
Unconventional Store Systems for RDF Data

Comparison between Registry Systems
used as Semantic Web RDF Data Stores

Master Thesis

Iliya Enchev

September 2012

Thesis supervisors:

Prof. Philippe Cudre-Mauroux
Dr. Gianluca Demartini

eXascale Infolab

eXascale Infolab
Department of Informatics

University of Fribourg (Switzerland)



�There is no real ending. It's just the place where you stop the story.�

- Frank Herbert



Acknowledgements

Many people have supported the successful realization of this work and I would like to
pay them here the deserved tribute. My supervisor Prof. Dr. Philippe Cudre-Mauroux
have always guided and encouraged me during the time I worked on this thesis. He has
always been helpful and supportive in times of di�culties and doubts.
The whole eXascale Infolab at the University of Fribourg headed by my supervisor have
created an accommodating and friendly working atmosphere. They have always granted
me their support, helped me with technical issues or given me some valuable ideas during
our lunch breaks. Thanks to Gianluca Demartini, Marcin Wylot, Djellel Difallah, Roman
Prokofyev, Jigé Pont, Alberto Tonon, Mariusz Wisniewski, Michael Luggen.
I would also like to express my gratitude to my girlfriend Julie, my parents, my family
and friends who have put up with me during the time I was working on my thesis.

ii



Abstract

The e�cient reasoning about entities across distributed information sources and their ef-
�cient resolution are crucial prerequisites if the prescriptions of the Semantic Web move-
ment are to come into reality. These goals along with some of the most important principal
and technical issues of the Internet and the Web are presented in this work.
Entity registry systems provide capabilities like storing, serving and resolving data enti-
ties which could greatly facilitate the Semantic Web. Five such systems or approaches
are presented in this work - Domain Name System (DNS), Digital Object Architecture
(DOA), Entity Name System, Chord DHT and CoralCDN. Further four data storage
solutions are considered for their qualities in the context of handling structured RDF
data entities and are put to extensive benchmarking tests with the help of a developed
Java benchmarking suit. These storage solutions are AllegroGraph, Open Chord, Apache
Cassandra and MySQL.

Keywords: Semantic Web, RDF, OWL, N-Triples, Linked Data, Linking Open Data,
Digital Object Architecture (DOA), DNS, Entity Name System (ENS), Chord, DHT,
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1
Introduction

Since mankind started gathering information about the world around and begun recording
it on di�erent sources, the need for order appeared as a necessity if one wanted to reuse
this information. That brought the �rst inscriptions on walls in caves, stone columns
etc. until the book appeared and then naturally the libraries. The libraries show very
well the need for ordered information and are to some extent very similar to database
systems. Nowadays in the digital world the amounts of information have a much di�erent
measurement. There are certain �elds like science, �nance, commerce, where not a single
system or machine or a library is suited for the purpose of storing and providing the
information to the public. That is where entity registries come into light. They are
intended to store organize and provide useful services on huge amounts of data.

1.1. Motivation and Goals

The World Wide Web which is the biggest application of the Internet provides unimag-
inable amount of information resources and knowledge, which are foundation of many
applications that bring added value to humanity. Although the Web was originally de-
signed with the goal to be an integrated whole, the great part of its resources are scattered
separately across the Internet. The motivation of this thesis is to explore the means for
integrating the separate knowledge bases.

For this purpose the goals of this work are to:

• outline some of the more important issues and implications of the Web

• establish the state of the art of software systems with main functionality - managing
digital entities in a network

• provide a hands-on comparison and measurement of several types of entity man-
agement systems with their performance, main features and characteristics

1.2. Organization

The rest of the work is organised as follows: in the 2-nd section several principal issues
and approaches concerning digital entities on the internet, are presented. The 3-rd section
presents 4 systems that provide in one way or another entity registry functionalities and

2



1.3. Notations and Conventions 3

attack speci�c problems. These systems are presented with their more important features.
A benchmarking test suit is then presented in the 4-th section and the results of some of
the executed tests is shown in the form of charts and tables and comments.

1.3. Notations and Conventions

• Formatting conventions:

� Bold and italic are used for emphasis and to signify the �rst use of a term.

� SansSerif is used for web addresses.

• The present report is divided in Chapters. Chapters are broken down into Sec-
tions. Where necessary, sections are further broken down into Subsections, and
Subsections may contain some Paragraphs.

• Figures, Tables and Listings are numbered inside a chapter. For example, a reference
to Figure j of Chapter i will be noted Figure i.j.

• As far as gender is concerned, I systematically select the feminine when possible.

• Source code is desplayed as follows:

1 Mat r i x3 f rotMat = new Mat r i x3 f ( ) ;
ro tMat . fromAngleNormalAxis ( FastMath .DEG_TO_RAD ∗ 45.0 f , new Vector3 f ( 1.0 f , 0.0 f , 0.0 f ) ) ;

3 box . se tLoca lRo ta t ion ( rotMat ) ;



2
Data Challenges in Today's Internet

2.1. Exponential Growth of Data on the Internet . . . . . . . . . . 4

2.2. Information Islands . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3. Metadata � Common Standards for (Machine) Readability . 5

2.4. Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5. Universal Identi�ers . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.6. Dereferencing URIs . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6.1. 303 URIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6.2. Hash URIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6.3. Choosing the right dereferencing strategy . . . . . . . . . . . . 9

2.6.4. Quality of URIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7. Linked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7.1. Main Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7.2. Technology Stack . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7.3. SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7.4. Main E�orts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7.5. Popular Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7.6. Tools and Applications for Linked Data . . . . . . . . . . . . . 16

2.8. SPARQL Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . 18

In this chapter several problems and approaches of di�erent nature are considered. Some
of these are principle or design-related other are technical. What they have in common
is that they are related in a certain way to distributed entity registry systems and data
integration on the Web in general. The following paragraphs are ordered where possible
from higher, broader conceptual level to more detailed one.

2.1. Exponential Growth of Data on the Internet

With the advance of technology more and more �elds of live and science become data-
driven. This means that data is being created everywhere for many di�erent purposes
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2.2. Information Islands 5

and is being used in many di�erent ways, (e.g. sensors gathering climate information,
astronomers taking pictures of space for discovering new objects etc). According to IBM
90% of the data in the world today has been created in the last two years alone [6]. Some
of the data generated remains for internal use by its creators, but a substantial share is
generated with the intention to be shared with the public through the internet.
This growth together with the developing need to e�ectively utilize the available data
is probably the cause of most of the principle or technical challenges that are further
discussed in this work.

2.2. Information Islands

With the growth of data on the Internet many knowledge bases are being created or
expanded constantly. Every knowledge representation has its purpose and is best at
presenting a certain domain (e.g. science, medicine, commerce, etc.). Logically a more
powerful representation is created by the uni�cations of more domain based representa-
tions. In theory if we broadly consider most of the artefacts on the Internet as some
kind of knowledge representations, they should already be connected as they are on the
Internet. Those artefacts that are relevant to humans are connected through the Web
(HTTP), and those that are for machine consumptions follow some special protocols (e.g.
RPC, FTP or BitTorrent). In most cases though, this connectedness is not enough. The
Web provides means of access mainly to humans, and large scale automatic access, ag-
gregation and/or analysis of data taken from di�erent Web sources by machines is mostly
impossible. The case with the machine intended protocols is also not solved as there is
large diversity of protocols and means of network operations which globally are di�cult
to integrate.

Some aspects of the isolated information islands are tackled by several approaches that
follow.

2.3. Metadata � Common Standards for (Machine)

Readability

A solution dealing with the above mentioned issue is the metadata. Metadata is a broad
term that has di�erent meanings in di�erent contexts. Generally it is de�ned as �data
about data�. This de�nition does not �t well though in the context of the Internet and
the Web. Tim Berners-Lee de�nes metadata as �machine understandable information
about web resources or other things� [26]. �Metadata is structured information that
describes, explains, locates, or otherwise makes it easier to retrieve, use, or manage an
information resource� as stated by [32]. It is useful for resource discovery and can make
di�erent protocols interoperate more easily by providing the necessary details in human-
or machine-understandable form. Metadata can also play an important role in choosing
the protocols that are used when certain information is exchanged. With its help a
system could decide adaptively which sorts of protocols to use to e�ciently distribute
information, dynamically as a function of the readers.
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2.4. Semantic Web

Although the Web was designed as an information space of interlinked hypertext docu-
ments that should leverage the communication for human as well as for machines, there
exist a major obstacle. In reality most of the information on the Web is designed for
human consumption.

Generally what is being presented in most cases on a web page is derived from well-
organized database structure, nevertheless the end result is not evident to automatic
machines browsing the Web [42]. For the solution of this problem there are two obvious
approaches. One goes in the direction of making the machines behave like humans, which
delves in the �elds of arti�cial intelligence, machine learning and data mining. The other
approach goes in direction of changing the data that is exchanged on the Web so it is
expressed in a machine processable form with the help of metadata. This is the realm of
the Semantic Web [42].

The Semantic Web should be a global space for the seamless integration of countless
knowledge bases into an open, decentralized and scalable knowledge space. For this
purpose metadata data models are used to conceptualize and model the information
provided by separate web resources across the Web. The most widely accepted such
model is Resource Description Framework (RDF). It is based upon the idea of making
statements about resources, either Web resources - pages, documents etc. or anything
else that can be named. These statements are in the form of subject-predicate-object
expressions and are also known as triples in RDF terminology.

The subject in a triple denotes the resource, the predicate denotes characteristic or aspect
of the resource and expresses a relationship between the subject and the object. A simple
example could be the sentence �Elephants are grey� which in RDF triple form would be
presented as a subject denoting the concept or the animal species �elephant", a predicate
denoting �has a color", and an object denoting the color �gray�. The concept of a triple is
very simple at a �rst glance but in the same time is naturally suited for creating powerful
knowledge representations in the form of labelled, directed multi-graph. Imagine when
chaining multiple triples, then much more complicated statements can be described. It
comprises a family of speci�cations and uses a variety of syntax formats among which are
OWL1 and RDFS2.

It is widely considered [8] that much progress has been done to make the vision of Semantic
Web happen, but it is still far from practical reality. The Semantic Web o�ers a solution
for the above mentioned information islands problem, as it is capable of providing a
common language and schemas for the description of arbitrary resources among many
individual knowledge bases. Still there is a series of hindrances � logical and technical,
that have to be overcome if the Semantic Web should really work.

2.5. Universal Identi�ers

The correct functioning of the Semantic Web and Resource Registry Systems in general
is based on correct identi�cation through unambiguous unique identi�ers. With the

1Web Ontology Language
2RDF Schema
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explosive development of the Web the most widespread identi�ers have become the URIs.
They are also adopted for the purpose of the Semantic Web (RDF3 and OWL). Linked
data 4 which is one of the biggest semantic web initiatives (see 2.7) is based around URIs.

Ideally the integration of information islands into a global knowledge space should be
based on the usage of URI for referring to any type of resource [8]. Key factor here
is that �the global scope of URIs promotes large-scale network e�ects: the value of an
identi�er increases the more it is used consistently� [5]. Indeed if the same identi�er is
used for naming nodes in more than one knowledge representation (RDF/OWL) graphs,
these nodes can be collapsed thus unifying the graphs and integrating the knowledge the
graphs convey [8]. For this to work in reality there are two important prerequisites that
need attention (as pointed out by Bouquet et al in �ENS� [8]): on the one hand, the usage
of the same URI for two or more di�erent resources should be avoided, as this creates
ambiguity also known in information integration as �false positives�; on the other hand
the unnecessary URI aliases (i.e. associating di�erent URIs with the same resources)
brings division into the web of related resources causing �false negatives� in information
integration. The authors of ENS propose a solution of these two problems, focusing more
on the second one as it has greater in�uence in reality.

2.6. Dereferencing URIs

Any HTTP URI that is used to denote a resource part of an RDF triple should be
dereferenceable, meaning that HTTP clients can look it up using the HTTP protocol and
retrieve a description or representation of the resource that is identi�ed by the URI. This
applies to URIs that are used to identify classic HTML documents - information resources,
as well as URIs that are used in the Semantic Web context to identify real-world objects
and abstract concepts [20].

Descriptions of resources are usually embodied in the form of Web HTML documents,
which are intended to be read by humans. Descriptions that are intended for consumption
by machines are represented as RDF data.

When a URI identify a real-world object, it is essential to not confuse the objects them-
selves with the Web documents that describe them. For this reason it is a common
practice to use di�erent URIs to identify real-world object and the document that de-
scribes it, in order to eliminate disambiguation. This way separate statements about an
object and a document that describes the object can be made. For example the year
a building was built can be much di�erent from the creation date of a document that
describes this building. This di�erentiation through use of separate URIs is crucial for
the coherence of the Web of Data [20].

Together with the di�erence between the real objects and their descriptions there can
also be di�erent representations of the same resource (represented by the same URI). As
was mentioned above the Web is intended to be an information space usable by humans
as well as by machines and depending on who is interested in a certain resource there
can be di�erent, e.g. HTML for humans and RDF for machines. Still this should be the
same data, only the appearance, the way the data is presented should change and this

3Resource Description Framework
4http://linkeddata.org/
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can be achieved by an HTTP mechanism called content negotiation [18]. There are two
types of content negotiation � server-driven and agent-driven.

By server-driven negotiation the selection of the best representation is made by an al-
gorithm located at the server. Selection is based on the available representations of the
response (possibilities such as language, content coding, formats like JSON, NTriples,
etc.) and the contents of particular header �elds in the request message or on other
information pertaining to the request (e.g. network address of the client) [18, sec. 12.1].

In the case of agent-driven negotiation, selection of the most appropriate representation
for a response is performed by the user agent after receiving an initial response from
the origin server. Selection is based on a list of the available representations of the
response included within the header �leds or entity-body of the initial response, with
each representation identi�ed by its own URI. Selection from among the representations
may be performed automatically or manually by the user selecting from a generated
menu [18, sec. 12.2]. There is also a combination of both negotiation types which is
called transparent negotiation.

The above explained mechanisms are suited mainly for information resources. For deref-
erencing real-world objects there are two other strategies. These strategies are called 303
URIs and hash URIs. They both ensure that objects and the documents that describe
them are not confused, and that humans as well as machines can retrieve appropriate
representations [20].

2.6.1. 303 URIs

Real-world objects, like houses or people, can not be transmitted over a network using
the HTTP protocol. That is why it is not possible to directly dereference URIs that
identify real-world objects. The 303 URIs strategy provides one solution in which the
server when asked for a real world object, responds with the HTTP response code 303
See Other and the URI of a Web document which describes the real-world object. This
is called a 303 redirect. In a second step, the client dereferences this new URI and gets
a Web document describing the real-world object [20].

Dereferencing a HTTP URI that identi�es a real-world object or abstract concept involves
a procedures consisting of four steps (as pointed by [20, sec. 2.3.1]):

1. The client performs a HTTP GET request on a URI identifying a real-world object
or abstract concept. If the client is a Linked Data application and would prefer an
RDF/XML representation of the resource, it sends an Accept: application/rdf+xml
header along with the request. HTML browsers would send an Accept: text/html
header instead.

2. The server recognizes that the URI identi�es a real-world object or abstract concept.
As the server can not return a representation of this resource, it answers using the
HTTP 303 See Other response code and sends the client the URI of a Web document
that describes the real-world object or abstract concept in the requested format.

3. The client now performs an HTTP GET request on this URI returned by the server.

4. The server answers with a HTTP response code 200 OK and sends the client the
requested document, describing the original resource in the requested format.
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2.6.2. Hash URIs

One widely acknowledged disadvantage of 303 URI strategy is that it requires two HTTP
requests to retrieve a single description of a real-world object. In this sense a more e�cient
solution, which avoids the two requests is provided by the hash URI strategy.

The hash URI strategy is based around the characteristic that URIs can contain a frag-
ment, a special part that is separated from the base part of the URI by a hash symbol
(#) [13].

When a client wants to retrieve a hash URI, the HTTP protocol requires the fragment
part to be stripped o� before requesting the URI from the server. This means a URI that
includes a hash cannot be retrieved directly and therefore does not necessarily identify
a Web document. This enables such URIs to be used to identify real-world objects and
abstract concepts, without creating ambiguity [13, 20].

2.6.3. Choosing the right dereferencing strategy

Based on the speci�c characteristics of the two dereferencing approaches, they are used
in di�erent circumstances. Some considerations on this topic made in [20] are provided
bellow.

Hash URIs have the advantage of reducing the number of necessary HTTP round-trips,
which, in turn, reduces access latency. The downside of the hash URI approach is that
the descriptions of all resources that share the same non-fragment URI part are always
returned to the client together, irrespective of whether the client is interested in only
one URI or all. If these descriptions consist of a large number of triples, the hash URI
approach can lead to large amounts of data being unnecessarily transmitted to the client
[20].

303 URIs, on the other hand, are very �exible because the redirection target can be
con�gured separately for each resource. There could be one describing document for each
resource, or one large document for all of them, or any combination in between. It is also
possible to change the policy later on [20].

As a result of these factors, 303 URIs are often used to serve resource descriptions that are
part of very large data sets, such as the description of an individual concept from DBpedia,
an RDF-ized version of Wikipedia, consisting currently of 3.77 million entities, described
by over 1.89 billion RDF triples [11], more information about DBpedia is presented in
section 2.7.5.

Hash URIs are often used to identify terms within RDF vocabularies, as the de�nitions
of RDF vocabularies are usually rather small, maybe a thousand RDF triples, and as it is
also often convenient for client applications to retrieve the complete vocabulary de�nition
at once, instead of having to look up every term separately. Hash URIs are also used
when RDF is embedded into HTML pages using RDFa. Within the RDFa context, hash
URIs are de�ned using the RDFa about= attribute. Using them ensures that the URI
of the HTML document is not mixed up with the URIs of the resources described within
this document.

A combination of the advantages of the 303 URI and the hash URI approach is also
possible. By using URIs that follow a http://domain/resource#this pattern, for instance,
http://biglynx.co.uk/vocab/sme/Team#this, the data that is returned as a description of
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a resource can be �exibly con�gured and the second HTTP request can still be avoided ,
as the #this part, which distinguished between the document and the described resource,
is stripped o� before the URI is dereferenced [13, 20].

More thorough and detailed materials on dereferencing URIs can be found in [14],[13],
[20].

Once an URI is guaranteed to be dereferenceable, the content of its representation has
to be reached (through HTTP), which can be located anywhere on a server on the Web.
This is called resolving or resolution and in the current Internet infrastructure is caried
out by the Domain Name System which is considered in a later section.

2.6.4. Quality of URIs

After considering the technical characteristics and mechanisms for dereferencing URIs it is
important to pay attention to some aspects which are related to the quality and usability
of URIs. These considerations are important to the proper and e�cient functioning of
the Web as well as the Linked Data initiatives. Bellow are several important points that
concern the quality of an URI and its persistence for long time [3].

• URIs should not re�ect the underlying �le system where resources are stored. URI
space should be abstract and well organized re�ecting the conceptual structure of
which a resource is a part.

• Similar rule applies to the underlying technology with the help of which a resource
is exposed, the name of the technology should not appear in an URI, (e.g. pages
produced by scripts having cgi in their URI).

• It is generally advised not to include information about author, subject, status (e.g.
�old� or �new�), access target (e.g. team, public etc,), �le name extension.

It should also be noted that the amount of information put into a URI plays important
role. The more information there is in an URI, its longevity decreases, and if there is
little information, the URI can't be dereferenced to a resource, it becomes just a plain
identi�er [29]. Last but not least a very important implication which has impact of the
URIs is that one does not buy an URI but only rents it. This is one of the limitations of
the Web and DNS, but it does not look like to be overcome any time soon.

2.7. Linked Data

Linked data is an initiative that strives to connect related data that was not previously
linked, or using the Web to lower the barriers to linking data currently linked using other
methods [22]. It is a set of best practices which are adopted by ever increasing number
of data providers, leading to the creation of a global data space containing billions of
assertions - the Web of Data [7]. Linked data is based upon standard Web technologies
such as HTTP and URIs and has its best practices for exposing, sharing and connecting
pieces of data, information, and knowledge on the Semantic Web. It embodies many
of the above stated principles and tackles with some of the major problems, like the
information islands.
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2.7.1. Main Principles

The Linked Data movements has its own main principles, which again have certain simi-
larities to what was explained above.

• Use URIs as names for things. Any resource of signi�cance should be given a
URI. (Or more generally an identi�er) (What sorts of things can be resources? A
very wide variety. The URI concept itself puts no limits on this. However, URIs
are divided into schemes, such as http: and telenet:, and the speci�cation of each
scheme determines what sort of things can be resources in that scheme. Schemes
are discussed later.) This means that no information which has any signi�cance
and persistence should be made available in a way that one cannot refer to it with
a URI.

• Use HTTP URIs so that people can look up (dereference) those names.
Dereferencing is explained in the next section.

• When someone looks up a URI, provide useful information, using the
standards (RDF*, SPARQL)

• Include links (RDF statements) to other URIs. so that they can discover
more things.

2.7.2. Technology Stack

Linked data being an e�ort and a direction in the development of the Web and not a
technological revolution, relies on two technologies that are fundamental and well known
to the Web: Uniform Resource Identi�ers (URIs) and the HyperText Transfer Protocol
(HTTP).

The entities that are identi�ed by URIs should use the http:// scheme, as stated by
the second principle, so they can be looked up simply by dereferencing the URI over
the HTTP protocol. This way the HTTP protocol provides a simple and yet universal
mechanism for retrieving resources that can be serialized as a stream of bytes (such as a
photos of people, or any digital content), or retrieving descriptions of entities that cannot
themselves be represented as a digital resource and sent across the network (such as the
people themselves) [7].

URIs and HTTP are complemented by RDF, introduced above, which is critical to the
Web of Data. In comparison to HTML which provides a means to structure and link
documents on the Web, RDF provides a generic, graph-based data model with which to
structure and link data that describes things from the real world.

As was explained earlier the RDF model encodes data in the form of subject, predicate,
object triple statements. The subject and object of a triple are both URIs that each
identify a resource, or a URI and a string literal respectively. The predicate speci�es how
the subject and the object are related, and is also represented by a URI [7].

The RDFS (RDF Schema), which is a vocabulary de�nition language based on RDF and
the Web Ontology Language (OWL) provide a basis for creating vocabularies that can be
used to describe entities in the world and how they are related. Vocabularies are collection
of classes and properties and are expressed in RDF, using terms from RDFS and OWL,
which provide varying degrees of expressivity in modelling domains of interest. By the
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free publishing of vocabularies to the Web of Data there exist plenty of sparse information
which in turn can be connected by RDF triples that link classes and properties in one
vocabulary to those in another, thereby de�ning mappings between related vocabularies
[7].

An important prerequisite to utilize the numerous RDF vocabularies and datasets and
their expressiveness is the capability of querying the RDF data. For this reason the World
Wide Web Consortium (W3C)5 has standardised the SPARQL query language for RDF
data.

2.7.3. SPARQL

SPARQL is the de-facto standard query language for RDF. It can be used to express
queries across diverse data sources in the form of retrieving and manipulations with
stored data. As was explained above RDF data is based around the notion of triples, so
in its simple essence SPARQL queries consist of triple patterns (required and optional),
which can have the logical operation conjunction and disjunction added to them. The
result of SPARQL queries can be results set or RDF graphs.

A simple SPARQL query consists of two parts: the SELECT clause identi�es the variables
to appear in the query results, and the WHERE clause provides the basic graph pattern
to match against the data graph. The graph pattern may consist of a single triple pat-
tern with a single or multiple variables, or multiple patterns matching actual resources
(identi�ed by URIs) or literal values (strings, integers, etc.) Bellow is an example of a
query with multiple matches and multiple solutions provided by W3C [37].

1

Data :
3

@prefix f o a f : < h t t p : / / xmlns . com/ f o a f /0 .1 / > .
5

_ : a f o a f : name " Johnny Lee Outlaw " .
7 _ : a f o a f : mbox <ma i l t o : jlow@example . com> .

_ : b f o a f : name " Peter Goodguy " .
9 _ : b f o a f : mbox <ma i l t o : peter@example . org > .

_ : c f o a f : mbox <ma i l t o : carol@example . org > .
11

13 Query :

15 PREFIX f o a f : < h t t p : / / xmlns . com/ f o a f / 0 .1 / >
SELECT ?name ?mbox

17 WHERE
{ ?x f o a f : name ?name .

19 ?x f o a f : mbox ?mbox }

21 Query Resul t :

23 name mbox
" Johnny Lee Outlaw " <ma i l t o : jlow@example . com>

25 " Peter Goodguy " <ma i l t o : peter@example . org >

Listing 2.1: Query with multiple patterns and mutlipe matches.

There are four query forms, which use the solutions from the pattern matching to form
result sets or RDF graphs [37]:

5http://www.w3.org/ � the main international standard organization for the World Wide Web
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• SELECT returns all, or a subset of, the raw values bound in a query pattern match
in a result set form

• CONSTRUCT returns an RDF graph constructed by substituting variables in a set
of triple templates.

• ASK returns a boolean true/false indicating whether a query pattern matches or
not.

• DESCRIBE returns an RDF graph that describes the resources found.

There is also a SPARQL Update language for RDF graphs which is complementary to
the SPARQL Query language, and utilizes its syntax constructs. The SPARQL Update
is not yet endorsed as a standard by the W3C and is still in progress (a working draft)
until it reaches a �nal status as o�cial recommendation. The SPARQL Update provides
INSERT, UPDATE and DELETE capabilities. More information is provided in the W3C
working draft [38].

2.7.4. Main E�orts

The most well known embodiment and application of the Linked Data principles is the
Linking Open Data6 project, a grassroots e�ort, started in the beginning of 2007, sup-
ported by the W3C Semantic Web Education and Outreach Group. The original and
ongoing aim of the project is to bootstrap the Web of Data by identifying existing data
sets that are available under open license, converting these to RDF according to the
Linked Data principles, and publishing them on the Web.

In its early stages the project was mainly supported by researchers and developers in
universities and small companies. With time the project has gathered considerable at-
tention from the public and many large organizations have been involved, such as the
BBC, Reuters, the British government, the Library of Congress, the French National Li-
brary (Bibliothèque nationale de France), etc. This groth is made possible by the open
nature of the project, where anyone can participate simply by publishing a data set ac-
cording to the Linked Data principles and interlinking it with existing data sets. To give
an idea for the scale and range of the Web of Data resulting from the Linking Open Data
project Figure 2.1. is provided. Each node in this diagram represents a distinct data
set published as of September 2011, with the arrows representing the level of connection
between data sets.

The content of the Web of Data cloud is diverse in nature, comprising data about domains
such as: geographic locations (Linked GeoData), companies (IBM), people, books, sci-
enti�c publications (ACM), �lms (LinkedMDB), music television and radio programmes,
genes, proteins, drugs and clinical trials, online communities, statistical data, census
results, etc [7].

The size of the nodes on Figure 2.1. are proportional to the number of triples that each
dataset contains. The arcs between the nodes indicate the links that exist between items
in the connected data sets. Heavier arcs roughly correspond to a greater number of links
between two data sets and the direction of the links indicate the outward links from one
data set to another.

6http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
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The exact number of triples in the Web of Data is di�cult to estimate, due to the fact
that much of the data is being generated by wrappers around existing relational databases
or APIs and therefore �rst need to be crawled before it can be counted or analyzed [1].
One possibility for calculating the size of the Web of Data can be the estimation of the
size of each of the participating data sets, which is provided by the Linking Open Data
community [24]. According to these statistics, the Web of Data contains around 19.5
billion RDF triples.
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Figure 2.1.: Graph representing the data sets building up Linked Open Data together
with their relationships as of September 2011 [23].
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Domain Data Sets Triples Percent RDF Links Percent
Cross-domain 41 4,184,635,715 13.23 63,183,065 12.54
Geographic 31 6,145,532,484 19.43 35,812,328 7.11
Government 49 13,315,009,400 42.09 19,343,519 3.84
Media 25 1,841,852,061 5.82 50,440,705 10.01
Publications 87 2,950,720,693 9.33 139,925,218 27.76
Life sciences 41 3,036,336,004 9.60 191,844,090 38.06
User-generated
content

20 134,127,413 0.42 3,449,143 0.68

295 31,634,213,770 503,998,829

Table 2.1.: Number of data sets, amount of triples, and amount of RDF links per topical
domain, as of October 2011 [39].

2.7.5. Popular Datasets

The data sets that form the Web of Data are classi�ed into several topical domains which
are listed in table Table 2.1. The number of triples as well as their links per domain
are also shown in the table. The number of RDF links refers to out-going links that are
set from data sources within a domain to other data sources [20]. Some very thorough
summary statistics about the data sets that are catalogued within the Linking Open Data
Catalog are provided by State of the LOD Cloud document [39].

The central interlinking hub of the Web of Data as seen on Figure 2.1 is DBpedia. It
is a community e�ort to convert the human readable Internet encyclopedia Wikipedia7

into structured information accessible for the Web of Data. It describes around 3.77
million entities, out of which 2.35 million are classi�ed in a consistent Ontology, including
764,000 persons, 573,000 places (including 387,000 populated places), 333,000 creative
works (including 112,000 music albums, 72,000 �lms and 18,000 video games), 192,000
organizations (including 45,000 companies and 42,000 educational institutions), 202,000
species and 5,500 diseases [11].

The central point of DBpedia in the Linked Data cloud is due to several factors, among
which are its cross-domain nature , its constant up-to-date status and its community
agreement, guaranteed by its dependence on Wikipedia, and its rich language base. Be-
cause it contains terms from many di�erent domains it is the �glue� in the Web of Data
which is used by many domain speci�c datasets. Some of the domain oriented datasets
are LinkedGeoData � a conversion from the OpenStreetMap project, which provides in-
formation about more than 1 billion nodes and 100 million ways and the resulting RDF
data comprises approximately 20 billion triples; the datasets provided by the British
Broadcasting Corporation (BBC) on topics such as music, wild life, sport; government
datasets provided by Australia, New Zealand, U.K. and USA.

2.7.6. Tools and Applications for Linked Data

There are a variety of tools and applications that support the publishing and consumption
of Linked Data. The tools may support the publishing of RDF content as Linked Data

7http://en.wikipedia.org/wiki/Wikipedia
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on the Web or provide conversion of non-RDF data with making transparent some of the
technical details such as content negotiation and ensuring the adherence to the Linked
Data community best practices.

All tools support dereferencing URIs into RDF descriptions. In addition, some of the tools
also provide SPARQL query access to the served data sets and support the publication
of RDF dumps. Some of the more popular publishing tools are: D2R Server - tool for
publishing non-RDF data as Linked Data with the help of declarative mapping; Virtuoso
Universal Server - provides serving for RDF data with SPARQL interface; AllegroGraph
- provides storing and serving of RDF data, querying and update capabilities, integration
with clients for di�erent programming platforms.

Another indivisible part of the Linked Data application stack are the Linked Data browsers
and search engines. The browsers allow users to navigate in-between statements about
a certain resource and to explore the di�erent data sources that provide relevant infor-
mation, following links expressed as RDF triples. Linked Data search engines similar to
web search engines serve as the place where navigation process - browsing begins. The
Linked Data search engines crawl Linked Data from the Web by following RDF links and
provide query capabilities over aggregated data. Figure 2.2. provides an example of the
Sig.ma search and browsing functionalities developed by the Digital Enterprise Research
Institute (DERI).

Figure 2.2.: Sig.ma Linked Data search results for Prof. Philippe Cudre-Mauroux.



2.8. SPARQL Endpoints 18

2.8. SPARQL Endpoints

Linked Data browsers and search engines are important for the realization of the capa-
bilities of well organized, interlinked Semantic Web data by humans, but as was stated
above, Semantic Web is about machine readability and consumption of information. The
way machines interact with the information is through interfaces and APIs, where query-
ing data from RDF datasets and receiving results from di�erent kinds of Linked Data
applications plays an important role. The usual way queries are executed over exposed
datasets is through SPARQL endpoints.

Linked Data sources usually provide a SPARQL endpoint for their dataset(s). In most
cases this is a query processing service that supports the SPARQL query language which
was presented above. SPARQL queries are usually sent as an HTTP GET request to the
SPARQL endpoint with parameter the query. An example is shown in listing Listing 2.2.
The endpoints act like RESTful Web services and can produce results in di�erent formats:
XML, JSON, plain text, RDF/XML, NTriples, OWL, N3 etc. The ACCEPT HTTP
header can be used for indication of the preferred result format. It is usually the task
of the calling software to process the returned response into a meaningful presentation
for human users or for further consumption by machine entities. An exhaustive list of
SPARQL Endpoints on di�erent data sets is provided by the W3C under http://www.w3.
org/wiki/SparqlEndpoints.

1

h t t p : / / dbpedia . org / sparq l ? de fau l t−graph−u r i = h t t p : / / dbpedia . org&query= s e l e c t + d i s t i n c t +?Concept+
where + { [ ] + a+?Concept }+ LIMIT+100&format= t e x t / html&t imeout=0&debug=on

Listing 2.2: SPARQL Query request on the dbpedia SPARQL endpoint.

There are also a number of libraries for accessing SPARQL Endpoints, written in di�erent
languages. To name a few: Jena for Java, which is also used for the benchmarking
in chapter 4, Sesame also for Java, SPARQL Wrapper (Python), SPARQL JavaScript
Library. The libraries provide utility methods for addressing an endpoint, creating a
query, executing a query, receiving the result in an useful form, etc.

The simplest queries on a SPARQL endpoint are over single data set. This is important
but does not really introduce an improvement for the Semantic Web compared to for
example what a relational data base could do for a data set with exposed interface for
SQL queries. SPARQL endpoints provide some compelling advantages for the Linked
Data. Issuing queries over multiple datasets; using logical constructs as conjunction and
disjunction, inference and reasoning are some of the important features that distinguish
SPARQL endpoints that implement them.

As explained above SPARQL query language is based around triple patterns, which are in
the form of subject predicate object. When there are multiple patterns are superimposed
they form a conjunctive query. With the usage of the UNION construct in SPARQL,
disjunction is achieved.

Inference and reasoning are based on the features of RDFS and OWL. OWL is divided
into three sublanguages which provide di�erent level of expressiveness: OWL Lite, OWL
DL and OWL Full ordered from the least to most powerful. Based on the di�erent logical
constructs provided by the OWL subtypes and RDFS further conclusions are possible to
be made. Some of the reasoning capabilities are:

• Type inheritance through rdfs:subclassOf
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• Transitivity and re�exsivity through rdfs:subClassOf, rdfs:subPropertyOf

• The semantics of owl:inverseOf, which imply that e.g. if parentOf owl:inverseOf

hasParent and Peter parentOf Sophie then Sophie hasParent Peter

• When an owl:sameAs relationship is asserted between two entities that are known
to be classes, an owl:equivalentClass relationship is inferred between the classes

More on the reasoning and inference capabilities of RDFS and OWL can be found in
[35, 33, 34]. Not all speci�cation and reasoning capabilities are usually implemented in
SPARQL endpoints. Some of the capabilities that reasoning o�ers are in fact powerful but
may lead to having no computational guarantees as is the case with OWL Full. Reasoning
deteriorated the execution times for queries as is shown later in this work

Queries over multiple data sets can be achieved by copying the data to a single data store,
but this could not scale and may imply the usage of out-dated data. Another solutions are
federated queries. When there are multiple data sets each providing SPARQL endpoint,
federated queries can be executed using the help of mediator which distributes subqueries
to the sources and then integrates the result. The queries may be in normal form and
the federation can be done transparently as is the case by AllegroGraph. There is also
a standard de�ned by W3C for federated queries. The SERVICE keyword is used to
instructs a federated query processor to invoke a portion of a SPARQL query against a
remote SPARQL endpoint. Again not all SPARQL endpoints provide federated querying
capabilities and the standard for federated queries is relatively new and is still in draft
version [36].
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There are several architectural approaches for building digital repositories. One main
di�erentiation is between centralized systems like the DNS1, or DOA2, and peer-to-peer
systems like Chord and Coral.

The centralized model divides the nodes from a network into main and subordinate nodes,
into a hierarchy. In terms of network such system is connected using star or tree network
topology, where the subordinate nodes connect to the main nodes/node when they have to
execute a task for which they don't have the required authority or information. Generally
speaking centralized approaches have always a more strict administrative structure.

Peer-to-peer systems are distributed in a network, generally without any centralized
control or hierarchical organization. Each node part of a P2P3 network runs software
with equivalent functions. P2P applications could provide many functionalities, among
which are: redundant storage, permanence, selection of nearby servers, authentication,
anonymity, and hierarchical naming. Despite this rich set of features, in essence most of
the P2P applications boil down to distributed entity repositories, which core operation is
the e�cient location of data items [40].

1Domain Name System
2Digital Object Architecture
3peer-to-peer

20
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3.1. DNS

The Domain Name System (DNS) is a hierarchical distributed naming system providing
service to any resource connected to the Internet or a private network [43]. It associates
various information with domain names assigned to each of the participating entities
from the network. A Domain Name Service resolves queries for these domain names into
IP addresses for the purpose of locating computer services and devices. By providing a
worldwide, distributed keyword-based redirection service, the Domain Name System is
considered as a backbone for enabling end-points to communicate easily with each other
without being concerned with the other's actual location (identi�ed by IP-address). DNS
is essential component of the functionality of the Internet and the Web. With its services
it allows for the transparent movement of service providers anywhere in the world, while
maintaining the required seamless connectivity to their clients.

Figure 3.1.: The hierarchical Domain Name System, organized into zones, each served
by a name server [43].

The DNS has three major components [27]:

• The Domain Name Space and Resource record, which are speci�cations for a tree
structured name space and data associated with the names. Each node or leaf
in the tree has zero or more resource records, which hold information associated
with the domain name. The tree sub-divides into zones beginning at the root zone
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Figure 3.1. A DNS zone may consist of only one domain, or may consist of many
domains and sub-domains, depending on the administrative authority delegated
to the manager [43]. Administrative responsibility over any zone may be divided
by creating additional zones. Authority is said to be delegated for a portion of
the old space, usually in the form of sub-domains, to another name server and
administrative entity. The old zone ceases to be authoritative for the new zone [43].

• Name Server is a server that stores the DNS records. A name server may cache
structure or set information about any part of the domain tree, but in general
a particular name server has complete information about a subset of the domain
space, and pointers to other name servers that can be used to lead to information
from any part of the domain tree. Name servers know the parts of the domain tree
for which they have complete information. Such servers are called authoritative
servers for these parts of the name space. Authoritative information is organized
into zones, and these zones can be automatically distributed to the name servers
which provide redundant service for the data in a zone [27].

• DNS resolver is the client-side of the DNS. It is responsible for extracting informa-
tion from name servers in response to client requests. Resolvers must be able to
access at least one name server and use that name server's information to answer a
query directly - that is non-recursive query, or pursue the query using referrals to
other name servers - that is a recursive query [27].

Figure 3.2.: DNS resolution sequence [43].

Figure 3.2. shows the resolution sequence by client lookup. The user would not normally
communicate directly with a DNS resolver. Instead DNS resolution should happen trans-
parently along the way, where the requested domain name would be cached, in the web
browser, or the operating system or the local internet service provider (ISP). In the event
that the name is not resolved the query goes to a higher leve DNS server until the query
is successfully resolved or no result is returned.

In general DNS provides very fast responses as most of the time the queried domain
names are cached somewhere along the way. Naturally appears the question if the DNS
would be suitable for a general purpose resource naming system. The issue is that DNS
is originally designed and primarily used for mapping domain names into IP Addresses
to support network routing. Because of that any other use along with various DNS
extensions have the potential to slow down the network address translation and a�ect
DNS e�ectiveness in network routing. Even considering a separate DNS based resource
naming system (which is in e�ect a key � value distributed storage) that could work
independently of the established DNS infrastructure, this would not provide the desired
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results. DNS implementations do not scale well when large amount of data is associated
with any particular DNS name [41, p. 13]. Another issue that prevents the usage of DNS
as a general purpose resource naming service is the DNS administrative mode. DNS
names are managed tipically by the network administrator at the DNS zone level. There
is no provision for a per-name administrative structure. No facilities are provided other
than network administrators to create or manage DNS names. This is appropriate in the
case of domain name administration, but less so for general-purpose name administration.

3.2. DOA

The Digital Object Architecture (DOA) is an e�ort by the Corporation for National
Research Initiatives (CNRI) that strives to utilize the capabilities of the Internet for the
means of information management. It was designed to enable all kinds of information:
public, private or combination of both in the form of digital entities, to be managed in a
network over potentially very long time frames. The DOA takes into account such aspects
of Information Management as identi�cation, storage, resolution, discovery, matching,
interoperability, security. Generally speaking, any information expressed in digital form
can be managed within the architecture. There are three distinct components in the
DOA for which there are implementations provided by CNRI (Corporation of National
Research Initiative) which came up with DOA. The components are as follows:

• Resolution System (Handle System)

• Digital Object Repository (DORepository)

• Digital Object Registry (DORegistry)

3.2.1. Handle System

The principal function of the Handle System is to map known identi�ers into handle
records, containing useful information about the digital object being identi�ed (e.g. IP
address, public key, URL etc.). Every identi�er has two parts: a naming authority (a.k.a.
pre�x) and a unique local name under the naming authority � su�x, separated by �/�
(e.g. �10.1045/january99-bearman�).

The collection of all local names de�ned under a certain pre�x de�nes the local handle
namespace under that pre�x (something like a root zone in the case of DNS). All the local
namespaces (all pre�xes) de�ne the handle namespace and a pre�x can be considered as
a top level domain. More namespaces for Local Handle Services (LHS) can be de�ned
in hierarchical fashion under the Global Handle Registry (GHR), thus the handle system
provides hierarchical service model. The separate LHS can work autonomously with
the handles from their namespaces. The structure of the Handle system is shown on
Figure 3.3.

The Handle System provides also distributed architecture. It consists of a number of
individual handles services. Each of these services consists of service sites. Each service
site replicates the other and can resolve all their handles. Each site may consist of one
or more handle server. There are no limitations on the number of services, service sites
or servers, which provides scalability and eliminates single point of failure.
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Figure 3.3.: Handle System structure.

3.2.2. DORepository

The DORepository stores digital objects and provides access to them. There are no lim-
itations on number of repositories and size. It can work with standard storage products.
Each digital object that is stored in the repository is assigned a unique persistent identi-
�er that is registered by the Handle System. The DORepository provides the capabilities
of moving objects from one storage system to another and even between di�erent repos-
itories only by few instructions from an administrator, while keeping all metadata and
adding provenance information. (Unlike by DNS when web pages change domain names
or name structure, and links become invalid, for which there is no information to the
end user). The DORegistry provides services like browsing, searching, repository and
federation for collections of digital objects that can be distributed across multiple sites
including other DO Registries. A DO registry may manage metadata of objects from a
certain repository. Another possibility is managing both metadata and actual digital ob-
ject content stored by the registry, and a third scenario is managing metadata of multiple
repositories.

3.2.3. DORegistry

The DO Registry can be set for di�erent types of metadata schemata and can be cus-
tomized to provide di�erent search, federation, handle registration, event management
and other services. It can be considered as yellow pages for �nding digital objects across
a network. The DOA relies on its own standards of identi�ers etc. so it requires certain
amount of integration for already existing data to utilise the capabilities of DOA.
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Figure 3.4.: Interaction Diagram on Digital Object search.

Figure 3.5.: Interaction Diagram on adding a digital object.

To visualize better the interactions between the three DOA components, there are three
diagrams showing di�erent operations on digital objects. Figure 3.4. shows digital object
search. Figure 3.5. shows how an object is added directly to the DORepository and then
automatically added to the Registry. Figure 3.6. shows the registration process for a
digital object.
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Figure 3.6.: Interaction Diagram showing registration of a DO.

3.3. ENS

The Entity Name System (ENS) addresses problems of already existing information col-
lections. Whereas by DOA, a unique identi�er is created for each entity, in the case of
ENS the reuse of identi�ers is aimed. The ENS tackles ad-hoc and on demand informa-
tion tasks. The ENS is a web-scale infrastructure for supporting the reuse of pre-existing
URIs for any type of entity across decentralized and independent RDF repositories [8].

As discussed in 2.5 the integration of separate knowledge bases can be realized when
one and the same entity can be found in their knowledge graphs, thus connecting these
graphs. Two main problems related to this idea are: (i) heterogeneity of vocabulary
- the same concept or property may be referred through di�erent URIs, and therefore
may not be recognized as the same concept or property in two di�erent vocabularies; (ii)
entity recognition - the same real world object may be assigned di�erent URIs in di�erent
RDF repositories, and therefore may not be recognized as the same entity. The OKKAM
project is developed to address these problems[8]. The authors propose ENS - a universal
repository which given any arbitrary representation of an entity (e.g. a bag of key-words,
text paragraph, collection of key-value pairs, etc.), can decide if an URI for this entity
is already available in the repository (using some methods for entity matching); if it is,
then the ENS will return its URI (or at least a list of candidates), otherwise it will issue
a new URI which will be stored in the repository.

3.4. Chord

Chord is a lookup protocol and algorithm for a peer-to-peer distributed hash table. It
is designed for e�cient location of nodes that store desired data items in a distributed
network. From a high functional level point of view Chord supports only one operation
� it maps a given key to a node from the network. Based on this operation the two most
basic functions are insertion and retrieval of data items associated with a key. Other
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operations that support the e�ciency and adaptiveness of chord are left transparent for
the end user systems [40].

The core of Chord is the fast distributed computation of a hash function, which maps
keys to nodes responsible for them. Chord assigns m-bit identi�ers to at most 2m keys
and nodes using consistent hashing [21]. The consistent hashing balances load in the
network - all nodes receive roughly the same number of keys. Also thanks to it when
one node joins or leaves a network of N nodes this causes only O(1/N) fraction of the
keys to be moved to a di�erent location which is minimal. With the help of a small
amount of routing information about other nodes and communicating with other nodes,
Chord improves scalability of consistent hashing by avoiding the requirement that every
node should know about every other node, they only keep a so called ��nger table�. This
way each node knows about only O(logN) other nodes, and a look up requires O(logN)
messages [40].

The nodes are arranged in a circle that has at most 2m nodes.Every node has a �nger table
of m entries which contains the identity of the �rst node s that succeeds the node at n by
at least 2(i−1) on the identi�er circle, i.e. s = successor(n+ 2(i−1)), where 1 <= i <= m
(all arithmetic is modulu 2m). The �nger table provides information about nodes across
all the network with more�ngers pointing to closer neighbours. Since the �nger entries
are with the power of two, each node can forward a query at least half way through the
network, which facilitates the e�cient node location.

By failure of nodes, Chord must ensure that each node's successor pointer is up to date.
It does this using a �stabilization� protocol that each node runs periodically in the back-
ground and which updates Chord's �nger tables and successors pointers. When node n
runs the stabilization protocol it asks its successor for the successor's predecessor p, and
decides whether p should be the new n's successor. This would be the case if p is newly
joined. Additionally this procedure noti�es the n's successor of n's existence, giving the
successor the chance to change its predecessor to n.

The successors list mechanism can also be used to help higher-layer software to replicate
data across nodes. An application using Chord might store replicas of data associated
with a key at the k nodes succeeding the key. The fact that a Chord node keeps track
of its successors means that it can inform the replicating software when successors come
and go, so new replicas are prompted [40].

An implementation of Chord - Open Chord is tested and reviewed in the next chapter,
where its adaptability is put into perspective next to other key � value solutions.

3.5. Coral

Coral is a peer-to-peer distributed content distribution system [19]. It provides scalability
and load balancing which can be improved by taking into account locality of nodes. Coral
utilizes the mechanism of distributed sloppy hash table (DSHT), which bears similarities
to DHT, but has its di�erences. While a DHT provides a key-value mapping where only
one value can be stored under a key, DSHT may have multiple values, and when the
values for a key is retrieved it needs only return some subset of the values stored. Each
node in Coral stores only some maximum number of values for a particular key. When
the number of values exceeds the maximum, they are spread across multiple nodes. This
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characteristics of DSHT are speci�cally suited to locating replicated resources, where
consistency is sacri�ced over frequent fetches and stores of the same hash table key.

If this characteristic is considered in the context of RDF data, which is normally not
replicated but scattered across multiple resources and reasoning on it requires consistent
view of the whole, Coral is not suitable. It could be used by time critical applications
which reason about constant changing datasets, which are out of the scope of this work.



4
Hands-on Experience with Entity

Storage Systems and Benchmarking

4.1. Introduction

The practical part of this work is focused on benchmarking the performance and charac-
teristics of four solutions which could facilitate the adoption of the Semantic Web in one
way or another.

All four solutions are fundamentally di�erent and most of the tests are aimed at empha-
sizing and utilizing these di�erences for showing what the systems do best and worst.
Also because of the di�erences there are certainly inequalities by the tunings and con-
�gurations. The aim was to have as close as possible con�guration to the original one.
Where possible the storage solutions have been tested only the �rst time after loading
(i.e. with cold cache). Still there might be inequalities due to the way data is organized
in the di�erent solutions because every system stores the data in a di�erent way which is
explained in the next section.

4.2. Dataset Transformations and Queries

The type of data that is chosen for benchmarking the four storage solutions is RDF graph
in N-Triples format. N-Triples is one of the most widely used serialization formats for
RDF data. It is line-based, plain text, does not provide shortcut mechanisms for URIs1

and is very easy for parsing.

< h t t p : / / data . l inkedmdb . org / resource / ac to r /10000>
2 < h t t p : / / data . l inkedmdb . org / resource / movie / actor_name> " Lucien

L i t t l e f i e l d " ^^< h t t p : / / www.w3 . org /2001/XMLSchema# St r ing > .
4

6 < h t t p : / / data . l inkedmdb . org / resource / ac to r /10000>
< h t t p : / / data . l inkedmdb . org / resource / movie / performance >

8 < h t t p : / / data . l inkedmdb . org / resource / performance /57760> .

Listing 4.1: N-Triples format example.

1Uniform Resource Identi�ers

29
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The dataset has been transformed in key � value pairs in order to be usable with the
registry systems that are the focus of this work. As is shown in the GridVine [10], a key
� value storage is enough for query processing provided by most RDF query languages.
Still the question on how exactly should the data be organized in a key�value or other
non RDF-storage is not trivial as is also shown in CumulusRDF [25].

A common way through which RDF data is queried is with SPARQL Queries. They are
based on triple patterns 2. In total there are eight possible patterns for RDF triples:
(spo), (sp?), (?po), (s?o), (?p?), (s??), (??o), (???). The data in a key value store have to
be arranged in a di�erent way depending on which of the patterns is aimed. This depends
on the use case and the nature of the data. In the general case, in order to make the
RDF graph browsable one should be able to locate a node and to trace the edges that
go out of the node and possibly into the node. As a triple pattern this translates into
the union of (s??) and (??o) on or a query for all the triples where an entity is either a
subject or an object. This case and the simpler one, where the entity is present only as a
subject (s??), are chosen for storing the data in the key � value stores. From here under
the term value would be considered the simpler case, if not stated otherwise. Listing 4.2
shows an example of the union query for a professor who has an ID prof84805.

PREFIX bowl : < h t t p : / /www. u n i f r . ch / bowlogna . owl#>
2

s e l e c t ?s ?p ?o { { bowl : prof84805 ?p ?o . } UNION {? s ?p bowl : prof84805 } }

Listing 4.2: Simple SPARQL entity query.

In Chord a key is an entity - URI, and a value is comprised in the �rst case of all the
triples where this URI is a subject or object, and in the second case of all the triples
where the URI is only subject.

In the case of Cassandra there are supercolumns and keys can be nested, so there is more
�exibility on how to organize the data. Listing 4.3 shows how the triples are organized.

1 { row key : { supercolumn key : { column key : value } } }
{ s : { p : { o : − } } }

Listing 4.3: Cassandra storage model, and con�guration for storing triples.

In the case of MySQL, the triples were ordered in three columns of one table, which
correspond to subjects, predicates and objects.

4.3. Datasets

Three datasets were used for testing. The �rst one is derived from real academic data
of one of the faculties of the University of Fribourg, provided by the university adminis-
tration. It will further be called Faculty data set. It is a part of the whole faculty data,
including information about Teaching Units, Professors, Departments and Field of Stud-
ies across a period from 2003 until spring semester 2012. The dataset is comparatively
small, consisting of 155 035 statements but it also has some interesting properties that are
di�cult to imitate with an arti�cially generated dataset, or one that describes a simpler
more static domain.

2Triple patterns is an RDF triple written as a whitespace-separated list of a subject, predicate and object,
where any of the three can be a variable (pre�xed with �?�) or an RDF term.
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Figure 4.1.: In-degree of Professor instances [12].

Figure 4.2.: Out-degree of Teaching Unit instances [12].

Figure 4.1. shows the distribution of professors in-degree which is mostly determined by
the courses (teaching units) that they give, because the property isTaughtByProfessor
is pointed from a teaching unit to professor. The chart shows a power law distribution,
where can be seen that many professors teach only one or few courses, while few professors
teach many courses (the biggest number of units per professor is 643). In the case this was
found out to be due to the practice of assigning courses to administratively responsible
persons, which is counterintuitive but technically not an error. Figure 4.2. shows the
out-degree of teaching units. Again it is not evenly distributed, due to the fact that
some courses have been given by more than one professors for longer periods of time
(association with many semesters). This characteristics results in an inequality of the
size of the entities, where the average number of triples per entity is around 6, but in
reality there are entities with up to 2300 triples. This causes great deviations in the
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measurements.

Unlike the real Faculty data set the other two have much more even distribution. The
second data set - BowlognaBench data set which is mostly used for the tests is generated
with the help of BowlognaBench instance generator [12]. It has 1 263 252 triples with
214 245 values. The third data set, called Linkedmdb is taken from DBpedia and is
about movies and actors, it has around 7,5 million Triples and again is relatively equally
distributed in terms of number of triples per entity (between 6 and 7).

4.4. Measured Storage Systems

4.4.1. SPARQL Benchmark on AllegroGraph

For measuring the performance of an RDF store, AllegroGraph [15] was chosen for several
reasons:

• Is free for usage up to a certain relatively high limit - 5 million triples.

• Is very well documented with Java (Jena and Sesame) and Python APIs, supported
with very thorough tutorials. As a commercially supported product it is provided
also with some technical support free of charge.

• Supports SPARQL.

• Provides some of the best standard benchmark results [4] [2]

• Has a bulk load

The classes used for benchmarking AllegroGrpah are developed with the help of its Java
Jena API. For loading the datasets, the bulk loading is used. The retrieval of entity is
done through SPARQL queries, which are executed one by one through the API. It should
be noted that one query can be devised for more than one entity at the same time, with
the help of SPARQL union, which would eliminate the network overhead and would be
faster, but this is out of the scope of the measurements in this work.

4.4.2. Open Chord

Open Chord is an open source implementation of Chord DHT3. It is developed by the
Distributed and Mobile Systems group at the University of Bamberg [31]. Open Chord
exposes API for Java applications for handling arbitrary serializable Java objects (key
� values) within Chord DHT. It is the most popular Java Chord implementation, it is
relatively well documented and has a good amount of implemented features which follow
the original Chord speci�cation [40]. Its features include among others:

• Interface for synchronous and asynchronous of a Chord DHT.

• Compatibility with every serializable Java object

• Creation of custom keys to associate data values with.

• Transparent maintenance of Chord DHT routing.

• Transparent replication of stored data.

3Distributed Hash Table
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Open Chord runs on the Java virtual machine. More than one node can be simulated on
the same java virtual machine, or the nodes can be set up on di�erent physical machines,
each running locally on a java virtual machine. Even if being the most popular, very
cleanly written Java Chord implementations, Open Chord is still a relatively small open
source project and not an o�-the-shelf �nished application. Among its drawbacks are its
lacks of customizability and also the fact that it does not provide a ready mechanism
to serialize stored objects to disc after a Chord node is switched o�. The latter doesn't
allow to create a Chord Ring, �ll it with data, and then reuse it in the future. Still being
with open code, it can be used as a foundation for very robust distributed applications.

4.4.3. Apache Cassandra

Apache Cassandra is an open source distributed NoSQL database management system
designed to handle very large amounts of data spread out across cluster of commodity
servers. Part of its aims are to provide high availability with no single point of failure.
It is based around a structured key-value store. Keys map to multiple values, which are
grouped into column families. The column families are �xed when a Cassandra database
is created, but columns can be added to a family ar any time. Moreover, columns are
added only to speci�ed keys, so di�erent keys can have di�erent numbers of columns in
any given family.

The column family is similar to a table of a RDBMS4 in that it is a container for columns
and rows. However, In a relational database, tables are de�ned with column names and
their data types, so the using applications have to conform to this schema, each row
contains the same �xed set of columns [9].

In Cassandra, there are the column families that can (and should) de�ne metadata about
the columns, but the actual columns that make up a row are determined by the client
application. Each row can have a di�erent set of columns.

Column families can be static and dynamic. By dynamic column families further de�ned
column names don't need to stick to prede�ned names and types, where the static column
families follow the de�ned set of column names.

For all column families, each row is uniquely identi�ed by its row key, similar to the
primary key in a relational table. A column family is always partitioned on its row key,
and the row key is always implicitly indexed. Empty row keys are not allowed.

4.4.4. MySQL

MySQL is the most popular open source relational database [28]. It has all features
typical for relational databases and many ways for tuning the performance, with the help
of indices, views, etc. For the purpose of this work it has not been specially con�gured
and tuned and is used only as a comparison to the other systems which are the main
point of this work.

4Relational Database Management System
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4.5. Benchmarking Setup

The results are produced with the help of a test suit developed in Java language. There
is a separate project for each of the storage systems tested.

A common part in all the projects is the dataset processing and the �le handling for
producing results. For parsing the N-Triples of the used datasets NxParser [30] is used.
It is an open source library started by the Digital Enterprise Research Institute (DERI)
[16]. With its help the triples are grouped in entities as explained in section 4.2 above.

For all the four storage systems there is a separate Java project which executes the tests.
Although the projects have common parts, the server connections, the retrieval, update
and insertion are all di�erent between the four systems. Still the results that are produced
from the tests follow common format and can be exported to tools which produce charts
and tables.

4.5.1. Infrastructure

The machine used for single node measurements is with Intel(R) Xeon(R) CPU E5645 @
2.40GHz, 16GB RAM, Ubuntu 10.10.

The machines that form the 6-node cluster are with Intel Core i7-2600 CPU @ 3.40GHz,
8GB RAM, Ubuntu 11.10.

4.6. Measurements

The following categories tests have been conducted:

1. Measurements of loading times by di�erent con�gurations;

2. Queries for retrieval random entities;

3. Queries for update of existing values;

4. Queries for insertion of new values for existing entities;

5. Increased load and failure tests.

4.7. Loading

Loading data with AllegroGraph is done in batch, which greatly increases the performance
as can be seen in Table 4.1. The network overhead has a great in�uence as well as can
also be seen in the table. The second row per solution is for when data is loaded from
the same physical machine where the storage is run and the improvement is visible. The
distributed solutions like Cassandra and Chord can bene�t from simultaneous loading of
only a part of the whole data set. For this purpose the data is divided in 6 which is the
number of available machines in the cluster, and every node loads only a sixth of the
dataset. Still Chord is very slow, but Cassandra shows considerable improvement when
loading 6 equal parts of the data set simultaneously. Cassandra is also tested with the
large data set that has more than 7 million triples. As is seen this is of no di�culty, and
surpasses the limit of the free AllegroGraph version of 5 million triples.
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Storage Solution Time in seconds Physical Size in Storage
AllegroGraph 3 min 136 Mb + 513 default
AllegroGraph same ma-
chine

43.5 s 136 Mb + 513 default

Apache Cassandra same
machine

3 min 316 Mb

Apache Cassandra 33 min 332 Mb
Ap. Cassandra cluster of 6 1 min 30 s 57 per Node, total 342 Mb
Ap. Cassandra cl. w
Linkedmdb

8 min 7 s 187 per N, total 1126 Mb

MySQL 30.5 min 279 Mb + 16 Mb index
MySQL on same machine 4 min 13 s 279 Mb + 16 Mb index
Chord cluster of 6 35 min in main memory

Table 4.1.: Loading statistics for BowlognaBench-generated dataset, with 1 263 252
triples, 214 275 entities and size of 272 Mb.

AllegroGraph, being capable to load data in batch, proves to be better in loading data
than the other 3 solutions. (MySQL can also load in batch, but it needs some preparation
of the data.)

4.8. Retrieval

For the retrieval �rst an array of random numbers is generated. The numbers are chosen
between 0 and the total number of triples that are available in the dataset. Then the
elements of the array are sorted, so that when the N-Triples �le is read sequentially the
elements corresponding to the numbers in the array can be selected. If multiple tests have
to be done, more arrays of random entities are selected at once, so that the N-Triples �le
has to be read only once.

For the �rst retrieval test the systems are set up on a single machine. Figure 4.3. shows
the retrieval times for single thread (client). It is clear that Chord provides very slow
times, and this is similar for the updates and inserts, so its measurements are not shown
further next to the other three systems. Here AllegroGraph proves to be slower than the
other two systems and shows also bigger inconsistencies in the retrieval times.

In Figure 4.4. can be seen that when queried simultaneously from multiple clients at
a time the systems expectedly decrease their times. This test shows a little advantage
for AllegroGraph as it relative increase of response time is smaller than the other two
systems, but still the best behaviour is shown by MySQL.

4.8.1. Cluster

Figure 4.5 shows that a Cassandra cluster behaves slightly better than a single node with
the same amount of data. It doesn't deteriorate dramatically its response time even with
substantial increase of the load. Although the deviation of the response times increases
with bigger load.
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Figure 4.3.: Remote retrieval times for random entities on a single machine.
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Figure 4.4.: Remote retrieval times for random entities on a single machine, executed
simultaneously with 20 threads.

Unlike Cassandra, Chord has worse response times when it is run in cluster, as shown
on Figure 4.6. Although this test is done with the smaller Faculty dataset the response
times of Chord are much worse compared to the other systems handling with the bigger
dataset.

The advantage of Chord comes into consideration when some nodes of the network fail.
The following test was done with the Chord ring, constructed of 6 nodes with data loaded
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Figure 4.5.: Retrieval time for Cassandra 6-node cluster.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  20  40  60  80  100  120  140  160  180  200

Ti
m

e 
in

 m
s.

Number of entities

chord single node
chord four nodes

allegrograph

Figure 4.6.: Retrieval times for random entities, AllegroGraph and Chord.

in equal 1/6th parts from each node: executing random queries while shutting down nodes
from the ring one by one. The result was that with three nodes running and three nodes
down the data was still entirely retrieved. Only when the ring was down to two running
nodes, the retrieved entities were around 70%. This was done with no tuning and entirely
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transparent.

While Cassandra can also replicate data across the servers that take part of the cluster,
it needs some setting, and by default by a failure of a single cluster, no data can be
retrieved. Also once the number of nodes is decided for a cluster, newly added cluster
nodes might not function with proper load balancing in accordance with the cluster.

Generally the di�erence between Cassandra and Cord is that Cord is much more adapt-
able, and ad-hoc oriented than Cassandra, while Cassandra provides better performance.
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Figure 4.7.: Retrieval times for random entities, Chord single node vs. 6-nodes cluster.

Figure 4.7. shows that by increasing the number and dividing them between nodes can
be faster than a single node holding the whole big data.

4.8.2. Throughput

In Figure 4.8. and Figure 4.9. the throughput of entities depending on di�erent factors
is shown for Cassandra and AllegroGraph. It is again clear that Cassandra is much
faster than AllegroGraph. Both systems show better throughput when there are several
simultaneous clients, but this is valid up to a point, when performance starts to decrease.
AllegroGraph shows slight decrease in performance when the data set is larger, whereas
Cassandra shows the opposite, probably because the larger amount of data means there
is less concurrent access to the same memory regions. Contrary to what was seen in
Figure 4.5. here Cassandra shows worse performance for the cluster in comparison to the
single node. This is probably due to the fact that the cluster tested above has more nodes
- 6 rather than 4 and the test above was conducted with better load balancing between
more than one node, unlike here. The increased complexity and worse throughput in the
case of reasoning by AllegroGraph is also visible.
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Figure 4.8.: Cassandra's throughput of entities per second, to the right is for a single
node and to the left for a cluster of 4 machines.

Figure 4.9.: AllegroGraph's throughput of entities per second.

4.9. Update

The update is done also on random entities over and over again but on the same number
of entities and then the results have been averaged, including the deviation they show.
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AllegroGraph, supporting SPARQL does not have a direct mechanism for update, and
does this job by deleting an entity, a triple and then inserting a new one at its place.

Figure 4.10.: Average update time of 100 entities on a single machine, single client with
deviation.

On Figure 4.10. the update rates are shown. The deviation is bigger for the upper bound
for all the systems. Still MySQL proves to be faster on a single machine Again the

Figure 4.11.: Average update time of 100 entities for Cassandra single node and cluster.

advantage of Cassandra is when it runs as a cluster, as shown in Figure 4.11. for cluster
of 6 the response time comes closely to that of MySQL from the previous table.

As before by increasing the concurrent load on Cassandra, there is no dramatic increase
of the response time.
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Figure 4.12.: Average insertion time of 100 Entities for Single machine from remote client.

Figure 4.12. shows statistics about insertion. The average times are slightly higher
and the deviations are considerably brighter. That is most probably due to occasional
reallocation of memory.

4.10. Reasoning and Federation

In an university with two or more faculties there could be the following scenario. There
are two (or more) data sets generated from the relational data bases of two faculties, e.g.
the faculties of humanities and sciences. There can be some scholars who give lectures at
both faculties. If one needs to obtain information for such a scholar, e.g. the times during
the week when the scholar gives lectures one could query consecutively the two data sets
of the faculties. This would be the simplest solution. There can also be aggregation of
the datasets into a single data set, which for example follows an initiative to aggregate
and expose information about the whole university. There can also be federated queries
directly executed on the separate data sets.

In the case of aggregation of the data sets into one and if the scholar is correctly identi�ed
with the same ID, then only a scalable issue remains, to query a bigger amount of triples.
Another possibility might be that the scholar is identi�ed di�erently in the di�erent
data sets, i.e. there are two entities representing the scholar. This could be solved with
modi�cations in the data at the time of aggregation similarly to Extract, transform,
load5 . Another possible solution as pointed out in section 2.8 is provided by the OWL
construct owl:sameAs, which can indicate the equivalence between two entities. In order
this equivalence to be utilized in a query the SPARQL endpoint has to be capable of
inference and reasoning. It has to have a reasoner which can infer logical consequences
from a set of asserted facts and axioms. This way new triples or facts can be inferred
about an entity which do not explicitly exist in the data provided. In other words, one
could get all the information for the scholar by only knowing one of the IDs used in the

5http://en.wikipedia.org/wiki/Extract,_transform,_load
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data sets, if they are connected with the owl:sameAs construct. Listing 4.4 shows the
results of a query with and without reasoning.

PREFIX
2 hum: < h t t p : / /www. u n i f r . ch / humani t ies . owl#>

s c i : < h t t p : / /www. u n i f r . ch / science . owl#>
4

s e l e c t ?s ?p {? s ?p hum: Professor484 >}
6

Resul t w i thou t reasoning :
8

hum: MasterThesis9688 hum: supervisedBy
10

Resul t w i th reasoning :
12

hum: MasterThesis9688 hum: supervisedBy
14 s c i : MasterThesis9688 s c i : supervisedBy

Listing 4.4: Query results without and with owl:sameAs reasoning.

Another possibility that reasoning in SPARQL provides is the construct owl:InverseOf

which is also mentioned in section 2.8. With its help two object properties are de�ned
as inverse or opposite. For example: if the following two triples exist {hum:MasterThesis

hum:supervisedBy hum:Professor}and {hum:supervisedBy owl:inverseOf hum:supervises} this
would mean that {hum:Professor hum:supervises hum:MasterThesis}. With the help of
owl:inverseOf one can get more facts about a professor in one query, see Listing 4.5.

1 PREFIX hum: < h t t p : / /www. u n i f r . ch / humani t ies . owl#>

3 s e l e c t ?s ?p {hum: Professor484 > ?p ?o }

5 Resul t w i thou t reasoning :

7 owl : type hum: Professor
hum: hasName " Smith "

9

Resul t w i th reasoning :
11

owl : type hum: Professor
13 hum: hasName " Smith "

hum: superv ises hum: MasterThesis321

Listing 4.5: Query results for a professor with owl:inverseOf construct.

A number of comparisons using reasoning and multiple data sets are provided in Fig-
ure 4.13. Apache Cassandra is used to compare with AllegroGraph. In order to imitate
reasoning on Cassandra, multiple queries are executed for one entity. First the original
entity is requested, then is checked if it has a triple with predicate owl:sameAs and this
way further entities are queried. In the �gure the number of faculties represents the
number of combined data sets. The BowlognaBench data set which is described above is
used. The number of departments should indicate the number of owl:sameAs connections,
with the possible scenario in mind that in a certain faculty many administrators may be
inputting data and it could be badly integrated, so again as between faculties there could
be di�erent identi�ers for the same professor. AllegroGraph is faster for simple query
without reasoning but then with the increasing complexity of reasoning and with increas-
ing the number of connections between di�erent entities and the size of the data, it gets
very slow compared to Cassandra. As was shown in the prior measurements, retrieval on
Cassandra is generally very fast and it can scale well up to large data sets.

The next Figure 4.14. shows the times of retrieval when data sets are federated directly.
Again Cassandra works very well in distributed environment. AllegroGraph shows in-
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Figure 4.13.: Times for retrieval of a Professor entity with and without reasoning for
di�erent number of faculties � data sets and di�erent number of departments
� number of owl:sameAs connections.

crease in retrieval time when data sets are federated, but for 2-3 data sources this increase
is lower than when more data sets are combined in one and connected with owl:sameAs

construct, as shown above. So for integration of a small number of RDF data sets fed-
eration works relatively well. When there is federation and reasoning as shown in the
�gure, then the time deteriorates dramatically, so if this can be avoided it would be
advised. Again Cassandra provides fast times, but it has to be kept in mind that the
behaviour of Cassandra to work in a similar manner to that of a SPARQL endpoint has
to be programmed �by hand� and thoughts on the way data is stored have to be dedi-
cated. To decide which data solution is better, one has to bear in mind the particular
usage scenario and the trade-o�s which both solutions bear with themselves. Cassandra
is a very fast scalable key-value store, but every more complicated querying feature has
to be programmed, whereas AllegroGraph SPARQL endpoint provides relatively slower
response times, but has the advantage of the powerful SPARQL querying functionalities.
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Figure 4.14.: Retrieval times for federated repositories of di�erent number of faculties
(data sets) with and without reasoning.



5
Conclusion

The Semantic Web and RDF have been around for more than ten years but lately they
are gaining their biggest momentum and enjoy greater and greater popularity across mul-
tiple domains. Their adoption in �elds such as chemistry, biology, neuroscience, business
process analysis, library science, etc., and the successful developments in Linked Open
Data have generated an enormous amount of data sets in quantity and in size. Traditional
means for integration and reasoning struggle at such large scale. This thesis provides an
overview of the implications related to the growth of the Web, the main points of the
Semantic Web and the pursuit of integration of separate knowledge bases. It outlines the
main features and characteristics of several systems that could facilitate the realization of
the Semantic web and resource integration: Domain Name System, Digital Object Archi-
tecture, Entity Name System, Chord and Coral. Further an approach for handling RDF
data as key � value pairs is presented in the context of data management solutions that are
not speci�cally designed for RDF � Apache Cassandra, Open Chord and MySQL, using
AllegroGraph RDF storage system as a base line. Using this approach the performance
of the above mentioned systems is measured. Their main qualities and disadvantages
are exposed, with the help of several types of tests based on: data loading, retrieval,
updates, insertion, where di�erent con�gurations for clusters or single machines are used
for the benchmarking. A Java benchmarking suit is developed for the automation and
facilitation of all the tests on the di�erent systems.

The results of the benchmarks conducted for the four solutions emphasized their di�erent
purposes but showed that in certain use cases certain system could be considered most
appropriate. Apache Cassandra could utilize simple commodity machines for creating a
cluster that can handle enormous amounts of data with very reasonable response times;
AllegroGraph would be best when more than just simple queries are needed, as it im-
plements SPARQL; Chord is best when large amounts of data have to be handled by
a cluster with constantly changing nodes; MySQL could provide fast performance and
simple integration with not large datasets.

For the future, more thoughts can be invested in �nding di�erent scenarios close to the
real world and elaborating on the queries that are executed on the data with the di�erent
solutions. Tuning and con�guration is also possible with the solutions, and this requires
certain amount of time and e�ort after one is familiar with the di�erent storage solutions.

45



A
Common Acronyms

OWL Web Ontology Language

RDBMS Relational Database Management System

SPARQL SPARQL Protocol and RDF Query Language

RDFS RDF Schema

P2P peer-to-peer

RDF Resource Description Framework

DHT Distributed Hash Table

URI Uniform Resource Identi�er

URL Uniform Resource Identi�er

URI Uniform Resource Identi�er

WWW World Wide Web

DOA Digital Object Architecture

ENS Entity Name System

DNS Domain Name System

W3C World Wide Web Consortium
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License of the Documentation

Copyright (c) 2012 Iliya Enchev.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.

The GNU Free Documentation Licence can be read from [17].
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