
University of Fribourg

Master Thesis

Real Time Data Analysis for Water
Distribution Network using Storm

Author:

Simpal Kumar

Supervisors:

Prof.Philippe Cudré-Mauroux

Djellel E Difallah

A thesis submitted in fulfilment of the requirements

for the degree of MSc Computer Science

in the

XI—the eXascale Infolab

May 2014

http://mcs.unibnf.ch/
http://mcs.unibnf.ch/lecturers/philippe-cudre-mauroux
http://exascale.info/members/djellel_difallah
http://exascale.info

“Information is the oil of the 21st century, and analytics is the combustion engine.”

Peter Sondergaard

Abstract

Prof.Philippe Cudré-Mauroux

Djellel E Dfallah

MSc Computer Science

Real Time Data Analysis for Water Distribution Network using Storm

by Simpal Kumar

Thesis Purpose This thesis investigates, analyses, designs and provides a complete

solution to find out the anomalies in a water distribution network (WDN) topology.

Real time sensor values are used to compute Local Indicator Spatial Association (LISA)

value and visualize to detect anomaly easily.

Theoretical Perspective The study is grounded on LISA statistics computation on

real time sensor values e.g. pressure in water pipes in a WDN of defined topology.

Theory is limited to compute LISA value on one parameter at one time and assumes

that all the sensors write information at same time. Topology is predefined and Storm

cluster is used to process information.

Thesis Methodology Storm is extensively used for processing but other technologies

have also been used to setup cluster, visualization and simulation of sensors in the

topology.

Analysis and Conclusion The application was tested with 16 nodes network with

different scenarios: with actual neighbours, with various numbers of fake neighbours for

each node (1,2,4,8,12,15). Also, different combinations of spouts and bolts were tested.

Scalability of solution was tested with one test conducted upon topology of 1600 nodes.

Speed of computing LISA and ability to detect anomaly were used for measuring the

performance.

Results showed that while Twitter Storm is efficient and good tool for anomaly detec-

tion but did not appear that promising statistical significance.Results have proved that

detecting an anomaly is quite fast even in densely connected network. Visualization is

helpful not only in detecting anomaly but also to figure out and measure the impact up

on neighbours too.

http://mcs.unibnf.ch/lecturers/philippe-cudre-mauroux
http://exascale.info/members/djellel_difallah

¡

Acknowledgements

I would specially like to thank Prof.Philippe Cudré-Mauroux and Djellel E. Dfallah

under whom supervision I finished this thesis. I thank them for their continuous advice,

feedback and patience throughout the project. Without them the project would never

have lifted off the ground, not to mention come to a conclusion.

XI Scalable infolab team was really helpful to me. They gave me a lot of guidance to

set up the cluster of machines used for the use cases. It’s been an amazing time and

has shaped me both intellectually and as a person. To them I would like to express my

gratitude and encourage them to continue enabling other students to do likewise.

I would specially like to thank my parents, two younger sisters, and elder brother. They

were always supporting me and encouraging me with their best wishes. My greatest

appreciation goes to my friends for being always there and supporting me.

Most importantly I would like to thank my husband and my daughter, for they have

always stood behind me to provide support and motivation throughout my studies.

iii

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vi

List of Tables vii

Abbreviations viii

1 Introduction 1

1.1 Motivation and Goals . 1

1.2 Report Structure . 3

2 LISA- Local Indicator Spatial Association 4

2.1 Spatial Cluster and WDN . 4

2.1.1 Spatial Auto Correlation: . 5

2.2 Local Indicator Spatial Association . 6

2.2.1 Moran’s I . 6

2.2.1.1 LISA from test case . 7

2.2.2 Definition Global Getis-Ord G . 8

3 Background 9

3.1 Introduction to Storm . 9

3.2 Concepts . 10

3.2.1 Topology . 10

3.2.2 Storm Cluster . 10

3.2.2.1 Nimbus . 10

3.2.2.2 Supervisor . 11

3.2.2.3 Worker . 12

3.2.2.4 Zookeeper . 12

3.2.2.5 User Interface . 13

3.2.3 Task . 13

3.2.3.1 Spout . 13

iv

Contents v

3.2.3.2 Bolt . 13

3.2.3.3 Stream Grouping . 14

3.2.4 Reliability . 14

3.2.5 Limitations . 15

3.3 Other Tools and Technologies . 15

4 Design and Implementation 16

4.1 Storm Topology Application . 18

4.2 Monitoring And Visualization Module . 22

4.2.1 Monitoring Network . 22

4.2.2 Visualization Module . 24

4.3 Network Simulator . 25

5 Evaluation 27

5.1 Test Set up . 27

5.2 Performance Measures . 28

5.2.1 Test Case 16 node Actual LISA . 29

5.2.2 Test Case 16 node with fake random neighbours 100 times 31

5.2.3 Test Case 16 node Anomaly introducing real time and visualization 34

5.2.4 Test case with various spouts and bolts combinations 37

5.2.5 Test Case 1600 node LISA for a node with 4 fake random neigh-
bours 1000 times . 37

5.3 Discussions . 38

5.3.1 Problems encountered . 38

5.3.2 Limitations . 39

6 Findings and Conclusion 40

6.1 Findings . 40

6.2 Conclusion . 41

6.3 Future Work . 41

A Running Application on Cluster 42

B Sample of Files 44

C Storm ui screen shots 48

Bibliography 50

List of Figures

1.1 Example of real topology set up . 1

4.1 Example of real topology set up . 17

4.2 Components and interaction between them 18

4.3 Visualizing 16 nodes network . 25

4.4 Visualizing 1600 node . 25

5.1 Example of real topology set up . 29

5.2 Test case LISA computation time with real neighbours 30

5.3 Scatter Plot of LISA with real neighbours 30

5.4 Speed of LISA computation for 100 permutations 31

5.5 Time taken to compute LISA values for each node for 100 permutations . 31

5.6 Time for LISA values with 1 neighbour for each node randomly 32

5.7 Time for LISA values with 2 neighbours for each node randomly 33

5.8 Time for LISA values with 4 neighbours for each node randomly 33

5.9 Time for LISA values with 8 neighbours for each node randomly 33

5.10 Time for LISA values with 12 neighbours for each node randomly 34

5.11 Time for LISA values with 15 neighbours for each node randomly 34

5.12 Network visualization without anomaly 35

5.13 Network visualization with anomaly . 36

5.14 Network visualization with anomaly . 37

5.15 1600 nodes network 1000 LISA Values with 4 random neighbours 38

5.16 1600 nodes network 1000 permutation LISA Values with 4 random neigh-
bours compared to normal LISA speed computation 38

C.1 Storm UI Topology submitted . 48

C.2 Storm UI Topology latency details . 49

vi

List of Tables

5.1 LISA values of nodes with actual neighbours 30

5.2 Speed of LISA computation for 100 permutations with random neighbours
of each node . 32

5.3 LISA values without anomaly . 35

5.4 LISA values after introducing anomaly . 36

vii

Abbreviations

LISA Local Indicators of Spatial Association

WDN Water Distribution Network

D3 Data Driven Documents

viii

Chapter 1

Introduction

1.1 Motivation and Goals

Around the world cities are getting intelligent day by day. City administrations are

focussing to take inputs from everyday life of its inhabitants and utilize those inputs to

manage and channelize the resources. In 2050, 70 percent of people will live in urban

areas around the world. Transportation, water supply, education, healthcare are essen-

tial entities of population centres in modern civilized systems. Many of these entities

are already digitized and produce data streams. These data streams are growing at a

fast pace and are getting difficult to analyse, compute and visualize in real time to make

smarter decisions. e.g. in water distribution networks data management architecture

suggested by [9], we have water pipes connected with sensors, these sensors are gener-

ating huge flow of data streams every second shown in fig 1.1. Aim of this thesis is to

provide a solution for this huge real time stream processing.

Figure 1.1: Example topology with 16 nodes with 4 base stations

1

Chapter 1. Introduction 2

Researchers and enterprises alike (e.g. IBM) have harnessed this massive amount of

content generated. For instance,[1] has explored how sentiment analysis can be used

to predict stock market movement. Tweets by authors e.g. ”I’m feeling” and ”makes

me” states the mood which are passed to tools to predict the mood such as calm, alert,

sure, vital, kind and happy. Machine learning techniques are then used to establish link

between mood and stock market movement (e.g. ”calm” and the Dow Jones Industrial

Average.

In another paper, Sakaki [2] has used social networks to detect earthquakes in real-time.

Author has considered each user a sensor and each tweet from user as sensor information.

These posts are then classified based on the terms ”earthquake” and ”shaking” appearing

in posts using machine learning techniques.By reading user’s GPS co ordinates, location

is approximated, with detection rate of 96% for JMA intensity scale 3 earthquakes.

Smarter Cities where massive amount of data is generated every second, processing this

data in real-time can only be achieved by distributing the workload across many com-

puters. e.g. WDNs where sensors are attached to pipes are generating data (pressure,

temperature etc.) and sending it to base stations. As cities and these networks are

growing, information each second coming to these base stations are huge and ever in-

creasing . In WDN information coming each second from sensors is not of relevance

but observation of network based on geographic locations is point of interest when some

anomaly is detected. How an anomaly can be defined or detected in WDN is defined by

computing LISA values for each sensor considering it’s neighbours’ values. LISA (Local

Indicator of Spatial Association) can be used to detect instability in the network. LISA

statistics is discussed further in detail in chapter 2.

While software frameworks such as Apache Hadoop, Google’s MapReduce exists, their

scalability is limited by throughput of core-level switches based on studies. Hadoop

is limited to process data by batch and is not good for processing latest version of

data.Stream processing on the other hand process a constant influx of data, in real

time. i.e. as the data arrived, system should react and take decisions quickly. In WDN

e.g. if pressure goes beyond certain threshold value it should be processed and should

pass this information fast to take decision on. In stream processing, the speed at which

new data is created and needs to be processed can be extremely high and so more

efficient approach or technique is required to process this huge velocity and volume of

data. Storm is becoming popular day by day and seems promising to handle massive

amount of information in real time and is used as primary tool for this thesis.

Therefore, goal of this thesis are:

• Study of LISA statistics, Stream processing and Analysis of WDN

Chapter 1. Introduction 3

• Storm configuring, cluster set up, prototype design and implementation

• Test Cases, Analysis and conclusion based on prototype designed

1.2 Report Structure

Chapter 1 gives an introduction to the relevant concepts and motivation behind this

thesis work. Chapter 2 elaborates the LISA statistics, used extensively to detect insta-

bility in spatial regions. Chapter 3 gives an overview of Technologies used e.g Storm,

Zookeeper, ZeroMQ, D3 etc. Chapter 4 describe the design of prototype and its logical

and physical placement in the cluster. This chapter also provides an insight into deci-

sions taken and discusses the alternatives. Chapter 5 provides graphs and numbers of

the performance results achieved. These are analysed to give a sensible interpretation.

Along with this project limitations are discussed. Furthermore this chapter provides

insight into the challenges and problems faced during the design and implementation

phases. Chapter 6 In the conclusive remarks goals achieved by this thesis and future

work is discussed.

Chapter 2

LISA- Local Indicator Spatial

Association

2.1 Spatial Cluster and WDN

Cities are getting smarter in their civil infrastructure - roads, pipes, rail lines, conduits,

treatment, storage and disposal system which are basically dealing with daily activities

of population e.g. movement of traffic, water and sewage , energy throughout the city.

To urbanize these cities the existing infrastructure is extended or replaced. Because

of emerging sensing technologies and sensor networks, this is possible without much

additional cost. Sensors can be easily placed to gather information from existing infras-

tructure. Real time sensing exists everywhere within these systems, so new technologies

are needed to integrate the large amount of data generated by these sensors and further

can be analysed to extract useful information from these real time data streams.

For this thesis Water Distribution Networks are primary focus. WDN can be viewed

as a directed graph, where edges are pipes, and nodes in graph are pipe junctions and

end points. Information is produce at sensors and stored over the base station nodes

and forwarded further in topology. The rate of transmission for water is in order of

cm’s/sec. To operate these networks efficiently there is need to monitor the parameters

e.g. hydraulic(pressure, flow etc) and water quality(chlorine, pH, specific conductance

etc.). Currently the hydraulic parameters are monitored at a small fraction- 0.01 to

0.001 approximately. But the majority of water quality monitoring is still performed

with non-continuous samples taken at discrete times and location within the network.

Real time networks were deployed in past decade with continuous water quality moni-

toring According to [3] physical constraints and economic costs limited the number of

4

Chapter 2. LISA 5

monitoring stations being installed. Most of networks are relying on citizens by report-

ing situation e,g breaks in water mains or odour in water to inform about poor water

quality.

Because of advancement in technologies, now low cost with less power consumption, easy

to mount with improved network communication sensors are available. Large scale data

analytic has revolutionized a way that now municipal infrastructures can be monitored

in better way. The data streams generated by these sensors can be used to operate on

these networks more efficiently. With the invention of smart meters, it is possible to

gather real time data of consumption at service connections throughout the distribution

network. This data can be transmitted over internet to make it available to service

provider. Sampling intervals of the sensors are between 15 to 60 minutes, but can be

as small as every few seconds. Analytical solutions applied on this data can detect

theft or leakage of resources, improve the load/ demand forecasts. The biggest challenge

in these networks are: First to install the sensors on each node, which should be cost

economic and easy to install in existing infrastructure. Second is for theft or leakage,

data acquisition delay should be minimal, current sensor deployments delays are in

of tens or minutes to several hours, which needs to be reduced. This is big problem

in case of very large area WDN’s with thousands or millions of nodes. Purpose of

this thesis is to deal with second problem and provide a solution for the same. The

details of architecture and solution for WDN’s is discussed in detail in Chapter 4. Real

time information gathered from sensors needs to be analysed and provide the useful

information for better operations. To analyse this data in this thesis LISA statistics is

used to measure LISA at each local node and then can be used to compute Global LISA

which is directly proportional to local LISA.

2.1.1 Spatial Auto Correlation:

Spatial Autocorrelation summarize the spatial structure in some property. Cliff and

Ord[6] discuss some key issues in analysis of spatial autocorrelation e.g. elevation and

precipitation tend to vary smoothly and are usually positively spatially autocorrelated.

Areal data was considered for this discussion. It was concluded that values at locations

close together tend to be similar. In contrast, grey scala in a remotely sensed image

may be negatively autocorrelated if, e.g. there are neighbouring fields in an agricultural

image that have very different characteristics.

The capabilities for visualization, rapid data retrieval, and manipulation in geographic

information systems (GIS) have created the need for new techniques of exploratory data

analysis that focus on the ”spatial” aspects of the data. The identification of local

Chapter 2. LISA 6

patterns of spatial association is an important concern in this respect. Although many

methods are available in the toolbox of the geographical analyst, only few of those are

appropriate to deal explicitly with the ”spatial” aspects in these large data sets (Anselin

1993b)[4]. In the analysis of spatial association, it has long been recognized that assump-

tion of stationarity or structural stability over space may be highly unrealistic, especially

when a large number of spatial observations are used. Spatial structural instability or

spatial drift has been incorporated in a number of modelling approaches. A focus on

local patterns of association (hot spots) and an allowance for local instabilities in overall

spatial association has only recently been suggested as a more appropriate perspective,

for example, in Getis and Ord (1992), Openshaw (1993), and Anselin (1993b).

2.2 Local Indicator Spatial Association

Local spatial clusters, sometimes referred to as hot spots, may be identified as those lo-

cations or sets of contiguous locations for which the LISA is significant. These indicators

allow for the decomposition of global indicators, such as Moran’s I, into the contribution

of each individual observation.

Anselin defined the local form of Moran’s I and Geary’s C. LISA statistics allow for

decomposition of global indicators. Where I is positive this indicates clustering of similar

values, whilst where I is negative this indicates clustering of dissimilar values; a value of

zero indicates zero spatial autocorrelation.

2.2.1 Moran’s I

As an operational definition, I suggest that a local indicator of spatial association (LISA)

is any statistic that satisfies the following two requirements:

• the LISA for each observation gives an indication of the extent of significant spatial

clustering of similar values around that observation;

• the sum of LISAs for all observations is proportional to a global indicator of spatial

association.

A LISA is given as a statistic Li for a variable yi observed at the location i:

Li = f(yi, yJ i)

Chapter 2. LISA 7

where f is a function and yJi are the observed value (or deviations from the mean) in

neighbourhood Ji. Local Moran’s I for observation i is given as :

Ii = (zi/m2)
n∑

j=1

wijzj , j 6= i

the observations zi are deviations from the mean

zi = (yi − ȳ)

and m2 is the variance. wij represents the weight which may be in row standardized

form (sum equal to one) and so

wij = 1/n

where n is number of neighbours, which means summation includes only the neighbouring

zones. y values can be taken from raw observations or some standardized form too.

2.2.1.1 LISA from test case

It would be more clear how LISA can be computed and used for statistical significance

by considering an example. In this thesis we are using normal distribution to generate

the values from sensors so from that sample here neighbours values for a node i are given

as:

Total number of nodes are 1600. Mean of 1600 nodes is : -0.014266266590053426 and

variance is : 1.005881796332947

Node in consideration : N-H82EQ (-0.5373494464575331)

4 Neighbour nodes are:

N-1EZEK (1.143572306582178) N-GBL9J (-0.7293499055446114) N-RMRWR (-0.055567582400571164)

N-LH237 (0.27619204641674594)

Using above formula LISA value for N-H82EQ

I = ((-0.5373494464575331-0.014266266590053426)/1.005881796332947) * ((0.25 *(1.143572306582178-

(-0.014266266590053426)))+ ((0.25 *(-0.7293499055446114-(-0.014266266590053426))) +

((0.25 *(-0.055567582400571164-(-0.014266266590053426)))+ ((0.25 *(0.27619204641674594-

(-0.014266266590053426))) = -0.0899527893316361

As there are four neighbours so weight is 0.25. This weight is multiplied by deviation of

value at node from mean. After calculating the LISA it can be used to identify anomalies

Chapter 2. LISA 8

/ nodes where values are significantly way high or low. Moran Scatter plot can be drawn

to visualize where each quadrant corresponds to one of the four different types of spatial

association (SA).

Two observations can be made here about spatial association are: 1. locations of positive

spatial association (which means ”I’m similar to my neighbours”) which corresponds

to high-high or low-low 2. locations of negative spatial association(which means ”I’m

different from my neighbours”). which corresponds to Low-High or High-Low

2.2.2 Definition Global Getis-Ord G

As mentioned before that global Moran is directly proportional to local Moran’s so G

will be high where high values cluster and G will be low where low values cluster

G(d) =
∑
i

∑
j

wij(d)xixj/
∑
i

∑
j

xixj

Until now LISA statistics has been used for analysing areal data for time stationary

problems in geographic domain(e.g. identification of hotspots of criminal activity or

cancer mortality). LISA is recently been applied to network topologies which still do

not include WDN’s. This thesis emphasizes on providing solution for WDNs by defining

LISA networks using topology of WDN’s and identify anomalies within the sensor data.

Details how WDN’s are considered as LISA topology are discussed in Chapter 4.

Chapter 3

Background

3.1 Introduction to Storm

Twitter Storm is a distributed real-time computation system that aims to fill the void

left by the Hadoop and MapReduce systems. Storm was created at Backtype, a com-

pany acquired by Twitter in 2011. It is a free and open source project licensed under the

Eclipse Public License.Storm is written in Clojure and Java. Hadoop and MapReduce

provide general frameworks for batch processing, while Storm provides a general frame-

work for real-time processing. e.g., Twitter processes tweets in real-time with Storm for

their publisher analytic product, Storm can be used to analyze, filter and normalize the

information and many others regular-expression filters on logs in real-time. Important

feature of Storm is fault tolerance and guaranteed data processing. Storm can be used

for:- Stream processing, Continuous computation and distributed RPC.

• It can be used to process a stream of new data and update databases in real time

• It can do continuous query and stream the results to clients in real time

• It can put in parallel an intense query on the fly

For this thesis, Storm is used for real time stream processing. The main concepts of

Storm are discussed in detail in the next section.

9

Chapter 3. Background 10

3.2 Concepts

3.2.1 Topology

A topology is a set of tasks. A task can be defined as a bolt or a spout, connected by

streams. Topology can be viewed as elements of a directed graph, where tasks (bolts

and spouts) represent vertices and streams represent directed edges. Because a topology

is assumed to process a real-time stream, it processes messages forever as they arrive.

The only way to terminate a running topology is to send the “kill” command. Though

it’s the only way but for development purposes a time out with subsequent termination

can be defined.

3.2.2 Storm Cluster

A storm cluster can be viewed as Hadoop cluster. There are two kinds of nodes ”master”

and ”workers”.

3.2.2.1 Nimbus

A daemon called ”Nimbus” run on master node. On all worker nodes, location of node

where nimbus is running, should be configured. Nimbus implements a set of Apache

Thrift RPC functions which read and adjust the cluster state. RPC function can be

called by command line client using ./storm nimbus command. Alternatively, the RPC

functions can be called directly from any language supported by Thrift. The most

important functionality of Nimbus is:

• Defining a topology: A topology can be defined by passing Nimbus a Java archive

(“jar”) containing a class which builds a topology using Storm’s TopologyBuilder

class. The class is a wrapper around a subset of the remote functions Nimbus

implements. Thrift RPC can also be used for setting up a topology from outside

of Storm.

• Starting a topology: The Nimbus scheduler keeps track of how many assign-

ments each worker has.When a topology is started tasks are scheduled. If there are

empty slots available on supervisors, tasks are assigned to those slots. Otherwise

tasks are assigned to running workers, the most lightly loaded workers are given

preferrence. The files belonging to the task are uploaded to the supervisors by

Nimbus before starting the topology.

Chapter 3. Background 11

• Killing a topology: Nimbus first stops all spouts, waits a defined timeout for the

bolts to finish processing in-flight tuples and then stops the bolts.It is responsbile

for distributing code around the cluster, assigning tasks to worker machines and

monitoring failure.

• Registering supervisors: When a new supervisor is started it registers itself

with Nimbus. Most importantly, Nimbus stores the number of available workers

on the supervisor and its IP address or domain name.

• Monitoring supervisors and tasks: Both supervisors and tasks send heartbeats

to Nimbus in regular intervals. If a supervisor goes down the tasks of its workers

are reassigned to another supervisor. If a task goes down it is reassigned to another

worker.

• Rebalancing tasks: When the available worker pool changes, e.g. new supervi-

sors start or go down, the workload may become unevenly distributed. An explicit

call for rebalancing re-distributes tasks to workers.

3.2.2.2 Supervisor

Storm workers are managed by a supervisor local to each node. A supervisor has one or

more slots, each slot specifying the port a worker listens on.The supervisor functions as

follows:

• A new worker is launched when a task is assigned to a slot which is not yet filled.

The worker is assigned a generated ID, a slot (port) and its supervisor by the

supervisor.

• On launch of a topology, all files necessary for launching a task are downloaded

from Nimbus and copied to all directories of workers assigned to the topology.

• Running workers are monitored. If a worker heartbeat times out too often, the

worker is cleaned up, i.e. the process killed if it still exists and files removed.

• ZooKeeper is monitored for changes. If there are open slots workers are started

on-demand, worker configuration changes are written to file.

• All communication with workers is performed via file I/O.Worker heartbeats are

written in a heartbeat directory as files with increasing sequence numbers as names.

Worker configuration is passed in system specified files.

Chapter 3. Background 12

3.2.2.3 Worker

tasks are assigned to and run by worker processes. Workers have an ID, although workers

are often identified by their node and port.Every task is started in its own thread and

the worker does the following:

• In a thread the worker starts a “virtual port”. The virtual port binds the worker’s

assigned port with a ZeroMQ pull socket and multiplexes tuples from all incoming

Storm streams to the respective tasks based on the task ID found in the tuple.

ZeroMQ pair sockets are used for passing tuples to tasks.

• Tasks write outgoing tuples to a Java LinkedBlockingQueue, which is thread-safe.

The worker sets up ZeroMQ push connections to the superset of destinations of all

tasks. A thread blocks on the queue and multiplexes tuples to their destination

nodes.

• The worker monitors its configuration file for changes. Tasks and outgoing ZeroMQ

connections are added and removed on demand.

• A thread writes heartbeat files, as described previously.

Each worker machine run ”supervisor” using ./storm supervisor. Communication be-

tween nimbus and supervisors are done through Zookeeper. It is a centralized service

for maintaining configuration information and providing distributed synchronization and

group services.

3.2.2.4 Zookeeper

Apache ZooKeeper stores the cluster configuration and state. For example:

• Topology, supervisor, and task information written by Nimbus.

• Supervisors and workers read their configuration from ZooKeeper.

• Task statistics on processed, in-flight and failed tuples.

• Heartbeats of supervisors and tasks.

Chapter 3. Background 13

3.2.2.5 User Interface

The user interface accesses statistics and state information stored on ZooKeeper and

displays them via HTTP. Controlling the cluster from the UI is not possible. This can

be run by command line using ./storm ui and can be seen at browser at 8888 port by

default.

In a simple set up, a spout emits a stream of generated tuples to a bolt, which does

some processing and sends the intermediate result to a second bolt. The second bolt

completes the processing and sends the final result to a third bolt, and so on. Final bolt

aggregates all final results sent to it in a distributed relational database or where you

want to store this result. A topology only describes an abstract relationship between

tasks. The physical layout of an active topology is controlled by the Storm scheduler.

3.2.3 Task

A Storm task implements either a bolt or a spout interface. The worker is designed as

an implicit loop, hence functions of the interface are called in a loop by the worker. The

task registers the types of fields in outgoing streams with Storm.

Stream is defined as an unbounded sequences of tuples and a tuple is defined as a

named list of values. These values may have different types. A stream can be splitting

and its tuple can be directed to multiple bolts for parallel processing. Every stream

and tuple is assigned an identifier for selecting a stream and to acknowledge a tuple for

reliability.

3.2.3.1 Spout

It is defined as a source of one or more streams, emitting tuples. Stream can be used to

generate tuples from anywhere, e.g. files, databases, a non-storm stream etc. For this

thesis pllain text files are used.

3.2.3.2 Bolt

A bolt is defined as a processing element absorbing one or more streams and emitting

none, one or more streams. It can do any kind of processing on incoming tuples e.g.

aggregation, filtering, transformation etc.

Chapter 3. Background 14

All tasks(spouts and bolts) are assigned a component ID, which is used to identify its

position in the topology, and a task ID, which is used for locating a task instance in the

cluster and routing its streams to it.

3.2.3.3 Stream Grouping

A stream grouping is the method of distributing a stream’s tuples among the parallel

instances of a bolt. A bolt absorbs multiple streams and can define a different stream

grouping for each stream. The stream groupings provided by Storm are:

• Shuffle grouping: A uniform distribution of tuples to bolts. Fields grouping: A

field of a stream is defined as the key. Tuples with equal keys are mapped to the

same bolt instance.

• All grouping: A broadcast. The stream is replicated on all bolt instances.

• None grouping: Distribution of tuples is undefined. The current Storm imple-

mentation does shuffle grouping.

• Direct grouping: The emitting task specifies the absorbing bolt for each emitted

tuple.

• Local or shuffle grouping: Bolts located on the same worker as the emitting

task are preferred. Equivalent to shuffle grouping for remote bolts.

For this thesis All grouping, field grouping and shuffle grouping are used for various

bolts. This is discussed in detail in implementation chapter.

3.2.4 Reliability

Storm provides a reliability framework for guaranteed tuple processing: Every tuple is

given an ID. Every tuple emitted by a spout is seen as the root of a tree. When a tuple

is processed by a bolt, the new result tuples are added to the tree as children. Adding

children to the tree must be done explicitly by anchoring the tuple being emitted to

another tuple. At each step traversing down the tree an acknowledgment or negative

acknowledgment (fail) message is sent to a tracking task (acker). If all children up until

the leafs are acknowledged successfully, the whole tree is considered fully processed.

Otherwise, if either a fail is sent or a tuple times out, the whole tree is considered failed

and the root tuple ID is passed to a failure handler in the spout.

Chapter 3. Background 15

3.2.5 Limitations

In the current Storm implementation the task scheduler does not consider locality, which

could potentially reduce network traffic.

• The scheduler does not consider the processor load, memory usage, available band-

width and other system information when allocating tasks. The sole consideration

is the number of tasks running on a worker. This could lead to uneven load dis-

tribution among nodes.

• Setting up a topology from a language other than Java is cumbersome. In Java

a native wrapper API with convenience features is provided, all other languages

must interface the Thrift API.

3.3 Other Tools and Technologies

This project is mainly implemented in Java. Following are other tools tools used for

whole set up:

• Java : A network simulator is implemented in JAVA which is responsible to write

sensor information in files as per the topology definition, Also it is responsible to

clean the files when data is too large.

• JSON: Java thread is responsible for reading and converting to JSON the com-

puted values of LISA from file where storm application write information real time,

It will continuously rewrite the information in JSON file every minute

• D3: D3 is used for visualizing the sensor nodes and showing the nodes clustered

based on LISA value. e.g. all nodes with +ve moran I are displayed in different

color than with -ve Moran I. nodes for which information was missing is shown in

different color, which could be very helpful for monitoring purpose.

• github: Source code for both storm application and network simulator are main-

tained on github at https://github.com/simpalK/TwitterStormSensorSimulation

https://github.com/simpalK/SensorSimulations

• Documentation: Tools like LateX, excel are used for graphs, calculations.

https://github.com/simpalK/TwitterStormSensorSimulation/commits?author=simpalK
https://github.com/simpalK/SensorSimulations/commits?author=simpalK

Chapter 4

Design and Implementation

WDN consists of pipes with sensors, base stations and connection between these stations

could be via internet. Simple overview is shown in Fig 1. Where the sensors are con-

nected to Base Stations and sending information continuously to BS. Each Base station

has number of sensors attached to it. Information coming from sensors are real time

and needs to be processed real time taking in accordance the information coming from

neighbours. Neighbours could be in the same base station or could be from the whole

network. These base stations are communicating to each other via internet. To compute

LISA we need mean and standard deviation of whole network and then for Moran’s I

only neighbours values are considered. After LISA value for each node is computed it

is used for finding out anomalies in network i.e. which node/sensor is generating high

value as compared to it’s neighbours etc.

Figure 4.1 shows the example topology set up for testing in this thesis.

There assumptions considered in this solution are:

• Synchronization: each sensor will write the values at same time

• No Hardware failure: Assume that hardware is all correct

• Time: Each sensor writes information every minute

• Network: Network will be fixed but neighbours’ topology can be changed

• Storm is up and running and no internet or hardware failure regarding storm is

considered

After analysing the whole problem solution is given as follows:

16

Chapter 4. Design and Implementation 17

Figure 4.1: Example topology with 16 nodes with 4 base stations

• Storm Topology Application Using Twitter Storm storm cluster is set up and

application using java as language will run on this cluster. Main class is Topology

where spouts and bolts instances are defined and other configuration is done for

Topology. This application is run as jar (created using mvn) on storm using ./storm

command. This application is responsible for reading information real time and

process it, compute LISA at each node and store it in file (It can be stored in

database also). Details are discussed in next section.

• Monitoring and Visualizing Information stored in file is read every minute by

monitoring module written in Java. It’s responsibility is to parse information and

write in JSON file. Which is then used to represent the network topology using

D3 library in browser. Lisa value is shown by node colors. if its +ve or -ve or no

value available at that time stamp.

• Network Simulator Network simulator is implemented in Java which is respon-

sible for generating sensor values and write them in text file to provide as input to

Storm application. This file will keep the last values only at last time stamp and

periodically will be deleted. For thesis test case 1600 nodes were considered, and

information was stored in 4 files. Basically Spout will read the information which

is installed on each Base Station. This module is for testing purpose which will be

further replaced with real network and base stations.

Figure 4.2 shows the three components interacting with each other.

Chapter 4. Design and Implementation 18

Network
Simulator

Storm Application
On Cluster

Monitor and
Visualize

…..

Files at base stations
Keeping sensor
information

File with LISA
Values of each
node every
minute

 Browser

D3
module

Json
file

Fig: Modules and integration between them

Figure 4.2: Components and Interaction between them

4.1 Storm Topology Application

Storm Topology application is responsible for reading the real time data generated by

sensors from base stations and process them to compute LISA values for each node and

store them in text file. As discussed in chapter 3 storm application is basically a set

of spouts and bolts connected via defining topology to process information. e.g. list-

ing below shows us topology implemented in application. Three kinds of groupings are

used. allGrouping(so that all the information should flow in network), fieldgrouping(only

neighbors values are streamed based on information from actual topology stored) shuf-

fleGrouping(compute LISA for a node and write LISA in JSON). Storm is written in

java and closure for thesis java is used for storm application.

Chapter 4. Design and Implementation 19

TopologyBuilder builder = new TopologyBuilder ();

builder.setSpout (" SensorEmitter",new SensorEmitter () ,4);

builder.setBolt (" SensorGetter", new SensorRealTimeGetter (),4)

.allGrouping (" SensorEmitter ");

builder.setBolt (" SensorBolt2", new SensorRealTimeLevel2Bolt (),4)

.fieldsGrouping (" SensorGetter", new Fields (" groupIds "));

builder.setBolt (" SensorLisaBolt", new LISABoltOutputJSon (),4)

.shuffleGrouping (" SensorBolt2 ");

SensorEmitter is spout which is reading data from file every second. These files are

stored at base stations and sensors are writing information in these files every minute.

Every fifteen minutes these files contents will be deleted by network simulator as storing

information is not required when data is getting processed real time. SensorEmitter

spout reads and forward the information to bolts using allGrouping as topology can be

changed on run time so information should flow in whole network. Following code shows

that last N lines are read from file as only values with latest timestamp will be passed.

//spout reads the last N lines and emit to bolt

String fromfileData1 = lastNlines(fileSensor1 ,N);

this.collector.emit(new Values(fromfileData1),fromfileData1);

SensorGetter is Bolt which consumes the tuples generated by spouts, compute the mean

and average of all sensors values, read topology information written in a file and direct the

tuples only with neighbors information to next bolt for computing LISA.This information

is available in a file generated by csvParser and stored in a 2D array.

//Read the information from file

1.open file at specified path /../ topologyInformation.txt "));

....

2.read each line to get information of each node neighbours

String line = inputStream.nextLine ();

String [] lineValues = line.split (",");

...

topoFromFile[row][column] = Integer.parseInt(lineValues[column]);

....

Code below is for parsing information available in csv file where node information e.g. ids

are stored, and edges information is used to define topology information i.e. neighbours

information.

// Function to parse the csv file and retrieve information in an array

public String [] parseCsv(Reader reader , String separator , boolean hasHeader)

1. Define an empty list for column names: List <String > columnNames

2. String array to store information for each node: String [] nodesInfo

3. Counter for counting nodes int nodeCount;

4. Define buffer reader :BufferedReader br and initialize it

5. while not end of file i.e no line left to read

if !line.startsWith ("#") then

String [] tokens = line.split(separator);

Chapter 4. Design and Implementation 20

if tokens != null then

if numLines == 0 then

for (int i = 0; i < tokens.length; ++i)

columnNames.add(hasHeader ? tokens[i] :(" row_"+i));

else

nodesInfo[nodeCount ++]= tokens [0];

end if

increment numoflines

end if

end while

6. return nodesInfo;

Mean and Variance is calculated for all nodes and now for each node a string id is

generated to route only the neighbours information for LISA compute, and make it faster

to compute. This string id is used for field grouping so that only required neighbours

values are used.

1. Get the information emitted from bolt input.getString (0);

2. take each line in array String [] tokens= sentence.split ("\n");

3. compute how many values are retrived

for(String senseVal: tokens)

counterSensorVal ++;

4. take values of only last time stamp ,

which is basically is taken from last value written in sensor files.

String [] lastTimeStamp = tokens[counterSensorVal -1]. split (" ,");

5. Compute the variance using values only from last time stamp

for(String senseVal: tokens)

String [] vKValues= senseVal.split (",");

if(vKValues [2]. contentEquals(lastTimeStamp [2])) then

findTimeStampVal[counterVK ++] = Double.parseDouble(vKValues [1]);

sumOfAllSensors += Double.parseDouble(vKValues [1]);

end if

Double meanOfAllSensors = sumOfAllSensors /(counterVK -1);

end for

for(int i=0; i< counterVK; i++)

varianceSumOfAllSensors += (findTimeStampVal[i] -

meanOfAllSensors)*(findTimeStampVal[i] - meanOfAllSensors);

varianceOfAllSensors = varianceSumOfAllSensors /(counterVK -1);

6. Compute group Ids for tuples which is used to couple neighbours information

based on topology information and emit all neighbours information along with

mean and variance to next bolt

collector.emit(new Values(groupIds ,str ,meanOfAllSensors ,

varianceOfAllSensors ,lastTimeStamp [2]));

7. print the information in logs to track

System.out.print(" groupIds" + groupIds + "word" + str + "mean" +meanOfAllSensors+

"variance "+ varianceOfAllSensors +"\n");

collector.ack(input);

SensorLISABolt is bolt which consumes the tuples generated from SensorGetter bolt

and use this information for computing LISA values. Computed LISA values along with

node information and time stamp are forwarded to next bolt for storing this information.

Chapter 4. Design and Implementation 21

Following code shows LISA computation, pass this LISA value to bolt responsible for

writing information in file which is further used by monitoring tool.

1. Find and filter Neighbours values at same time stamp

if more than one time stamp values reached at bolt for a node and print the

neighbours information

System.out.print(" Neighbors: " +findNeighborsVal[counterVK -1] + "\n");

2. Compute LISA Algorithm

LISA equation contains two parts and so its computed in two steps

i . compute part 1 and print it

Double lisaEqPart1 = (vA - mean)/ variance;

System.out.print("Lisa Part1: " + lisaEqPart1+ "\n");

ii. compute part 2 using neighbors and spatial matrix.

iii. Print this values in logs

Double spatialRowNormal = (1.0/(double)counterVK);

System.out.print("Lisa Part2 computation values neighbour num: " +

spatialRowNormal + "mean" + mean +" value"+

findNeighborsVal[i] + "\n");

lisaPart2 += spatialRowNormal * (findNeighborsVal[i]- mean);

System.out.print("Lisa Part2 computation values at step " + i +

"value"+ spatialRowNormal * (findNeighborsVal[i]- mean) + "\n");

System.out.print("Lisa Part2: " + lisaPart2+ "\n");

iv multiply part1 and part2

computeLisa = lisaEqPart1 * lisaPart2;

3. log the information for each node with LISA value

System.out.print("Bolt Information for node: " + vAValues [0] +"," +

vAValues [1] + "," + vAValues [2] + "Va: "+vA+

"LISA Value:" + computeLisa + "\n");

4. send this information to next bolt

collector.emit(new Values(sensorValues [0], computeLisa));

collector.ack(input);

JsonSensorBolt is bolt which consumes the information from SensorLISABolt and write

this information into JsonSensorFile which is a text file. It can by anything, database

also. In this thesis text file is used as this information is used for monitoring purpose.

Which is discussed in detail further in this chapter.

1. Take the information emitted by previous bolt and store it in text file from

where this information is read and converted to json form for visualization

i take information input.getString (0);

ii split this information dat.split (" ,");

iii open the file and write information in the same

File file = new File(jsonFilePath);

jsonFileWriter = new FileWriter(file.getAbsoluteFile (),true);

BufferedWriter bw = new BufferedWriter(jsonFileWriter);

bw.write(value);

bw.newLine ();

bw.close ();

Chapter 4. Design and Implementation 22

4.2 Monitoring And Visualization Module

The module is written in Java and responsible for use the information generated by

storm application, consume it and visualize the network. For monitoring java threads

are launch which every minute read the information from file, and write in json file.

Also as file gets longer with time so a separate thread is responsible for deleting the

information 15 minutes. For visualization d3 and javascript is used. It’s a simple web

module which will show the network in forms of nodes and edges. Node color represent

the LISA values. different colors are used for monitoring purpose for 3 different cases:

positive lisa, negative and no value.

4.2.1 Monitoring Network

A java thread is running to get the latest information from file and keep updated json

file to be vizualized by d3 application. Following snippet shows the thread is running

continuously after 100 sec sleep time.

1. thread is run continuously to read information from text file and convert it into

JSON every 60 seconds

while(true)

SensorInfoJson sensorJsonInfo = new SensorInfoJson(sensorsIds);

sensorJsonInfo.start ();

TimeUnit.SECONDS.sleep (60);

The links are defined based on information from topology file. as JsonObject. Following

snippet shows how this is implemented.

1 define links based on information stored in csv file

i. Read the information from file and store

topology information in 2d

array like before from file File ("/../ topologyInformation.txt "));

ii if(topoFromFile[i][j]==1) then define link

JsonObject jsonObjectLink = Json.createObjectBuilder ()

.add(" source", i)

.add(" target", j)

.add(" value",1)

.build ();

jsonArrayBuildLinks.add(jsonObjectLink);

Next step is to gather LISA information value for each node at last time stamp and

create JsonObject for the same. If LISA Value is not available for a node, it will be

storing as ”no data” and will be visualized as color change of node on browser. The

following listing is for fetching information from file.

1. Read the information from file /../ jsonSensorFile.txt

where information was written

Chapter 4. Design and Implementation 23

from storm application and keep it in array

BufferedReader reader = new BufferedReader(fileReader);

while((str = reader.readLine ()) != null)

tokens[countLines ++] =str;

2. take the value from last time stamp and look for

node with no value for that time

stamp and store "no value for the same"

if(tokens [0]!= null){

String [] senseVal = tokens[countLines -1]. split (",");

String lastTimestamp = senseVal [2];

for(int i=countLines -1;i>=0;i--)

String word = tokens[i];

String [] sensorVal = word.split (",");

word = word.trim ();

if(!word.isEmpty () && sensorVal [2]. contentEquals(lastTimestamp)){

Boolean foundItem = false;

for(int j=0;j<countFilterLines;j++){

String [] sensorCurrentVal = filteredTokens[j].split (",");

if(sensorCurrentVal [0]. contains(sensorVal [0])){

foundItem = true;

break;

3. if item found save as it is else if not then

finalAddedTokens[k] = sensorsIds[k] + ",no data ,notimestamp ,noValue ";

And the listing below is creating JsonObject along with co ordinates of node. Fixed pa-

rameter is set to true as nodes are fixed in network. Neighbors can change for computing

LISA.

//JSON links were defined before based on topology file information now json nodes

are defined and lisa value computed is assigned.

JsonArrayBuilder jsonArrayBuild= Json.createArrayBuilder ();

1. for each value read from file for node check if LISA is less than 0 or greater

than 0, if less than then set orange color else blue color

int sensorLisaValue;

if(Double.parseDouble(senseVal [3]) <0.0)

sensorLisaValue = (int) (225 * (Math.pow(Double.parseDouble(senseVal [3]) ,20)));

else

sensorLisaValue = 123;

2. define the json node to save it in file

JsonObject jsonObject1 = Json.createObjectBuilder ()

.add(" sensorId", senseVal [0])

.add(" group", sensorLisaValue)

.add("x", coOrdinates[i][0])

.add("y", coOrdinates[i][1])

.add(" fixed", true)

.build ();

.build ();

jsonArrayBuild.add(jsonObject1);

3. build the nodes and links

jsonArrayNode = jsonArrayBuild.build ();

jsonArrayLinks = jsonArrayBuildLinks.build ();

Chapter 4. Design and Implementation 24

These JSON objects are written in file which is used by visualizer.

4.2.2 Visualization Module

This module is implemented in d3, html, javascript. Nodes and links defined in json file

are used and node color is defined by lisa value.

d3.json(" jsonDataD3.json", function(error , graph) {

force

.nodes(graph.nodes)

.links(graph.links)

.start ();

var link = svg.selectAll (". link")

.data(graph.links)

.enter (). append ("line")

.attr("class", "link")

.style(" stroke", function(d) { return color(d.value); });

var node = svg.selectAll (". node")

.data(graph.nodes)

.enter (). append (" circle ")

.attr("class", "node")

.attr("r", 5)

.style("fill", function(d) { return color(d.group); })

.call(force.drag);

node.append ("title ")

.text(function(d) { return d.name; });

force.on("tick", function () {

link.attr("x1", function(d) { return d.source.x; })

.attr("y1", function(d) { return d.source.y; })

.attr("x2", function(d) { return d.target.x; })

.attr("y2", function(d) { return d.target.y; });

node.attr("cx", function(d) { return d.x; })

.attr("cy", function(d) { return d.y; });

});

});

Figures 4.3, 4.4 shows the visualization of 16 nodes and 1600 nodes in d3 respectively.

Chapter 4. Design and Implementation 25

Figure 4.3: Visualizing 16 nodes network

Figure 4.4: 1600 nodes network visualization

4.3 Network Simulator

Network simulator module is java application which is responsible for simulating the

sensor node values for testing our application. Network simulator basically prepare the

information to be processed by storm application. In real world scenario this either

could be replaced by another application or could be used to read information from

sensors installed and keep it at base station where spout is installed. Number of Java

threads are running depending on number of spouts so that each thread will generate

information gathered from sensors attached to a base station. For testing purpose gaus-

sian distribution is used for generating random sensor values. Another responsibility of

this module is to delete the information which is older than some timestamp e.g. 15

minutes as the data is processed by storm application in real time, it’s not required to

store it in db or files.

Chapter 4. Design and Implementation 26

1. Read the information for nodes from csv file and get sensor ids

FileReader fr = new FileReader ((args.length > 0) ? args [0] : "nodes_test.csv");

String [] sensorsIds = parseCsv(fr, ",", true);

2.Start the sensor threads to write sensor values for simulation used by

storm application

SensorDataSet sensorStart = new SensorDataSet (sensorsIds[i], fileSensor);

sensorStart.start ();

}

In the followig code snippet thread check if the number of lines in file exceeds n*5

(last 5 minutes values generated by sensors) then delete the content and then generate

new values and write in empty file. The information stored for each sensor is nodeId,

timestamp and value.

synchronized void sense () throws InterruptedException {

1. if file doesnt exists , then create it

if (!file.exists ())

file.createNewFile ();

else

2. Read the lines from file and see if it exceeds N*5 then delete the previous

content as sensor values before 5 minutes are not required to be processed.

InputStream is = new BufferedInputStream(new FileInputStream (" logDataSensor.txt "));

while ((readChars = is.read(c)) != -1)

empty = false;

for (int i = 0; i < readChars; ++i)

if (c[i] == ’\n’)

++count;

// deleting data from file if it exceeds N*5 lines for N sensors

if(count >N*5){

PrintWriter writer = new PrintWriter(file);

writer.print ("");

writer.close ();

3. write the new random value generated in file for sensors

DateFormat dateFormat = new SimpleDateFormat (" yyyyMMddHHmm ");

//get current date time with Date()

Date date = new Date ();

// System.out.println(dateFormat.format(date));

//get current date time with Calendar ()

Calendar cal = Calendar.getInstance ();

// System.out.println(dateFormat.format(cal.getTime ()));

String value = sensId + "," + (randomParameterVal.nextGaussian ())

+ "," + dateFormat.format(cal.getTime ());

FileWriter fw = new FileWriter(file.getAbsoluteFile (),true);

BufferedWriter bw = new BufferedWriter(fw);

bw.write(value);

bw.newLine ();

Chapter 5

Evaluation

In this chapter the performance measurements and interpretation of these measures are

discussed. The problems encountered are reviewed while designing and implementing

our project, the limitations project has and how these limitations could be resolved.

5.1 Test Set up

The software configurations used are Ubuntu 12.04, Java 1.7.0, zookeeper-3.4.5, Storm-

0.8.2, d3, eclipse kepler. Storm Cluster with 3 nodes was set up. Following listings show

the config files set up for the same

########### These MUST be filled in for a storm configuration

storm.zookeeper.servers:

- "134.21.245.67"

- "134.21.73.201"

- "134.21.73.210"

storm.local.dir: "/tmp/"

java.library.path: "/usr/local/lib/"

nimbus.host: localhost

nimbus.task.launch.secs: 240

supervisor.worker.start.timeout.secs: 240

supervisor.worker.timeout.secs: 240

supervisor.slots.ports:

- 6700

- 6701

- 6702

- 6703

The number of milliseconds of each tick

tickTime =2000

The number of ticks that the initial

synchronization phase can take

27

Chapter 5. Evaluation 28

initLimit =5

The number of ticks that can pass between

sending a request and getting an acknowledgement

syncLimit =2

the directory where the snapshot is stored.

do not use /tmp for storage , /tmp here is just

example sakes.

dataDir =/home/simpal/simpal/stormtemp

the port at which the clients will connect

clientPort =2181

#

Be sure to read the maintenance section of the

administrator guide before turning on autopurge.

#

http :// zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance

#

The number of snapshots to retain in dataDir

#autopurge.snapRetainCount =3

Purge task interval in hours

Set to "0" to disable auto purge feature

#autopurge.purgeInterval =1

server .1=134.21.245.67:5181:5888

server .2=134.21.73.201:5181:5888

server .3=134.21.73.210:5181:5888

Two categories of tests were conducted:

• 16 nodes network (most of the tests were conducted with this network shown in

chapter4.

• 1600 nodes network test for scalability test

5.2 Performance Measures

To measure the performance of 16 nodes network on storm cluster multiple tests were

done with different scenarios.

• Run the topology with real time network simulator data and store the information

in file. It was verified from logs that neighbours are correct and LISA value is

getting calculated with correctly

• For statistical significance the experiment was repeated 100 times considering dif-

ferent numbers. Following scenarios were considered:

– Compute LISA for each node considering random neighbours i.e. 1, 2, 4, 8,

12 neighbours for each node.

Chapter 5. Evaluation 29

– Compute LISA using different spouts and bolts combinations i.e. (2 spouts,

2 bolts), (4 spouts, 4 bolts), (1 spout, 4 bolts)

– Introducing Anomaly in the 16 node network real time and visualization

• The speed of computation for above experiments was considered to compare per-

formance

• For scalability one experiment was done by taking 4 random neighbours for a node

in 1600 nodes network

These test cases, their findings and results are compared now in detail in next section.

Figure 5.1 the example topology set up for testing in this thesis.

1 2

3 4

sensor node (spout maybe?)

Base Station (Bolt)

Physical Water Pipe

Bolts connection

Virtual area managed by
a single BaseStation (sensor report to one
BS)

Legend:

Figure 5.1: Example topology with 16 nodes with 4 base stations

5.2.1 Test Case 16 node Actual LISA

16 nodes network was run for computing LISA with actual(real) neighbours. Figure 5.2

shows the time taken to compute LISA with real neighbours.

Table 5.1 shows the LISA values of each node with actual neighbours for 16 node network.

Figure shows the ScatterPlot where it is visible the negative LISA values lies in region

of Low-High and High-Low. LISA with positive value means similarity and LISA with

-ve value means dissimilarity.

Figure 5.3 shows the ScatterPlot of LISA with real neighbours.

Chapter 5. Evaluation 30

Figure 5.2: Test case LISA computation time with real neighbours for each node in
16 nodes network

Node Value LISA

N-2GWON 0.47 0.14

N-2Z2WK -1.73 0.14

N-3IK0Y 2.08 1.87

N-6PFYW -1.13 0.22

N-8HOVD -0.04 0.01

N-GRDHN -0.61 -0.82

N-H563T -0.28 0.03

N-JQ338 1.22 1.79

N-L04BJ 1.70 0.40

N-LETTK 0.69 -0.13

N-QWNZH -0.16 -0.03

N-SCK04 -0.18 0.17

N-TZD20 -1.40 -1.21

N-UFCUA -0.29 -3.13E-004

N-WRYAZ 1.10 -0.13

N-Y47X6 -1.29 1.79

Table 5.1: LISA values of nodes with actual neighbours

Figure 5.3: Scatter Plot of LISA with real neighbours for each node in 16 nodes
network

Chapter 5. Evaluation 31

5.2.2 Test Case 16 node with fake random neighbours 100 times

Second test case was to run the 16 node network and compute LISA with various fake

neighbours for each node. These fake neighbours were chosen randomly by storm appli-

cation and this was repeated for 100 permutations for each node. Figure 5.4 shows the

result of LISA computation for 100 permutations with fake neighbours.

Figure 5.4: Speed of LISA computation for 100 permutations of each node

Table 5.2 shows the speed for computing LISA values with various neighbours for 100

permutations of each node.

Figure 5.5 shows the result in graphical form, how much time it took to compute LISA

for each node in taking more than 100 permutations of random neighbours.

Figure 5.5: Time taken to compute LISA for each node 100 times with various random
neighbours

Chapter 5. Evaluation 32

Node 1(in secs) 2(secs) 4(secs) 8(secs) 12(secs) 15(in secs)

N-2GWON 1353.38 1342.53 1344.654 1321.05 1327.81 1811.11

N-2Z2WK 1291.10 1408.50 1280.24 1284.65 1337.67 1811.11

N-3IK0Y 1310.90 1233.43 1294.85 1284.65 1243.08 1811.11

N-6PFYW 1406.69 1317.83 1284.45 1261.81 1290.20 1811.11

N-8HOVD 1326.81 1347.88 1302.74 1450.87 1214.55 1811.11

N-GRDHN 1268.01 1292.19 1231.41 1274.11 1257.05 1811.11

N-H563T 1327.76 1258.66 1291.84 1320.26 1269.94 1811.11

N-JQ338 1391.72 1327.24 1302.74 1319.15 1230.98 1811.11

N-L04BJ 1389.11 1274.15 1280.24 1301.33 1227.30 1811.11

N-LETTK 1335.87 1263.47 1327.02 1335.90 1324.42 1811.11

N-QWNZH 1394.61 1374.75 1231.41 1314.14 1226.30 1811.11

N-SCK04 1379.67 1353.27 1411.22 1390.58 1286.22 1811.11

N-TZD20 1281.40 1305.36 1260.47 1381.84 1208.73 1811.11

N-UFCUA 1264.94 1310.44 1309.82 1391.41 1286.54 1811.11

N-WRYAZ 1388.12 1396.96 1366.13 1238.77 1207.83 1811.11

N-Y47X6 1368.73 1348.86 1336.25 1335.11 1264.98 1811.11

Table 5.2: Speed of LISA computation for 100 permutations with random neighbours
of each node

It was observed from LISA values that time taken to compute LISA for nodes lies

between 1200-1400 except when number of neighbours chosen were 15. Following figures

show the time taken with various neighbours.

Figure 5.6 shows the results when only 1 neighbour was selected per node randomly by

application.

Figure 5.6: time for LISA values with 1 neighbour for each node randomly

Figure 5.6 shows the results when 2 neighbour were chosen randomly per node for more

than 100 permutations.

Figure 5.6 shows the results when 4 fake neighbours selected for each node randomly.

For dense network Figure 5.8 shows the results when 8 neighbours were chosen per node

randomly by application.

Chapter 5. Evaluation 33

Figure 5.7: time for LISA values with 2 neighbours for each node randomly

Figure 5.8: time for LISA values with 4 neighbours for each node randomly

Figure 5.9: time for LISA values with 8 neighbours for each node randomly

Figure 5.9 and 5.10 shows the results when very dense network is selected as neighbours

per node randomly by application 12 and 15.

Another observation made was that with more neighbours the LISA value is almost same

for each node e.g. in following figures it is clear that with 12 neighbours LISA value is

almost close to 0. While with 1 neighbour or 2 neighbours the spikes are more, which

clearly indicates that LISA value varies depending on neighbouring nodes.

Chapter 5. Evaluation 34

Figure 5.10: time for LISA values with 12 neighbours for each node randomly

Figure 5.11: time for LISA values with 15 neighbours for each node randomly

5.2.3 Test Case 16 node Anomaly introducing real time and visualiza-

tion

Initially the network has no anomaly. All nodes have same value shown in table 5.3

Figure 5.11 shows the network without anomaly.

Then an anomaly was introduced node N-UFCUA. Changing value at this node results

in change is LISA for nodes which have N-UFCUA as neighbour. The table 5.4 shows

the result with LISA values after anomaly introduction.

Figure 5.12 and 5.13 shows the network after introducing the anomaly N-UFCUA by

changing vale to 3.6. This is shown in picture with light red color. As other nodes where

this node is a neighbour node also get affected. These are shown with dark orange color

in figure 5.13.

LISA value for the node where anomaly was introduced computed immediately but it’s

neighbour nodes took time to get affected.Difference was 3 seconds between anomaly

node LISA impact and neighbour nodes.

Chapter 5. Evaluation 35

Node Value LISA

N-UFCUA 0.6 0.94

N-GRDHN 0.6 0.94

N-2GWON 0.6 0.94

N-8HOVD 0.6 0.94

N-L04BJ 0.6 0.94

N-2Z2WK 0.6 0.94

N-3IK0Y 0.6 0.94

N-Y47X6 0.6 0.94

N-JQ338 0.6 0.94

N-SCK04 0.6 0.94

N-QWNZH 0.6 0.94

N-LETTK 0.6 0.94

N-H563T 0.6 0.94

N-WRYAZ 0.6 0.94

N-TZD20 0.6 0.94

N-6PFYW 0.6 0.94

Table 5.3: LISA values without anomaly

Figure 5.12: Network without anomaly

Chapter 5. Evaluation 36

Node Value LISA

N-UFCUA 3.6 -1.17

N-GRDHN 0.6 0.94

N-2GWON 0.6 -0.54

N-8HOVD 0.6 0.94

N-L04BJ 0.6 0.94

N-2Z2WK 0.6 0.94

N-3IK0Y 0.6 0.94

N-Y47X6 0.6 0.94

N-JQ338 0.6 0.94

N-SCK04 0.6 0.94

N-QWNZH 0.6 0.94

N-LETTK 0.6 -0.53

N-H563T 0.6 0.94

N-WRYAZ 0.6 0.94

N-TZD20 0.6 0.94

N-6PFYW 0.6 -0.54

Table 5.4: LISA values after introducing anomaly

Figure 5.13: Network with anomaly

Chapter 5. Evaluation 37

Figure 5.14: Network with anomaly and neighbours

5.2.4 Test case with various spouts and bolts combinations

This test was done to check if increasing and decreasing the spouts and bolts does impact

the performance of LISA computation or not? In this test case for 16 nodes network

various combinations tested were: (4 spouts, 4 bolts),(2 spouts, 4 bolts), (1 spout, bolts).

(4 spouts, 4 bolts) gave the better performance. (1 spout, 4 bolts) was quite slow and

(2 spouts, 4 bolts) is also quite slower. Increasing the spouts and bolts in proportional

to each other gives better performance.

5.2.5 Test Case 1600 node LISA for a node with 4 fake random neigh-

bours 1000 times

To test scalability test with very large network was done with 1600 nodes, 1000 times for

one node. With one supervisor and 3 workers it was very slow. Takes almost 1 minute

to write value for 1 node in file. Figure 5.14 shows the result of this experiment.

The reason for slowness was number of workers and supervisors. As it was tested with 16

nodes network also with less number of spouts it gets slower. So for 1600 nodes network

400 spouts with 400 bolts will give better performance. The avg time for computing

LISA normally is 13.03 while for statistical testing for 1600 node it’s very slow. Even

for one node it takes 42.75 seconds. Figure 5.16 shows this comparison.

Chapter 5. Evaluation 38

Figure 5.15: 1600 nodes network 1000 LISA Values with 4 random neighbours

Figure 5.16: 1600 nodes network 1000 LISA Values with 4 random neighbours com-
parison to normal LISA Computation

5.3 Discussions

5.3.1 Problems encountered

• In the beginning while setting up storm cluster faced some problem with version

0.8.1 so switched to 0.8.2. Otherwise setting up storm cluster was easy.Sometimes

supervisor was getting killed automatically which was sorted out by running it

with sudo.

• When some tuples fail, there is no way to detect which bolt exactly failed. Only

at spout it was seen that tuples failed. collector.ack was used but still not enough

information is given by storm logs that clearly states where information processing

is failing. A custom logging was used for clearly identifying the point of failure.

• Storm is known for scalability but speed of computation depends on hardware

of machine and computation performed. e.g. processing with strings or integer

value is faster but as in this thesis mathematical computations values of type

Double were used,that makes the processing slower. Also if application need more

Chapter 5. Evaluation 39

information to be read from disks then hardware of machine where spout or bolt

is running limits the speed of computation.

5.3.2 Limitations

• All information is processed using text files which includes couple of disk read

write operations which makes processing slower

• Information for each node is flowing in whole network, it could be good if values

can be directly forwarded to bolt which requires the information

• Values are shown and calculated with same time stamp. If there is gap of 1 second

it will not be considered.

Chapter 6

Findings and Conclusion

6.1 Findings

The topology with 16 nodes was run for 100 permutations of random neighbours of each

node. The logs were analysed and following major findings were made from these tests.

• Anomaly detection takes place simultaneously to LISA computation. Twitter

storm application is efficient tool to detect anomalies.

• Scatter Plot clearly depicts the anomalies i.e -ve LISA value regions and +ve LISA

value regions are easily separable. LISA statistics is very effective way to detect

anomalies and experimental outcomes can be shown with ease.

• Sparse and Dense network impact: Computing time for LISA value increases when

its very dense network e.g when all nodes are connected to each other it takes equal

time for each node. With 15 neighbours , time taken was 1811 seconds per 100

values(average time on each node) while with four neighbours it’s 1303 secs per

100 values(average time on each node). The variation in time for other neighbours

shows us that LISA computation speed depends on location of neighbours chosen.

• While Twitter storm proved and showed good performance in anomaly detection,

it was not that promising for statistical significance. For smaller network like 16

nodes it’s performance was good, but for larger network e.g 1600 nodes it was

significantly slow. Avg time for LISA computation/anomaly detection was 13

secs while for statistical testing(taking 1000 permutations of 4 randomly selected

neighbours) it took 42 secs for one node per value. So for running topology of

1600nodes network with 1000 permutations taking 4 randomly selected neighbours

of each node it might take 2-3 full days. It concludes that instead of using twitter

40

Chapter 6. Findings and Conclusion 41

storm for these tests, these values can be stored in some database e.g SciDb and

analysed by some other statistical tool.

6.2 Conclusion

Main goal of this thesis was to find solution for processing massive real time data coming

from sensors and detect anomaly in WDN. Solution based on LISA algorithm using

storm technology, sensor simulator and visualizer was proposed and tested on 16 nodes

network with different scenarios (using random fake neighbours with 100 permutations,

introducing anomaly manually, tried with 1600 node network etc.) It was observed

that performance doesn’t get much impacted with sparse or dense network but in which

region neighbours lie affects the speed of computation. This was also observed that

less number of spouts decrease the performance. Increasing the number of nodes will

increase more workers and will improve performance for larger networks.

Processed information was visualized in browser which is refreshed every 5 seconds to

show if any node has LISA less than 0. Value less than 0 meant that there is some node

with very high or low value as compared to neighbours. The anomaly and neighbours

impacted are shown with different color nodes. This information is really helpful to

detect and fix the problem in real WDN.

From the findings it is clear that while Twitter storm performed very good in detecting

anomalies, it miserably failed to perform statistical calculations in real time. So it can

be concluded that for efficient statistical analysis data should be stored in a database

like SciDB and can be processed further with some statistical tool.

6.3 Future Work

For future, it would be good to analyse more parameters than only one parameter. Also

it will be useful to store the important information is some database than text file for

future use and historical analysis. Also testing on large cluster with thousands of node

would be good test for testing scalability.

Appendix A

Running Application on Cluster

Here are the instructions for running applications on cluster.

A) For Storm Application

1. Storm -0.8.2 , Zookeeper -3.4.5 version were used.

Config files are there in chapter 4 in thesis for

setting nimbus and other nodes ip addresses on storm cluster.

2. Once cluster is set up and zookeeper is running

on all machines then run the nimbus , supervisor and ui with following commands

sudo ./storm nimbus

sudo ./storm supervisor

sudo ./storm ui

if other machines needed to be added in cluster then

run storm supervisor command on other machines too

and it will be added in cluster.

4. git clone the code from repo. for two

applications (storm and network simulator)

https :// github.com/simpalK/TwitterStormSensorSimulation

https :// github.com/simpalK/SensorSimulations

5. To run storm application

i. executable jar can be used with following command

and providing the path for file where sensor nodes

are writing values along with number of nodes.

./storm jar /home/simpal/stormproject/storm -book -

examples -ch02 -getting_started -8 e42636/target/Getting -

Started -0.0.1 - SNAPSHOT.jar TopologyMain

"/home/simpal/stormproject/storm -book -examples -ch02 -

getting_started -8 e42636/AllFilesRequiredForApplications"

"16"

the mentioned jar file can be found on git repo.

ii. To make this executable jar go to application

directory and run the following command:

~/ stormproject/storm -book -examples -ch02 -

getting_started -8 e42636$ mvn -f pom.xml clean install

iii Along with sensor node file there are other files

42

Appendix A. Appendix Title Here 43

where nodes and topology information is stored. These

all files should be kept in same folder with name

kept in folder in repo.

6. Once topology is submitted it can be seen running

on ui interface on browser

localhost :8080 if running locally or else on ip address of nimbus machine.

B) Network Simulator and visualizer

1. git checkout the application

2. open in eclipse

3. run StartSensors.java as java application

4. For Json parser , conversion from text file into

form for d3 visualization we need to provide path for

multiple files which are set in thread. This should

be same as where we kept sensors data file for storm.

Also provide number of nodes as second argument.

5. d3.v3 folder contains file example.html which can

be run in browser to view the example topology , this

is automatically refreshed every 5 seconds.

Appendix B

Sample of Files

Sample Json File produced by application used for visualization:

{

"nodes ":[

{

"sensorId ":"N-H563T",

"group ":123 ,

"x":100,

"y":400,

"fixed":true

},

{

"sensorId ":"N-QWNZH",

"group ":123 ,

"x":200,

"y":400,

"fixed":true

},

....

{

"sensorId ":"N-UFCUA",

"group ":5331 ,

"x":300,

"y":300,

"fixed":true

},

{

"sensorId ":"N-6PFYW",

"group ":123 ,

"x":400,

"y":300,

"fixed":true

}

.....

,

"links ":[

{

"source ":0,

44

Appendix B. Sample files during tests 45

"target ":0,

"value ":1

},

{

"source ":0,

"target ":1,

"value ":1

},

{

"source ":0,

"target ":4,

"value ":1

}

...

Input file for sensor application where network

simulator is writing sensor data in real time:

N-QWNZH , -0.9009381318652095 ,201404300815

N-LETTK , -1.263020203328888 ,201404300815

N-8HOVD , -1.7482555933371529 ,201404300815

N-2GWON , -1.3717426141897777 ,201404300815

N-SCK04 , -1.0614616613219752 ,201404300815

N-6PFYW , -0.03128790080169101 ,201404300815

N-TZD20 , -0.8203954222043047 ,201404300815

N-UFCUA ,0.2536580467640717 ,201404300815

N-WRYAZ , -1.6295444386583953 ,201404300815

N-3IK0Y , -1.3955691722242054 ,201404300815

N-JQ338 ,1.170798865371803 ,201404300815

N-Y47X6 , -0.5128660555156468 ,201404300815

N-GRDHN , -0.35127349118192885 ,201404300815

N-2Z2WK , -2.651040225057969 ,201404300815

null , -1.7855808729358749 ,201404300815

N-L04BJ , -1.1691622922460019 ,201404300815

N-Y47X6 ,0.4992334078184451 ,201404302038

Sample of topology information file produced by

network simulator which reads values from csv file ,

parse it and write the information in this file which

is used by storm application to detect neighbours and

for monitoring purpose also:

1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0

1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0

0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0

0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0

1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0

0,0,1,0,0,1,1,1,0,0,0,0,0,0,0,0

0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0

0,0,0,0,0,1,0,0,1,1,1,0,0,1,0,0

0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0

0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1

0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0

Appendix B. Sample files during tests 46

0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1

0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1

Storm application writes the LISA value of nodes in

jsonSensorFile as below

N-GRDHN ,0.6 ,201403220638 ,0.9374999999999999

N-UFCUA ,0.6 ,201403220638 ,0.9374999999999999

N-JQ338 ,0.6 ,201403220638 ,0.9374999999999999

N-8HOVD ,0.6 ,201403220638 ,0.9374999999999999

N-QWNZH ,0.6 ,201403220638 ,0.9374999999999999

N-8HOVD ,0.6 ,201403220638 ,0.9374999999999999

N-L04BJ ,0.6 ,201403220638 ,0.9374999999999999

N-3IK0Y ,0.6 ,201403220638 ,0.9374999999999999

N-UFCUA ,0.6 ,201403220638 ,0.9374999999999999

N-GRDHN ,0.6 ,201403220638 ,0.9374999999999999

N-2Z2WK ,0.6 ,201403220638 ,0.9374999999999999

.....

Logs of storm application for LISA computation step

2014 -03 -23 05:13:18 task [INFO] Emitting:

SensorGetter default [0001001100000000 ,

N-6PFYW , -1.1260429155929481 ,201403220638:N-

UFCUA , -0.29114990842834665 ,201403220638:N-

SCK04 , -0.17732269034052123 ,201403220638: ,

0.010557984123472272 , 1.2726941243199128 ,

201403220638]

2014 -03 -23 05:13:18 STDIO [INFO] Find Neighbors: -0.1642343179055442

2014 -03 -23 05:13:18 STDIO [INFO] Mean: 0.010557984123472272

2014 -03 -23 05:13:18 STDIO [INFO] Variance: 1.2726941243199128

2014 -03 -23 05:13:18 STDIO [INFO] Number of Neighbors: 2

2014 -03 -23 05:13:18 STDIO [INFO] Bolt Information for

node: N-H563T , -0.28234801313940555 ,201403220638 Va:

-0.28234801313940555 LISA Value :0.02561153948028165

2014 -03 -23 05:13:18 task [INFO] Emitting:

SensorGetter __ack_ack [-1876144461165842219

-4257977569096191399]

2014 -03 -23 05:13:18 task [INFO] Emitting: SensorBolt2

default [N-H563T , -0.28234801313940555 ,201403220638 ,

0.02561153948028165]

2014 -03 -23 05:13:18 task

......

2014 -03 -23 05:14:24 task [INFO] Emitting: SensorGetter default

[0110001000000000 , N-LETTK ,

0.6937018920545661 ,201403220638:

N-UFCUA , -0.29114990842834665 ,201403220638:

N-QWNZH , -0.1642343179055442 ,201403220638: ,

0.010557984123472272 , 1.2726941243199128 ,

201403220638]

2014 -03 -23 05:14:24 STDIO [INFO] Mean: 0.010557984123472272

2014 -03 -23 05:14:24 STDIO [INFO] Variance: 1.2726941243199128

2014 -03 -23 05:14:24 STDIO [INFO] Number of Neighbors: 2

2014 -03 -23 05:14:24 STDIO [INFO] Bolt Information for

Appendix B. Sample files during tests 47

node: N-QWNZH , -0.1642343179055442 ,201403220638 Va: -0.1642343179055442

LISA Value : -0.02679771260087365

2014 -03 -23 05:14:24 task [INFO] Emitting: SensorBolt2

default [N-QWNZH , -0.1642343179055442 ,201403220638 ,

-0.02679771260087365]

2014 -03 -23 05:14:24 executor [INFO] Proc

Appendix C

Storm ui screen shots

The following screen shots are taken while running a topology on cluster.

Figure C.1: Example topology with 16 nodes in storm cluster on UI

48

Appendix C. Storm UI 49

Figure C.2: Storm UI showing details of Topology with latency

Bibliography

[1] J. Bollen, H. Mao, and X. Zeng, “Twitter mood predicts the stock market,” Journal

of Computational Science, 2011.

[2] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter users: real-time

event detection by social sensors,” in Proceedings of the 19th international conference

on World wide web, p. 851–860, 2010.

[3] Thomas M Walski, James G Uber, William Eugene Hart, Cynthia Ann Phillips, and

Jonathan W Berry. Water quality sensor placement in water networks with budget

constraints. Technical report, Sandia National Laboratories, 2005.

[4] Luc Anselin. Local indicators of spatial associationlisa. Geographical analysis,

27(2):93–115, 1995.

[5] Jonathan Leibiusky, Gabriel Eisbruch, and Dario Simonassi. Getting Started with

Storm, Oreilly 2012.

[6] Christopher D. Lloyd Local Models of Spatial Analysis 2007

[7] Nathanmarz https://github.com/nathanmarz/storm Storm Wiki 2012

[8] Data Driven Documents http://d3js.org/

[9] Scalable Anomaly Detection for Smart City Infrastructure Networks. Djellel Eddine

Difallah , Prof.Philippe Cudré-Mauroux and Sean A. McKenna

50

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation and Goals
	1.2 Report Structure

	2 LISA- Local Indicator Spatial Association
	2.1 Spatial Cluster and WDN
	2.1.1 Spatial Auto Correlation:

	2.2 Local Indicator Spatial Association
	2.2.1 Moran's I
	2.2.1.1 LISA from test case

	2.2.2 Definition Global Getis-Ord G

	3 Background
	3.1 Introduction to Storm
	3.2 Concepts
	3.2.1 Topology
	3.2.2 Storm Cluster
	3.2.2.1 Nimbus
	3.2.2.2 Supervisor
	3.2.2.3 Worker
	3.2.2.4 Zookeeper
	3.2.2.5 User Interface

	3.2.3 Task
	3.2.3.1 Spout
	3.2.3.2 Bolt
	3.2.3.3 Stream Grouping

	3.2.4 Reliability
	3.2.5 Limitations

	3.3 Other Tools and Technologies

	4 Design and Implementation
	4.1 Storm Topology Application
	4.2 Monitoring And Visualization Module
	4.2.1 Monitoring Network
	4.2.2 Visualization Module

	4.3 Network Simulator

	5 Evaluation
	5.1 Test Set up
	5.2 Performance Measures
	5.2.1 Test Case 16 node Actual LISA
	5.2.2 Test Case 16 node with fake random neighbours 100 times
	5.2.3 Test Case 16 node Anomaly introducing real time and visualization
	5.2.4 Test case with various spouts and bolts combinations
	5.2.5 Test Case 1600 node LISA for a node with 4 fake random neighbours 1000 times

	5.3 Discussions
	5.3.1 Problems encountered
	5.3.2 Limitations

	6 Findings and Conclusion
	6.1 Findings
	6.2 Conclusion
	6.3 Future Work

	A Running Application on Cluster
	B Sample of Files
	C Storm ui screen shots
	Bibliography

