lost due to the rate limit was
quite high. Therefore, it was impossible to be sure of the accuracy of the results. The
solution was to use the full Twitter and Bitly stream of June 2012. This dataset was
made available by VeriSign.

In parallel, an advanced process for trends detection based on hashtags was used in this
use case.

The first step was to find a way to simulate a stream in order to process it with Storm.
This process will be described in the next section.
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10.2. Pushing data into Kafka

As already described, Storm is mainly used as a stream processing system that process
data as it arrives, in real-time. The problem with this use case is that a finished dataset
of 1600GB is not a stream. At first glance, we should rather used Hadoop in order to
process this dataset.

The first question was how to access the data throughout the cluster. A solution would
have been to put the files in HDFS and, then, read them with a spout. However, the
chosen solution was quite different. A script decompressed the files and read them line
by line. Each line was put into to a queue messaging system named "Kafka". Then, a
spout read the messages from Kafka and emitted them in the topology.

Apache Kafka is a high-throughput distributed publish-subscribe messaging system. It
was first designed at LinkedIn. In July 2011, Kafka entered the Apache incubator with
the goal of growing the Kafka community. It is designed to support the following [Foub]:

• Persistent messaging with O(1) disk structures that provide constant time perfor-
mance even with many TB of stored messages.

• High-throughput: even with very modest hardware Kafka can support hundreds of
thousands of messages per second.

• Explicit support for partitioning messages over Kafka servers and distributing con-
sumption over a cluster of consumer machines while maintaining per-partition or-
dering semantics.

In this use case, two machines were used for Kafka. Actually, six machines were used in
total but, generally, a machine shares its resources with different tools as described in the
Figure 10.1.

It is important to notice that, since the version 0.8.0, Kafka enables replication across the
brokers. However, the version of Kafka used in this use case was the 0.7.2. So this feature
was not available. Another important notion in Kafka is those of partition. The number
of partitions is configurable and can be set per topic and per broker. "First the stream
is partitioned on the brokers into a set of distinct partitions. The semantic meaning of
these partitions is left up to the producer and the producer specifies which partition a
message belongs to. Within a partition messages are stored in the order in which they
arrive at the broker, and will be given out to consumers in that same order." [Foub]

When using Kafka with Storm, an implementation of a KafkaSpout is available in the
storm-contrib repository1. The maximum number of parallelism hint for a KafkaSpout is
the number of partitions of the corresponding Kafka topic.

1https://github.com/nathanmarz/storm-contrib
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Figure 10.1.: Usage of the machines

The files were located on a NAS (Synology DS213+) mounted on a linux machine (Ubuntu
21.04 LTS). A script written in Java decompressed the file with the lzop2 program and,
then, the script read the file line by line and emitted each line to a Kafka topic (either
Twitter or Bitly in this use case). Once the file had been fully read, the script deleted
the file and the process restarted with the next file.

Of course, the files were read in a chronologic way. The files were present into directories,
one for each day of the month. The name of the file contained the time of the first record.
For example, the following file contains the twitter stream and starts the first of June at
01:20:51am :

1 gnip −201206/01/vscc−t w i t t e r −l i n k−stream−20120601−012051−+0000−702275. t x t . l zo

The file responsible for the Kafka configuration is present in "KafkaDir/config/server.properties".
In this configuration file, some parameters must be setup:

• BrokerId : the id of the broker. This must be set to a unique integer for each broker.

• Hostname : the hostname that the broker will advertise to consumer.

• log.dir : the directory under which to store log files.

• num.partitions : the number of logical partitions per topic and per server. More
partitions allow greater parallelism for consumption, but also mean more files.

• log.retention.hour : the minimum age of a log file to be eligible for deletion

• log.retention.size : a size-based retention policy for logs. Segments are pruned from
the log as long as the remaining segments don’t drop below log.retention.size.

2http://www.lzop.org
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Figure 10.2.: Overview of the Twitly use case

• log.file.size : the maximum size of a log segment file. When this size is reached a
new log segment will be created.

It is important to setup data retention correctly. Otherwise, the disks will be full within
a few hours.

Once the configuration file is setup and if zookeeper is already started there is only one
deamon to run for starting Kafka : kafka-server-start.sh . As always it is recommended
to start this deamon under supervision. Therefore, if a problem occurs, the deamon is
automatically restarted.

10.3. Data processing and storage

Once the data had been put in Kafka, a KafkaSpout read the messages and emitted them.
The Figure 10.2 shows the topology. In the Twitter side, the first bolt checked if a Bitly
link was present in the tweet. If there wasn’t, nothing was emitted; if there was the bolt
emitted two streams. One to the bolt called "BF" (BloomFilter) and one to the bolt that
will parse the JSON line.

As in the Bitly topology of last chapter, an implementation of a bloom filter was used to
store, in memory, the bitly code. Then, from the Bitly side, each bitly link was checked
in order to know if the bitly code was present in the bloomfilter. However, in this use
case, the number of expected elements was quite huge: approximately 300 millions entries.
Consequently, it was quite hard to find a right configuration, with a reasonable percentage
of false positive, without running into out of memory exception.



10.4. Trends detection 71

In order to replace the bloomfilter, different options were considered. First, as the infor-
mation about the bitly code present in the tweets will be stored in Cassandra, it would
have been possible to check, for each bitly link, directly in Cassandra if this link was
present. This solution was working but was not the best. On average, 37’000 bitly links
were read per second, so we should have queried the database 37’000 times per second,
in order to know if the link was present. Furthermore, a lot of writes per second are
also done in Cassandra. Even if Cassandra is quite good for reads and writes, the chosen
solution was to use another key value store.

"Redis" is the key value store used for storing bitly code. Redis is an open source, BSD
licensed, advanced key-value store. A lot of clients are available for almost all languages.
Since this use case is coded in Java, the client used was Jedis3, a java client for Redis.

The process was then quite simple. When a Tweet contained a Bitly link, the Bitly code
was stored in Redis. Then for each Bitly link we checked if the Bitly code was present in
Redis. It it was, information about the Bitly link was stored in Cassandra.

The outputs of the topology were stored in six different column family (CF) in Cassandra.
The CF "TwitterTrends" stored the top 100 trends for a specific time span, "Tweets"
simply contained information about tweets. "BitlyClicks" contained information about
clicks on Bitly links and "Timeline" was storing the timeline of tweet, retweets and clicks
for a specific Bitly code. "Popularity" stored, for a specific Bitly code, the number of
tweets, retweets and clicks and finally "BitlyGeoLoc" contained information about the
location from where people clicked on Bitly links.

10.4. Trends detection

The branch on the top of Figure 10.2 was used to detect trends in Twitter. First let’s
describe what is a trending topic. According to the wiki page of Twitter a trending topic
is : "A word, phrase or topic that is tagged at a greater rate than other tags is said to
be a trending topic. Trending topics become popular either through a concerted effort
by users, or because of an event that prompts people to talk about one specific topic.
These topics help Twitter and their users to understand what is happening in the world."
[Wik13e]

A trending topic is generally mentioned within a specific time span. For example, the
most popular topic for the last five minutes would probably be different than the most
popular topic for the last two days. The goal is to use a process in which we can specify
the time span within which we want to search for trending topics.

The detection of trending topics was based on hashtags. Therefore, the bolt "Hashtag
emitter" was used to emit all hashtags contained in the tweet.

3https://github.com/xetorthio/jedis
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Figure 10.3.: Sliding Windows [Nol13]

In order to detect trending topics for a specific time span we used sliding windows, also
known as rolling count. Figure 10.3 describes this notion of sliding windows. "As the
sliding windows advances, the slice of its input data changes" [Nol13]. In Figure 10.3,
the algorithm computes the sum of the current window’s elements.

The sliding windows sum algorithm can be written as follows :
i+m∑
i=t

element(i). Where t

advances with the time and m represents the size of the windows [Nol13].

If the window advances with the time every N minutes, the elements in the input represent
data collected over N minutes. Let’s say that the window size is equivalent to Nxm where
N=1 and m=5. Therefore, the sliding window algorithm emits the last five minutes
aggregates every minute [Nol13].

Figure 10.4 shows how this algorithm is implemented.

1. First the bolt "hashtag emitter" emits all hashtag present in the tweets

2. Multiple instances of "Rolling count bolt" perform a rolling count of incoming
hashtags

3. Multiple instances of intermediate rankings bolt (I.R bolt) distribute the load the
load of pre-aggregating the various incoming rolling counts into intermediate rank-
ings.

4. The final step is a single instance of Total rankings bolt which aggregates the
incoming intermediate rankings into a global, consolidated total ranking. This bolt
outputs the currently trending topics in the system [Nol13].

Of course, it is possible to specify the length of the sliding window and the emit frequen-
cies. For example, it is possible to have a sliding windows of nine seconds and emit the
last rolling count every two seconds or a sliding windows of five minutes and emit the
last rolling count every minute.
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Figure 10.4.: Trends detection with a rolling count algorithm

In this use case, we chose a sliding window of five minutes and the emit frequency of the
total rankings bolt was 20 seconds. Moreover only the first hundred trends were stored.
In other words, every 20 seconds the top 100 trends for the last five minutes were stored.

10.5. Results

This section analyzes the results obtained with the topology. The main problem with the
results is that it is impossible to know from which platform the link has been clicked. A
Bitly link can first be shared on Facebook, then on LinkedIn or on another website before
being posted on Twitter. Therefore, we cannot have the guarantee that the click on the
link has been done from Twitter.

The expected result was to be able to have the timeline of a tweet, its retweet and the
clicks on its bitly link. The ideal example would be to have first a tweet, a click on its
bitly link then a retweet and other clicks and so on... However, in a lot of cases we have
first clicks on the Bitly link and then a tweet. It means that the bitly link has already
been used, maybe by other users and on other platforms before being posted on Twitter.

Another point is that there are also some applications (e.g for smartphones) that auto-
matically post a tweet with a bitly link and generate and lot of data. Therefore the ideal
cases, when a user first post a tweet with a bitly link and then there are clicks on the
link are lost in the amount of data created by such applications and tools.

In order to really use and process the results of this topology, it would have been necessary
to first try to "clean" the data and extract meaningful cases.
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Figure 10.5.: Data visualization with HighCharts

However, Figure 10.5 shows a small web interface that uses a javascript library4 in order
to generate graphs. The graphs created are based on a Bitly code; for each Bitly code, we
can have information about the different locations from where the link has been clicked
and, an overview of the timeline of tweet(s) and retweet(s) that contain the bitly link
and, of course, clicks on the link.

Figure 10.6 provides an other example of visualization using a nice tool called "Timeline
JS"5. This tool provides an advanced timeline based on a JSON file that contains in-
formation about each (re)tweet and bitly click. Everytime the page is requested with a
specific bitly code, a PHP script collect information contained in Cassandra and generate
the JSON file with all the information. If the object is a tweet or a retweet, the tool
displays the message of the tweet and, if the object is a click, the tool use the Google
Maps API in order to display the location from where the click has been done.

4http://highcharts.com
5http://timeline.verite.co
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Figure 10.6.: Data visualization with Timeline JS
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This chapter describes the measured performance of Storm.

11.1. Method employed

On the Storm’s website1 it is said that Storm is very fast; "a benchmark clocked it at
over a million tuples processed per second per node".

First of all there are different notions to analyze when speaking about performance. It is
important to take into account the following :

• The kind of processing done : of course heavy computation will be processed slower
than light computation.

• The hardware of the machines

Therefore, saying that it is possible to processed over a million tuples per second doesn’t
really make sense.

It was quite hard to measure the performance of the Twitly use case described in chapter
10. As data is stored only on one disk, it was the bottleneck. The performance of this
use case is determined by the speed at which data can be read from the disk. However
it was possible to process about 12’000 tweets per second and about 37’000 bitly clicks
per second. This difference can be explained by the fact that a tweet encoded in JSON
is about three time longer than a bitly click. Therefore for processing the whole dataset,
1600GB of compressed text file encoded in JSON, i.e one full month of Twitter and Bitly
data, about eight days were necessary.

1http://www.storm-project.net
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Figure 11.1.: Scalability

In order to analyze the scalability of Storm the following use case has been done : 34 GB
of data (from both Bitly and Twitter) was loaded into Kafka. The processes done were
quite similar to the Twitly use case without trends detection and storage in Cassandra.
Therefore the topology was mainly parsing the data encoded in JSON.

The topology has been run three times with the same data and the same configuration;
once with one supervisor, once with two supervisors and once with three supervisors. The
goal was to analyze the performance based on the number of worker nodes.

11.2. Results

Two different observations have been done. First the time required for processing the
34 GB of data with respectively one, two and three supervisors and then the number of
tuples processed according to the number of machines.

The Figure 11.1 shows the results based on the time required for processing the dataset.
With only one supervisor (worker node), the 34 GB of data were processed in 23min15sec,
i.e 24.9 MB/s. With two nodes, data was processed 405 seconds faster in 16min30sec (35.3
MB/s). Finally, with three nodes the process took 13min50 sec (41.9 MB/s).

We gained 405 seconds when passing from one to two supervisors and 160 seconds from
two to three. Adding an additional node wouldn’t be as useful as it seems that we almost
reached the maximum capacity of the topology. With Storm and in stream processing in
general, the maximum throughput is always dictated by the slowest entity.

In this experiment, the slowest entity was the bolt which parses Twitter’s tuples. Another
important point is that even if Kafka is an high-throughput messaging system it seems
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that, with three supervisors we almost reached the maximum throughput possible with
two Kafka brokers.

Instead of adding more machines for Storm, in order to upgrade the performance of this
topology it would have been wiser to add more machines for Kafka.

11.3. Storm evaluation

In order to evaluate the different aspects of Storm, this section provides a SWOT (Strengths,
Weaknesses, Opportunities, Threats) analysis of Storm. The Table 11.1 represents the
SWOT matrix.

Let’s start with the strengths. It is really easy to setup and run a topology, a lot of sample
code are available, for example the storm-starter package that contains some topologies
ready to get started. Moreover, if we encounter some problems, the community is large
and responsive. Another good point is the permissive data model; a tuple is a named
list of values and a value can be an object of any type. Storm has also a lot of advanced
features, for example transactional topologies that guaranteed that tuples will processed
exactly once. A lot of contribs are also available (Kafka, Kestrel, HDFS, Cassandra, ...).
Finally Storm is already used in production by many companies which proves its stability.

Even if setup and run a topology is quite simple, finding the right configuration for the
topology can be tricky. Actually the only way is to play with the different parameters
and try to find out what is the best configuration. Another weakness of Storm is that it
cannot dynamically scale when the throughput increases for example. It would be really
nice if Storm would be able to detect bottlenecks and automatically resolved them. At
the moment the only way for updating a topology is to stop it and restart it.

About the opportunities, Storm seems to be in the good way to become the standard
in real-time data processing. It is currently used by many companies, it is free and
open-source and the project is starred by more than 6000 users on Github. The market
of stream processing is interesting because the demand is high but there is only a few
concurrents.

Finally concerning the threats, even is there are some developers working on Storm, it
seems that it is mainly a "one-man effort". The main developer is Nathan Marz2 and he
chose to develop Storm mainly in Clojure and Java. Clojure is a promising functional
language inspired by Lisp. But it can be a barrier for developers who want to contribute
to Storm but are not familiar with Clojure.

2http://www.nathanmarz.com
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Strengths Weaknesses

• Easy to setup

• Large community

• Very permissive data model

• Features and contribs

• Production ready

• Hard to find the right configu-
ration

• No dynamic scaling

Opportunities Threats

• Become the standard in real-
time data processing

• Interesting market

• Few concurrents

• One-man effort

• Written in clojure

Table 11.1.: SWOT analysis of Storm
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Conclusion

As described in the introduction, the main goals of this research were mainly focused on
Storm and real-time data processing. Two use cases based on Storm were presented and
the results were pretty good. It was shown not only how to build a new Storm project
from scratch, but also how to use Storm in a complete environment including Cassandra,
a NoSQL database good for both reads and writes; Redis, an advanced key-value store;
Kafka, a high-throughput queue messaging system.

Storm is mainly used as a stream-processing engine. However, in our use cases, we
mainly used a finished dataset and we simulated a stream by reading it. This solution was
probably even more difficult than dealing directly with a big stream of data. Nevertheless,
the solution presented was very convincing and it would have been really easy to adapt
it in order to directly consume a stream.

With both Bitly and Twitter data, some interesting researches can be done. However,
in this thesis, we were mainly focused on the process of the data. Future works, based
on the output of this research could be done in order to deepen the correlation between
Bitly and Twitter.

All in all, Storm seems to be a really promising tool for stream processing. It has a large
community, nice and useful features, it is ready to be used in production and is actually
used by many companies. Some improvements about dynamic scalability and update on
the fly could be required. As shown in section 6.3, Storm can also be used in complement
of Hadoop, in order to avoid the high latency updates of MapReduce.
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Common Acronyms

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CRM Customer Relationship Management

DBMS Database Management System

CQL Cassandra Query Language

CVS Concurrent Versions System

EJB Enterprise Java Beans

ERP Enterprise Ressource Planning

HDFS Hadoop Distributed File System

HTML Hypertext Markup Language

81
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JSON JavaScript Object Notation

NoSQL Not Only SQL

RDBMS Relational Database Management System

SLD Second Level Domain

SQL Structured Query Language

TLD Top Level Domain

XML Extensible Markup Language
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