
Moji
—

The advent of large identifiers and how

to conquer them as human.

by

Michael Luggen

Thesis for the Master of Science in Computer Science

Supervised by Prof. Dr. Philippe Cudré-Mauroux

eXascale Infolab

Department of Informatics - Faculty of Science - University of Fribourg

September 14, 2012

mailto:michael.luggen@unifr.ch
http://diuf.unifr.ch/xi/
http://diuf.unifr.ch
http://www.unifr.ch/science/
http://www.unifr.ch

UNIVERSITY OF FRIBOURG

Faculty of Science

Department of Informatics

eXascale Infolab

Thesis for the Master of Science in Computer Science

Supervised by Prof. Dr. Philippe Cudré-Mauroux

by Michael Luggen

Abstract

This master thesis sets the spotlight on inhumanly large identifiers, shows the problems

occurring in their use, enlightens available techniques not used enough and wants to

reignite interest in this field by proposing an own solution to visualize large identifiers.

A new implementation ’Moji-Identicon’ was developed which takes a large identifier and

generates a more human friendly representation in visual form. Neither to memorize nor

to transfer, but an easier comparing or matching of such identifiers is targeted by this

visualizations.

After a thorough search for existing automated visualizations and the studies of them, a

focus on large identifiers that don’t hold any semantic information was set. Build on a

catalog of requirements we developed multiple visual representations and also the tools

to evaluate our approaches in experiments with the end users.

In comparison to existing solutions our simpler and smaller representations of the identi-

fiers did show at least the same performance. We see a lot of potential of improvements

and possible features in this still young field.

Finally we hope this kind of tools get more attention in the future and are incorporated

at more places of the daily life to help people interact with all kind of systems in this

information dominated times.

http://www.unifr.ch
http://www.unifr.ch/science/
http://diuf.unifr.ch
http://diuf.unifr.ch/xi/
mailto:michael.luggen@unifr.ch

Acknowledgements

I thank first of all my supervisor Phillipe Cudré-Mauroux which received me with an open

mind. Throughout the whole work he provided me with ideas, pointers and guidance.

Also was he open to my sudden mind changes but did assure that I focus to get the job

done.

For all the fun times at the university and at other opportunities this semester I want to

thank the team of the eXascale Infolab and their partners, my office companions Carine

and Ilya and all people contributing to the fantastic atmosphere at the university.

Thanks to Don Park and Andreas Gohr which allowed me to get some first hand infor-

mation about the beginnings of identicons.

Also at this place I thank Urs and Roger and all collaborators at my work place in Biel.

Without their support and understanding I never would made it this far.

Thanks to my family and to my love, Maude.

3

Contents

Abstract 2

Acknowledgements 3

List of Figures 7

List of Tables 8

1 Introduction 9

1.1 Thesis Content . 9

1.2 Motivation . 9

1.2.1 Larger identifiers . 10

1.2.2 New Data Processing Technologies 10

1.2.3 Communication Protocols . 10

1.3 Use Cases . 11

1.3.1 Memorizing . 11

1.3.2 Transferring . 11

1.3.3 Comparing . 11

2 Visualization of Identifiers 13

2.1 History of Hash Visualization . 13

2.2 VisualID . 14

2.3 Overview: Identicons . 15

2.3.1 Definition . 15

2.3.2 Available Implementations . 15

2.3.3 Identicon & MonsterID . 16

2.3.4 VisualHostKey . 18

2.3.5 Other descendants . 18

2.4 Focus & Innovation . 18

2.4.1 Specialization on the Use Case Comparing 19

2.4.2 Acceptance . 19

2.4.3 Dimensions . 19

2.5 Requirements of Moji-Identicons . 20

2.5.1 Basics . 20

2.5.2 Aesthetics . 21

4

Contents 5

2.5.3 Recognizable . 21

2.5.4 Colorless media / Colorblind people 21

2.5.5 Bijectivity . 22

2.6 Disregarded functionality . 22

3 Approach 23

3.1 Approach . 23

3.2 Prototyping Environment . 24

3.2.1 First tests . 24

3.2.2 Transition to JavaScript . 25

3.3 Final Environment . 26

3.3.1 Technologies . 26

3.3.2 2D Geometry Library . 26

3.4 Structure . 27

3.4.1 Stage: Point Matrix . 28

3.4.2 Stage: Visualization . 29

3.4.3 Ensuring Bijectivity . 30

3.5 Followed Design Guidelines . 31

3.5.1 Color . 31

3.5.2 Connected Shapes . 31

4 Evaluation 32

4.1 Catalog of Identicons . 33

4.1.1 Own Development . 33

4.1.2 Available Implementations . 34

4.2 Experimental Plan . 34

4.3 Evaluation Application . 34

4.3.1 JavaScript Implementation . 35

4.3.2 Frameworks, Components and Services 35

4.3.3 Workflow . 36

4.4 Experiments & Results . 36

4.4.1 Pre-Test . 36

4.4.2 Base Level . 36

4.4.3 Text vs. Truncated Text . 37

4.4.4 Color Variations . 37

4.4.5 Shape Variations . 38

4.4.6 Final Validation . 38

5 Conclusion 40

5.1 Conclusion . 40

5.2 Improvements . 40

5.2.1 Additional Functionality . 41

5.2.2 Enhancing Barcodes or QR-Codes 41

5.3 Outlook . 41

5.3.1 Next Steps . 42

5.3.2 Towards a Standard . 42

Contents 6

A Glossary 43

B Proposal 44

Bibliography 48

List of Figures

2.1 Two examples of Random Art which visualize a hash. 13

2.2 A set of VisualIDs which visualize different files. 14

2.3 Nine Block – Digital Artwork by Jared Tarbell [2003]. 17

2.4 A VisualHostKey - ASCII visualization of a SSH fingerprint. 18

3.1 The minimal complete visual representation of a SHA1 hash. 23

3.2 Very first prototype tests with Processing of the Bottom-Up approach. . 24

3.3 The first results of the prototyping phase in Processing. Top: First crude
examples of the visualization. Bottom: A helper visualization which shows
weights. 25

3.4 The end results of the prototyping phase. The top rows show two different
variants of connected and centered visuals. 25

3.5 Some examples of final Moji-Identicons. (Codename FigureBlob2) 26

3.6 Uniform distribution of the points generated by our simple algorithm. Top:
Saturation value of 1, Middle: Saturation value of 0.9, Bottom: Saturation
value of 0.5. 28

3.7 How far to jump according a single hexadecimal input value. 28

3.8 Code which is generating points on the matrix, u and v represent the x
and y axis of the final image. 29

3.9 Ordering the points based on the distance to the center. 29

3.10 Ordering the points around the center in a clockwise fashion. 29

3.11 The draw function of the final version, created with the rather poetic name
drawIdentFigureBlob2. (For the visualization see Figure 3.5.) 30

7

List of Tables

1.1 A list of established or emerging harder, better, faster, stronger identifiers. 10

2.1 A survey of existing and used visualizations of (mostly user) identifiers,
ordered by time of appearance. 16

3.1 A short overview of the geom.js library. 27

4.1 Overview of the results in color variations. 37

4.2 Overview of the all non significant differences of the shape variations. . . 38

4.3 Overview of the final validation. 38

8

Chapter 1

Introduction

“Rose is a rose is a rose is a rose.”

Gertrude Stein, 1922, Sacred Emily, p. 187

1.1 Thesis Content

After the motivation in this same chapter we provide an overview of existing approaches

to visualize identifiers (Chapter 2). Also we specify in this chapter a list of requirements

for a novel kind of identifier visualization. Provided with this requirements we describe

the approach (Chapter 3) we followed to develop a new kind of visualization which

we call Moji-Identicons. To provide scientific evidence that our approach is performing

better than identifiers presented in latin alphabet and arabic numerals we present our

experimental setup and the results of the evaluation (Chapter 4). With pointers how to

enhance and complete our approach and a conclusion we sum up this work (Chapter 5).

1.2 Motivation

A lot of work today is motivated by the ever increasing growth of information in general.

A side effect of this is the ever increasing size of identifiers which is needed to point to this

huge amount of data. In some areas just the addressable data blobs grow, nevertheless we

collect and manage more unique identifiable data objects. Every year new systems are

going online which create a ton of identifiers for all sort of use cases. Transaction ids for

receipts of shops, ids for concert tickets, registration numbers in government processes,

backup tape identifiers and so on.

9

Chapter 1. Introduction 10

1.2.1 Larger identifiers

All this leads to larger identifiers which cover a bigger numerical space. To just give some

chosen examples have a look at the table 1.1.

Type Example Use case

Record L. RMT33W Airline Booking Records
UPU S10 EE 876 543 216 CA International Parcel Tracking
TID 8UN34654K0142381H Paypal Money Transactions
UUID 550e8400-e29b-41d4-a716-446655440000 No-SQL databases
IPv6 2001:0db8:85a3:0042:0000:8a2e:0370:7334 Host Addresses
SHA1 2fd4e1c6 7a2d28fc ed849ee1 bb76e739

1b93eb12
Version Control Systems

Table 1.1: A list of established or emerging harder, better, faster, stronger identifiers.

1.2.2 New Data Processing Technologies

At the beginnig of database technologies identifiers for data tuples were mostly integers

beginning at one. This made it easy to work with the identifiers as they (at least in the

development stage) seldomly pushed over four to five digit numbers. Such numbers can

be kept easily in short term memory by most people which helps to compare them in

different contexts. This is a task often recurring while developing new applications. The

new kind of often called No-SQL databases take advantage of large identifiers in there

core functionality. Through using enough big identifiers it is not anymore necessary to

have a centralized control instance to assure that they are unique. It is just assumed

that the probability a randomly generated ID collides with another is to small to give

attention to this case at all. Also at least since the new decentralized version control

system (DVCS like e.g. GIT) appeared, the idea to identify information blobs by the

hash token from the information itself becomes popular. As showed in Table 1.1 you see

SHA1 identifiers used by GIT are not anymore easily comparable and can only by a

small gifted part of the population held in short time memory – if at all.

1.2.3 Communication Protocols

With the switch from the IP protocol in version 4 (IPv4: 192.168.0.1) to the new version 6

(IPv6: 2001:0db8:85a3:0042:0000:8a2e:0370:7334) you often loose the ability to easily

compare two IP addresses. This is an extreme example but also the worldwide telephone

system increased the size of phone numbers to allow more members and to facilitate the

independence of the numbers from their geographic location. In Switzerland for example

Chapter 1. Introduction 11

a local phone number was 20 years ago only 6 digits (23 76 33), today you need to type

at least 9 digits (032 823 76 33) to build up a connection inside Switzerland. And mostly

the international number is communicated (0041 32 823 76 33).

1.3 Use Cases

1.3.1 Memorizing

One of the basic use cases for identifiers is to memorize them. To know an identifier by

heart enables people to directly access information or connect to someone. Like with

phone numbers you are able to know a number to call some one without any tools. But as

you probably remarked already, today nobody knows anymore a lot of phone numbers by

heart. The size and amount of numbers you need to know has become a major challenge

to memorize. Therefore are electronic phone books in the mobile phones an important

tool for everybody. By this example we want to show that memorizing of identifiers has

become some what of obsolete. We have tools which help us with this task.

1.3.2 Transferring

The next task involving identifiers is to transfer them to other persons. It can be by

copying them on paper, spelling them in a phone conversation and so on. Identifiers

which are used in such scenarios are often optimized like the Record Locator which are

used in airline reservation systems. Because some letters can easily be confused like L,

I and 1 or 0 and O they are exclude of the set of possible tokens which build such an

identifier. But to keep these identifiers small they are often not unique for a lifetime but

rather are reused after some time. Normally this is no problem as long you deliver some

context to the identifier as a date or last name which in combination makes the identifier

again unique. (Details about such kind of identifiers would fill another couple of pages

and can not be looked into here. Though it is an interesting topic in the field of user

experience.)

1.3.3 Comparing

The use case which is becoming more important today by using identifiers is in our view

to compare identifiers to check if they are matching. An example is when you have a

paper copy in front of you and need to check if it has the same identifier as on your

screen in any kind of system. Also sometimes you have to compare identifiers which are

Chapter 1. Introduction 12

in different applications on your computer like in an accounting system, email application

or website. In this use cases you often get presented one of the above mentioned really big

identifiers. And exactly in this context lies the main goal of our work. How to visualize

these identifiers to facilitate the tasks of the user in comparing multiple identifiers. This

has not to be only by checking identifiers, in the same category falls finding a presented

identifier in a set of other identifiers.

Chapter 2

Visualization of Identifiers

“Das sinnliche Wahrnehmen z.B. geschieht gewiss mit grösserer oder geringerer

Genauigkeit je nach dem Grade des Interesses, es wird fortwährend in andere Bahnen

gelenkt durch den Wechsel der äusseren Eindrücke und durch innere Einfälle.”

Hermann Ebbinghaus, 1885, p. 16

Visualization of identifiers is not a new concept. But in our opinion a not enough in-

vestigated one. Especially as the importance of large identifiers is arguably is further

increasing in the near future (Section 1.2).

2.1 History of Hash Visualization

The first mention we could research didn’t try to visualize identifiers but hash values.

It was an attempt to improve the security in public-key applications. As no user ever

seriously looked at the cryptic root-keys which were presented to verify the host, Adrian

Perrig and Dawn Song [1999] did develop an algorithm to produce a more human

friendly visualization of the key hashes. This produced rather artsy so-called Random

Art (Figure 2.1) images.

Figure 2.1: Two examples of Random Art which visualize a hash.

13

Chapter 2. Visualization of Identifiers 14

A year later the same algorithm was used to create hash visualizations which were used to

test a new visual authentication system [Rachna Dhamija, 2000]. The user was asked to

memorize some Random Art with which he was later challenged to authenticate. Apart

from this we didn’t find Random Art used at grant scale in a system today. But it was the

inspiration of different projects the years to come. A prominent one is the VisualHostKey

which we refer to later (Subsection 2.3.4). The hash visualization technologies were not

developed to visualize identifiers. As you can produce a hash out of any identifier easily,

the algorithm can be used immediately as identifier visualization.

2.2 VisualID

The next attempt to visualize random information was made by developing VisualID. In

the paper of Lewis et al. [2004] they proposed a better representation for icons used in

the desktop metaphor. Some file formats don’t have any intuitive visual representation.

If this was the case generated icons based on a hash of the filename were used. The quite

complex algorithm did also incorporate a clustering stage with the goal to create similar

visualizations for similar named files.

Figure 2.2: A set of VisualIDs which visualize different files.

Chapter 2. Visualization of Identifiers 15

2.3 Overview: Identicons

The term identicon was coined by Don Park in early 2007. At the time writing this

document (September 14, 2012) we were not able to find the term in any official dictionary.

The only listing available was found in Wikipedia [2007]:

An Identicon is a visual representation of a hash value, usually of the IP

address, serving to identify a user of a computer system; compare avatars.

The original Identicon is a 9-block graphic, which has been extended to other

graphic forms by third parties, some of whom have used MD5 instead of the

IP address as the identifier. In summary, an Identicon is a privacy protecting

derivative of each user’s IP address built into a 9-block image and displayed

next to the user’s name. A visual representation is thought to be easier

to compare than one which uses only numbers, and more importantly, it

maintains the person’s privacy.

This is not the whole truth about the idea of identicons as we will look into in the next

section.

2.3.1 Definition

Our current understanding of an identicon we phrase the following:

An identicon is a visual representation of a piece of information (including

identifiers). The representation is unambiguously generated by a set of

rules. The goal of the representation should help the user to simplify the

interaction with the information itself.

This also reflects more the original idea of Don Park which he mentioned in a comment

of his first blog post [Don Park, 2007]:

I originally came up with this idea to be used as an easy means of visually

distinguishing multiple units of information, anything that can be reduced

to bits.

2.3.2 Available Implementations

The Table 2.1 contains a compilation of actively used implementations which we consider

as identicons. Examples of the different implementations can be found in Section 4.1.

Chapter 2. Visualization of Identifiers 16

Name of Visualization Appearance Innovation, Focus

Identicon [Don Park, 2007] 18.01.2007 First implementation of an identicon,
based on hashed IP.

MonsterID [Andreas Gohr, 2007] 20.01.2007 Character identicon based on hashed
username.

Wavatar [Shamus Young, 2007] 15.12.2007 MonsterID like avatar visualization.
VisualHostKey [OpenSSH, 2008] 22.07.2008 ASCII visualization of SSH Finger-

prints.
Retro May, 2009 Another version of MonsterID style.
Vash early 2010 High-Fidelity visualization of hash,

with a strong focus of memorizing.
Robohash July, 2011 Visual more appealing version of

MonsterID.

Table 2.1: A survey of existing and used visualizations of (mostly user) identifiers,
ordered by time of appearance.

2.3.3 Identicon & MonsterID

The Identicon and the MonsterID both appeared first early 2007. It was the identicon

developed by Don Park [2007] which ignited the concept. Shortly after Andreas Gohr

[2007] took another approach. I had the great pleasure to speak in the context of this

work with both developers by doing a short phone interview.

2.3.3.1 Identicon

It was the work of Jared Tarbell [2002, 2003] (Figure 2.3) which inspired Don Park to the

first incarnation of the identicons. On the website where this digital art-work is presented

he describes its own origin as the following:

The nine block is a common design pattern among quilters. It’s construction

methods and primitive building shapes are simple, yet produce millions of

interesting variations.

This nine block figures can be generated by choosing in a set of some basic forms and

later rotating by 90◦ steps. This algorithm is able to produce 10’816 unique different

shapes.

The first incarnation of identicons was done by some one which had a lot of experience

in network security topics. Therefor the blog title which described the first identicons

was: “Visual Security: 9-block IP Identification”. A rather technical approach can be

inferred here.

Chapter 2. Visualization of Identifiers 17

Figure 2.3: Nine Block – Digital Artwork by Jared Tarbell [2003].

As a first application Don Park did implement a visualization for his personal blog.

Instead of the non-existing user picture in the comment section, based on the users

actual IP address, a visual is created. This visual incorporated the algorithm of the

Nine Blocks enhanced with a figure color to be able to generate more different possible

identicons. People liked it. The user pictures accompany the comments are mostly quite

big (> 200 pixels a side), even as the Nine Block still work down to a size as small as 16

by 16 pixel.

We like to discuss here some problems we identified, which we estimate is holding the use

in more general use cases of identicons back. First of all are the used Nine Blocks quite

exciting figures and with the added color really take a lot of the attention of the user.

This tends to distract from the task at hand. Further if we consider the quite small space

of IPv4 addresses collisions are rather unlikely using the Nine Blocks. But on a huge

numerical space of a SHA1 hash used as identifier this technique delivers just not enough

possibilities and can potentially occur in collisions. Therefore the same visualization

would be used for different identifiers.

2.3.3.2 MonsterID

Only some days later, inspired from Don Parks identicons, Andreas Gohr took the concept

and did improve it for the use case of generating user pictures for blog software. Thus he

gave the visualizations a meaning, every one became a monster. The first improvement

was that he based the generation of the visuals not anymore on IP addresses as these

change over time, but on the username.

Perfect as substitution of user pictures but not useful for more general use cases. Mostly

for the same reasons we see the identicon as problematic, additionally strong semantics,

which narrows field of application even further.

Chapter 2. Visualization of Identifiers 18

2.3.4 VisualHostKey

VisualHostKey is a feature of the recent OpenSSH [2008] packages. We consider this

application, which visualizes the fingerprint of the to connecting host in a ASCII art

graphic (Figure 2.4), also as a kind of identicon. Disregarding the fact that it not visualizes

identifiers.

This kind of visualization has as origin again the Random Art described in the paper of

Adrian Perrig and Dawn Song [1999].

+--[RSA 2048]----+
| ...o |
| . + o+o . |
| . = +.+.+ |
| + . oo= |
| . . .o E |
| |
| .. . |
|... |
| ... |
+-----------------+

Figure 2.4: A VisualHostKey - ASCII visualization of a SSH fingerprint.

2.3.5 Other descendants

The other identicon types we found, listed in Table 2.1, are more or less direct descen-

dants of the other techniques. There are the three more or less direct derivatives of the

MonsterID. Wavatar incorporates different graphics, and Robohash takes the graphics to

a professional level. Retro on the other hand goes his own way and creates 8-bit computer

game figures. And the Vash (visual hash) implementation focus mainly on memorizable

quite big visual representation of information. The use cases listed by Vash are: Public

Key Fingerprints; Reliable password entry; Verification of Sensitive Information and

Default Forum or Blog Avatars.

2.4 Focus & Innovation

So there exists already a respectable choice of identicon implementations. Why bother

to create even another type of identicons? With this question in mind and the comments

provided above we like to develop in this section the focus of our implementation.

Chapter 2. Visualization of Identifiers 19

2.4.1 Specialization on the Use Case Comparing

Our implementation should clearly favor the use case of comparing two identifiers or

to find a given identifier in a set of such. As described in the Chapter 1 visualizations

can also be provided to memorize identifiers. Also they can be specialized to be easily

explained to someone else in a phone conversation to reproduce it later. These technique

are mostly possible for identifiers which have a certain size. But we did not find any

implementation of a large identifier as a SHA1 which was potential easier transferable than

in alphabetic representation. Some of the concrete use cases we had in mind specifying

our implementation was to identify identical data tuples in No-SQL databases; the simple

task of verifying, if the last version on the own workstation correspondents the version

on the production server in a DCVS based system as GIT. Or also an easy way to verify

if a large bank account number was copied correctly from paper to the online banking

system.

2.4.2 Acceptance

The best invention is useless if nobody uses it. Therefore we want to focus also on

acceptance and compatibility with existing systems and designs. No developer, designer

or user experience specialist will introduce a nervous looking, color full and distracting

element in their systems even if it is there for helping the users. We estimate that

in our use cases it is also important to keep the physical size on the different media

fairly small. In most cases the identicon is just an additional element to the already

present information. Further we think it is also important for a broad acceptance and a

compatibility with a lot of use cases the identicons should not have any semantics. (It

would be rather distracting if your next flight number is represented by a green devil.)

2.4.3 Dimensions

We identified three competing dimension. The art of an implementation is to balance

these and find the right mix for an optimal performance.

2.4.3.1 Physical Size

Identicons are mostly an additional element which need to find a place on the same space

already existing elements stay. It is important to keep the physical size of the identicons

small. In opposite to the implementations which are used to substitute avatars and use

Chapter 2. Visualization of Identifiers 20

some space on the screen, our solution should be as small as possible. This means that

the identicon can stay in the background on a website or on a letter.

2.4.3.2 Representable Possibilities

The physical size works diametral to the amount of different possible identifiers which

can be visualized. The extreme will be a one pixel sized image (basically a color) where

we can visualize as much different identifiers a person can distinguish. The theoretical

space of possibilities is increasing exponential as you increase the size of the visualization.

A 20 pixel size image with 8-bit color depth is already enough to fully visualize the quite

big SHA1 hash.

2.4.3.3 Graphical feature richness

As further dimension we want to introduce the dimension of graphical complexity. This

dimension itself has two directions. First, the more colors and different graphic elements

we introduce for an identicon the more different identifiers we can represent. Also are this

identicons potentially easier to recognize by humans and show thus a better performance.

Second this is likely to conflict with the acceptance which will be higher if the identicon

itself is more uniform and don’t attract to much attention.

2.5 Requirements of Moji-Identicons

Build on the section Motivation and also the section Focus & Innovation we provide in this

section the more exact requirements we had in mind while implementing the prototype

presented later. The following requirements don’t have the same level of importance and

are sometimes contradictory.

2.5.1 Basics

As argued on in the motivation for an improvement of identicons the basic requirements

of the implementation are to visualize in a human-friendly manner large identifiers. It

is possible that both or multiple visualizations are on the same screen. But there are

also use-cases where the presentation can be on different devices like a computer and a

phone or also on paper.

Chapter 2. Visualization of Identifiers 21

2.5.2 Aesthetics

To ensure that graphical representations of any kind get adopted and used in a broad

manner calls to be perceived as aesthetically pleasing. Which is, if the task in mind to

provide 2160 different visualizations, not trivial at all. Further the Moji-Identicons will

be later presented in a context. In a dialog box, a paper form or on a website you will

have other graphical elements which interact with the inserted Moji-Identicons. As more

attention seeking the identicon will be as more difficult it will be to integrate in a context

without disturbing the other elements.

There are some basic rules which are easy to follow but are restricting us a lot in providing

unique visualizations for each identifier possible. First of all, at least in western cultures,

it is not at all perceived as aesthetic to use to much different and fluent colors. By

controlling the use of colors the disturbance of the Moji-Identicons can be controlled a

lot.

2.5.3 Recognizable

Another feature should be the recognizability as a Moji-Identicon. As stated in Focus &

Innovation we try to generate a small representation which is more easy to integrated

in documents and screens. Therefore it would be counter instinctive if you need to label

the identical visualization as such. Like a QR-Code which now a days from most people

is as such recognizable it should be with the Moji-Identicons too.

2.5.4 Colorless media / Colorblind people

In the most cases we have colorful and also quite color accurate devices or prints at our

disposition. Nevertheless we also have to take into account that this is in some cases not

possible as some devices like eInk-Displays or most of photocopiers still produce black

and white or grey-tone outputs. The Moji-Identicons don’t have to function with the

same performance in this cases, but they should work at least at all.

Also there is the constraint of color blind people which we need to take into account. By

doing a large part of the encoding by generating a distinctive figure we can assure that

the Moji-Identicon rest usable.

Chapter 2. Visualization of Identifiers 22

2.5.5 Bijectivity

An identifier is encoded into an identicon to be easier readable for humans. Not necessary

does a visualization encode all information of the identifier visually. But anyway if you

have a Moji-Identicon, at least in digital form, it should be possible to extract the identifier

encoded in it. This property can be assured in multiple ways. The easiest would be to

integrate the identifier as meta data in the image format. On the other hand this is

reducing your choice of image formats and will be lost most probably if the visualization

will be converted. A more secure solution to this problem can be achieved by using a kind

of image watermark. Just by adding small variations of the color values in the image,

not visible to the bare eye, you can encode the information of the identifier.

2.6 Disregarded functionality

Again we want emphasize that the implementation of Moji-Identicons is specialized for

the use case of comparing. It will not perform well if you ask people to reproduce this

kind of identicons. This means the memorability is not guaranteed. Further we don’t

want to incorporate the possibility to explain a Moji-Identicon to someone else. Neither

for recognition nor for reproduction. This means Moji-Identicons are not easy to explain

someone through a phone (as long it is not a video call).

Chapter 3

Approach

“The minimum we should hope for with any display technology is

that it should do no harm.”

Edward Tufte

3.1 Approach

To start working on a new implementation we had to decide on an approach. We did

see two general roads we could take. One was to start from the identifier and work out

a visualization, in a sort a bottom-up approach. Also there is the top-down approach,

where we imagine what a good visual would be and try to find a way to get from the

identifier to the visualization.

Bottom-up

We did do some test following the bottom-up strategy. Some examples of this approach

can be found in the Figure 3.1. This visualization just uses 16 different colors per digit

of the hexadecimal representation of a SHA1. The digits are arranged in a rectangle.

Figure 3.1: The minimal complete visual representation of a SHA1 hash.

23

Chapter 3. Approach 24

It is quickly evident that it is difficult to distinguish the identicon even if only eight are

presented. No potential success was perceived to produce identicons this way which our

requirements would match. Therefore we did not investigate any further this strategy.

Top-down

To illustrate the concept in the proposal (Appendix B) we did come up with a mock-up.

This mock-up was created without any algorithm in mind. Therefore the first steps

(Subsection 3.2.1) of the practical development were done by creating in a top-down

approach prototypes of Moji-Identicons.

3.2 Prototyping Environment

As starting point we did use Processing [Ben Fry and Casey Reas, 2001]. This Java based

integrated development environment was ideal to produce in record time the first visuals

(Figure 3.2). With only a minimal initial investment we were able to try some ideas and

play around.

Figure 3.2: Very first prototype tests with Processing of the Bottom-Up approach.

3.2.1 First tests

The first tests did include a simple color based visualization as shown in Figure 3.2. The

most time was invested on the visualization shown in Figure 3.3.

As base for both visualizations it was necessary to first create randomly some hashes.

Therefore we used the Java built-in java.security.MessageDigest functionality. To

have a base to construct visuals we did use the 160 bit input of the hash to map to a 8

by 8 grid with weights. To create 4 levels of weights we did combine 2 bits for each of 64

points in the grid. This leaves us with 32 not assigned bits.

In a second step all points with the highest weight get connected by a line. This produces

the stroke images seen in Figure 3.3. To create a connected figure the closest line segments

are connect. In the example this lines are visualized with red color.

Chapter 3. Approach 25

Figure 3.3: The first results of the prototyping phase in Processing. Top: First crude
examples of the visualization. Bottom: A helper visualization which shows weights.

After this we tweaked the stroke drawing algorithm. But the main change was drawing a

figure from the center towards the edges. Also did we try with different stroke weights to

introduce more distinct visualizations. At the end a color element was introduced. The

color was calculated by taking a checksum over the provided SHA1 hash. This ensures

that if two provided SHA1 only differ in one bit still create visual clearly distinguishable

results. (Figure 3.4)

Figure 3.4: The end results of the prototyping phase. The top rows show two different
variants of connected and centered visuals.

3.2.2 Transition to JavaScript

After we had a basic concept and a first working implementation of the Moji-Identicons we

wanted to present our work to future users and let them test if they are effective. We

did some investigation if it is possible to distribute the code as Java-Applets. But after

some tests we did see that it was rather difficult to distribute the experiments this way.

The final goals was anyway to have an implementation which works easily in modern

web browsers we did start reimplementing the code in JavaScript. Also in expectation to

have a simpler possibility to switch to a more test driven development with this change.

Chapter 3. Approach 26

3.3 Final Environment

The final version of the Moji-Identicons (Figure 3.5) was implemented in JavaScript

running in browser environments. The generation of the visuals itself is completely done

client-side which has different advantages. There is no need to install software or allocate

additional resources on a server for generating the visuals. As images tend to use more size

to be transmitted as a simple string we can reduce the bandwidth used. On performant

clients we can argue that the page loading is shorter as there is no need to open multiple

connections to get the images of the Moji-Identicon. There are disadvantages too. It is

not possible to control the correct generating and display of the visualizations. Further on

slow devices (like older smartphones) it may need some time to create the Moji-Identicons.

Also there needs to be a client which supports some newer technologies.

Figure 3.5: Some examples of final Moji-Identicons. (Codename FigureBlob2)

3.3.1 Technologies

In general we did write our implementation with HTML5 in mind. This is not a hard

requirement and the code should work with some tweaking also in older HTML standards.

Where we can’t make compromises is the canvas element which is an integral part of

the library we wrote. The canvas element delivers a surface which we can manipulate

with basic performant graphic operators down to each single pixel. The solution does

reportedly work in the state of the art browser of all well known manufacturers.

The operator which canvas element provides were developed as basic as possible to be

easily implemented by all clients. This challenged us to find a basic 2D geometry library.

3.3.2 2D Geometry Library

There are tons of really nice and extremely powerful frameworks available, most of under

an open source license. The most provide complete library enabling two dimensional

geometry calculations on points and lines. But also a lot of other functionality. The

prospect to add a huge frame work just for providing some basic functionality was not

ideal.

Chapter 3. Approach 27

Also it is good to ensure implementation to be as independent as possible. Therefore

we decided to implement the needed functionality again, thus geom.js (Table 3.1) was

born.

Geom.Point2D(x,y) takes x,y number Constructor of a point.

*.toString returns a string Outputs a string representa-
tion of a point.

*.distance(oP) takes a Point2D,
returns a number

Calculate distance to another
point.

*.checkType(oP) takes a Point2D,
returns true

Check if is a valid point.

Geom.Line2D(a,b) takes a,b Point2D Constructor of a line.

*.toString returns a string Outputs a string representa-
tion of a line.

*.closestPointToPoint(oP) takes a Point2D,
returns a Point2D

Returns the closest point on
the line in reference to the pro-
vided point.

*.closestLineToPoint(oP) takes a Point2D,
returns a Line2D

Returns the closest line con-
necting the given line to the
provided point.

*.closestLineToLine(oL) take a Line2D, re-
turns a Line2D

Returns the closest line con-
necting the given line to the
provided line.

*.checkType(oL) takes a Line2D, re-
turns true

Check if is a valid line.

Table 3.1: A short overview of the geom.js library.

With all tools ready to go we could start implementing our approach of Moji-Identicon again

in JavaScript.

3.4 Structure

With the experience gained by writing the prototype code we did structure our code

from beginning in two main parts. The first stage processes the input and generates

points on a matrix. On the base of this points in a second step the visualization itself is

build. This splitup made it possible to easily test different combinations of both stages.

Chapter 3. Approach 28

3.4.1 Stage: Point Matrix

In Identicon.PointMatrix a quadratic matrix, in our tests with a size of 32x32, was

specified. According to the hash input provided the different algorithms generated points

on this matrix.

3.4.1.1 Rastering

Developed for the prototype we did re-implement the method, which we call rastering.

The input in hexadecimal representation is mapped to pixels. If the value of the input was

reaching a certain level, a point was generated. This method has the crucial disadvantage

that all values bellow the pre set level don’t provide any information to the point matrix.

Further was the input repeated until the whole matrix was filled. To minimize these

effects we did look for a better algorithm.

3.4.1.2 Distribution

Figure 3.6: Uniform distribution of the points generated by our simple algorithm. Top:
Saturation value of 1, Middle: Saturation value of 0.9, Bottom: Saturation value of 0.5.

In this attempt we uniformly distribute the points (Figure 3.6) based on the input

over the defined matrix. This is done by jumps defined through the input of a single

hexadecimal value (called cypher in Figure 3.7). To match the defined matrix the size of

the jumps are adjusted according the maximal possible points in the matrix.

1 getJump = function (cypher) {

2 return cypher * (Math.pow(size ,2) / ((hash.length +1) * 16 / 2));

3 };

Figure 3.7: How far to jump according a single hexadecimal input value.

Still we need a way to adjust the density of the generated points. Therefore we introduce

again a value which regulates the smallest possible size of a jump. By decreasing this

value called saturation we can produce a more sparse matrix. (Figure 3.8, Line 5)

Chapter 3. Approach 29

1 for (var u=0; u<size; u++) {

2 for (var v=0; v<size; v++) {

3 if (jump <= 0 && cypher < hash.length) {

4 var data = Identicon.Help.getIntFromHexAt(cypher++,hash);

5 if ((data /15 > 1-saturation)) {

6 m.push(new Geom.Point2D(u,v));

7 }

8 jump = getJump(data);

9 } else { jump --;}

10 }

11 }

Figure 3.8: Code which is generating points on the matrix, u and v represent the x
and y axis of the final image.

3.4.1.3 Ordering

The later visualization is dependent on the order we provide the points to the draw algo-

rithm. Therefore we implemented in a step in-between two different ordering algorithms.

The first approach orders the points according the distance a point has to the center of

the matrix. (Figure 3.9)

1 m.sort(function(a,b) {

2 return center.distance(b) - center.distance(a);

3 });

Figure 3.9: Ordering the points based on the distance to the center.

Later we used mainly the second algorithm. Here the points are ordered circular around

the center. Like this we could evade the problem that the direct connections of two

following points did cross itself. (Figure 3.10)

1 m.sort(function(a,b) {

2 return Math.atan2(a.x-center.x,a.y-center.y) -

3 Math.atan2(b.x-center.x,b.y-center.y);

4 });

Figure 3.10: Ordering the points around the center in a clockwise fashion.

3.4.2 Stage: Visualization

Having a nicely prepared matrix with points distributed dependent on the hash we

can start to play around with creating visuals. We did create more than ten different

visualizations (Subsection 4.1.1). The algorithms have all a similar composition, we briefly

explain based on the example (Figure 3.11) of the final Moji-Identicon algorithm how a

draw method is structured.

Chapter 3. Approach 30

1 drawIdentFigureBlob2: function () {

2 // initialized variables

3 var m = new Identicon.PointMatrix(this.PIXEL , this.HASH.toString(), 0.5

4). getByDistribution (2);

5 var ctx = this.ctx;

6 var size = this.PIXEL;

7 ctx.lineWidth = 1;

8 var center = new Geom.Point2D(size/2,size /2);

9 // draw background

10 ctx.fillStyle = ’hsl(’+

11 (Identicon.Help.getCheckSum(this.HASH.toString ())*16) +

12 ’ , 80%, 70%)’;

13 ctx.beginPath ();

14 ctx.moveTo (0,0); ctx.lineTo(size ,0); ctx.lineTo(size ,size);

15 ctx.lineTo(0,size); ctx.lineTo (0 ,0); ctx.fill ();

16 // draw a shape using quadratic curve

17 ctx.beginPath ();

18 back = m[0];

19 for (var i = 1; i < m.length; i=i+2) {

20 var a = m[i-1]

21 var b = m[i]

22 ctx.quadraticCurveTo(a.x, a.y,b.x,b.y);

23 }

24 ctx.lineTo(back.x,back.y);

25 // fill the shape

26 ctx.fillStyle = "#000";

27 ctx.fill ();

28 ctx.closePath ();

29 }

Figure 3.11: The draw function of the final version, created with the rather poetic
name drawIdentFigureBlob2. (For the visualization see Figure 3.5.)

In the first part the initialization of the necessary variables an the generation of the

PointMatrix is done. Later a box, eventually colored, of the size of the visual is drawn.

And the last part is handling the drawing of the figure. In the example listed two points

a time are used as input to draw a quadratic curve segment. All these segments are

connected and form a shape which at the end is filled with black.

3.4.3 Ensuring Bijectivity

In a last step the identifier itself is encoded in the image. This is done using a simple

algorithm which adds three bits per pixel of the identifier in the final image. We did not

explore more advanced techniques in this field.

The used approach defines even color values as a encoded zero and odd values as an

encoded one. Beginning in the top-left the pixels are adjusted in sequence. On each color

channel the input is adjusted based on the input of the identifier by one bit.

Chapter 3. Approach 31

3.5 Followed Design Guidelines

3.5.1 Color

There have been conducted many studies [Ware, 2004] to find the number of colors

a human can distinguish in a set of symbols. All studies recommend a maximum of

between 6 and 12 different colors. Therefore where we used colors it was always a goal

to minimized the amount of hues.

3.5.2 Connected Shapes

If we belief David Marr [1982] to be able to recognize objects, the human creates in

a first stage a so called primal sketch. In this stage the human tries to recognize and

separate with basic processes a figure from his background. We believe if the identicons

consist out of a foreground object and uniform background, the users are faster differing

such objects. Based on this beliefs we did concentrate mainly on fully connected simple

shapes. Further we did only produce one shape per identicon.

Chapter 4

Evaluation

“Mais pour le moment, il est certain que l’on éprouve quelque embarras à exprimer par

un chiffre brutal toutes les oscillations d’une pensée ; le chiffre ne peut avoir qu’une

précision trompeuse; comment en effet pourrait-il résumer ce qui aurait besoin de

plusieurs pages de description !”

Alfred Binet, 1900, p. 199

Which is the best kind of identicon? This is not a trivial question. Because each human

perceives different and the identicons should work in different media the visualizations

needs to be highly versatile. Even if we just consider the use of identicons on screen,

different configurations, the resolution and the brightness influence the result and make

a complete evaluation nearly impossible.

But nevertheless it is important to test especially in this kind of field as the human

perception and processing part has the same importance as the technological facet of

generating the identicons. Because of time constraints it was not possible to test the

different implementations on all different media. Therefore we decided to investigate the

media we think will be the most used for identicons. And this is arguably the web.

32

Chapter 4. Evaluation 33

4.1 Catalog of Identicons

4.1.1 Own Development

Example Name Description

Minimal Hash as color field.

Figure The first implementation. Distance sorting.

FigureBW A colorless variant.

FigureC1 Base color variant.

FigureC2 More fluent colors.

FigureC3 Only edge element colored.

FigureGrey Grey background.

FigureBlob First circle sorting implementation.

FigureBlob2 With quadratic curves.

FigureMoji FigureBlob with added eyes.

FigureMoji2 FigureBlob2 with added eyes.

FigureMoji3 One eye, no color.

FigureTwo Two independend shapes.

FigureTwoTail Two connected shapes.

Chapter 4. Evaluation 34

4.1.2 Available Implementations

Example Name Description

Classic JavaScript implementation of Nine Block

http://www.moreslowly.jp/products/identicon/

GravIdenticon Identicon provided by http://gravatar.org

GravMonsterid MonsterID provided by http://gravatar.org

GravRetro Retro provided by http://gravatar.org

GravWavatar Wavatar provided by http://gravatar.org

Robohash Robohash provided by http://robohash.org

4.2 Experimental Plan

It is not the goal to measure if people are able to memorize identicons we don’t let the

subjects reproduce the visualizations. Therefore the time to find identical identifiers is

measured. A possible setup for this case is to present a set of identifiers and ask to find

a duplicate in this set.

This simple form of experimental setup helps to control a lot of side effects which we don’t

want to measure like; the speed with which the subject can interface with the website,

the mental capabilities to remember visuals, the size of the working or mid-term memory

of the candidates. Simply by measuring the time consumed until the decision is made

and counting the correct decision gives a solid performance index. The sets including a

duplicate and the lack of are showed with the same probability. The presented visuals

as also the order in which the different kinds of identicon appear was fully randomized.

4.3 Evaluation Application

To be able to collect easily enough data we decided to let the subjects do the experiment

at home on their own computers. This simplifies the organization of the experiments

enormously. We lose some control of the testing environment which the subjects choose

http://www.moreslowly.jp/products/identicon/
http://gravatar.org
http://gravatar.org
http://gravatar.org
http://gravatar.org
http://robohash.org

Chapter 4. Evaluation 35

them self. But we can argue that this simulates real life situations in which the developed

identicon should work at the end.

4.3.1 JavaScript Implementation

As explained (Chapter 3) we want to create a easily distributable application to conduct

our experiments. Therefore we did decide to write a browser based application based on

JavaScript which incorporates our identicon library. (This implementation figures at the

same time as a proof-of-concept for our Moji-Identicon library itself.)

4.3.2 Frameworks, Components and Services

The use of JavaScript brings the advantage of a huge choice of professional and mature

libraries, frameworks and tools.

4.3.2.1 Application unspecific

The HTML5 Boilerplate1 creates a common ground on different browsers. It also includes

a feature detection library called Modernizr2. As a base for the layout and design we did

incorporate Bootstrap3. Another useful framework which was used for template based

generation of the content is Handlebars4. On the base of these common web development

tools we could concentrate on our use case, the evaluation application.

4.3.2.2 Application specific

To generate identicons we need a way to create easily hashes. We loaded just the SHA1

generation part of crypto-js5 to handle this task. To structure the program flow of our

application we decided to incorporate the Javascript Finite State Machine6. Finally we

needed a way to save the results of our experiments in a persistent way on a server. This

task was achieved by the document oriented, NoSQL database service Mongolab7 based

on MongoDB8.

1http://html5boilerplate.com/
2http://modernizr.com/
3http://twitter.github.com/bootstrap/
4http://handlebarsjs.com/
5http://code.google.com/p/crypto-js/
6http://github.com/jakesgordon/javascript-state-machine/
7http://www.mongolab.com/
8http://www.mongodb.org/

http://html5boilerplate.com/
http://modernizr.com/
http://twitter.github.com/bootstrap/
http://handlebarsjs.com/
http://code.google.com/p/crypto-js/
http://github.com/jakesgordon/javascript-state-machine/
http://www.mongolab.com/
http://www.mongodb.org/

Chapter 4. Evaluation 36

4.3.3 Workflow

The application is based on multiple screens which first briefs the user and guides him

through the experiment. If the user conducts the the experiment the first time he will

be introduced with a test run. Once the real experiment begins the browser switches to

fullscreen to block as good as possible from distractions. At the end the result is loaded

anonymously and automatically to the server. (If this is not possible the result is show

to the user with the request to send it by email.) Finally the user has the possibility to

provide a general feedback about the experiment.

4.4 Experiments & Results

All together we did conduct four experiments. Each of the experiments was announced by

email. The experimental group were mostly working in the field of software development

or computer science. The participation was thanked for with a small sweet treat. The

duration of the experiments in its whole were in average well under five minutes.

The results are statistically verified by a dependent t-test for paired samples as the exper-

iment is done by repeated measurements of the different conditions (types of identicon).

If referred to as statistically significant have a p value of at least 0.001.

Only important results are discussed in the following sections.

4.4.1 Pre-Test

Before investing time in a probably dry land we did a short pre-test. Just comparing the

first Figure identicon with the simple text representation of the identifiers. (8 users with

8 trials per condition, N=64, p=0.001)

In the mean the text representation consumed 7899 ms (SD 8255.37ms) until decision

where the Figure only consumed 2895 ms (SD 2733.39ms). This result is statistically

highly significant. Also the percentage of correct answers is in favor of the Figure which

was answered correct 88% (SD 0.3) in comparison to 59% (SD 0.5) of the text.

This was the green light to further investigate our approach.

4.4.2 Base Level

The first experiment was designed to establish a base level of the measured variables.

The Figure implementation was tested against the two variants of showing the whole

Chapter 4. Evaluation 37

identifier and truncated version with only ten digits. Further did we test also the Minimal

implementation to see if it still performs better than the text representation. (16 users

with 6 trials per condition, N=96)

4.4.2.1 Text vs. Minimal

Neither the time to decision nor the amount of correct answers is significantly different

between the use of the Minimal and the text representation.

4.4.3 Text vs. Truncated Text

Also the comparison between the full presentation and the truncated text representation

did show any significant differences. (Text: Mean 5146.80ms , SD 3884.67ms; Truncated

Text: Mean 4864.38ms, SD 5119.46).

4.4.4 Color Variations

To get more knowledge about the influence of the color we did test different variations

of the Figure implementation. Namely FigureBW, FigureGrey, FigureC1, FigureC2 and

FigureC3. The first two don’t incorporate any color in its visualization. The second of

the too distinguishes in less contrast. The FigureC3 does not exactly differ only in the

color but also on the used space of the color cue. (16 users with 7 trials per condition,

N=112)

Type Decision (ms) Correct
Mean SD Mean SD

FigureBW 2780.29 3348.73 91.07% 0.29
FigureC1 2343.62 2212.09 87.50% 0.33
FigureC2 2512.48 2227.46 87.50% 0.33
FigureC3 3130.63 3021.93 87.50% 0.33
FigureGrey 2985.42 3395.20 81.25% 0.39

Table 4.1: Overview of the results in color variations.

4.4.4.1 Black and White vs. FigureC1

Surprising in our opinion is that the addition of color not results in significant better

performance. (p=0.0724, Color: Mean 2343.62ms, SD 2212.09ms; Black and White: Mean

2780.29ms, SD 3348.73ms)

Chapter 4. Evaluation 38

4.4.5 Shape Variations

In this test series the focus was set on variants of different shapes. Refer to the catalog

(Section 4.1) to see examples of the different approaches. The test incorporated the

following implementations: FigureBlob, FigureBlob2, Figure, FigureMoji, FigureMoji2,

FigureTwo and FigureTwoTail. Because of a technical problem the results for the Fig-

ureTwoTail were not collected. (19 users with 4 trials per condition, N=76)

Type Decision (ms) Correct
Mean SD Mean SD

Figure 4202.20 2669.20 85.53% 0.35
FigureBlob 4298.07 2828.79 89.33% 0.31
FigureBlob2 4122.63 2863.50 92.11% 0.27
FigureMoji 4845.47 3172.84 88.16% 0.33
FigureMoji2 5058.00 4040.81 84.21% 0.37
FigureTwo 4664.04 3153.31 84.21% 0.37

Table 4.2: Overview of the all non significant differences of the shape variations.

None of the shape variations were significant different (Table 4.2). Which allows us to

argue that the simpler, aesthetic more pleasing figures show the same performance as

the more complex ones.

4.4.6 Final Validation

To finally validate against existing implementations we did test all types out of the catalog

(Subsection 4.1.2) against FigureBlob2 and FigureMoji3. We like to mention here that

we are conscious about the fact that some representation of the other implementations

were presented smaller as they were developed for. But it was necessary to guarantee a

common ground for all tested. (11 users a 3 trials per condition, N=33)

Type Decision (ms) Correct
Mean SD Mean SD

Classic 1988.31 1067.64 75.00% 0.44
FigureBlob2 3616.73 2701.59 90.91% 0.29
FigureMoji3 4304.82 2376.76 78.79% 0.42
GravIdenticon 2823.42 1781.32 90.91% 0.29
GravMonsterid 3059.94 1917.41 87.88% 0.33
GravRetro 3364.73 2660.78 87.88% 0.33
GravWavatar 3161.85 2494.72 81.82% 0.39
Robohash 3562.06 2594.36 87.88% 0.33

Table 4.3: Overview of the final validation.

Chapter 4. Evaluation 39

4.4.6.1 Nine Block vs. Blob2

The Classic implementation which is a based on the Nine Block identicon shows the best

performance if measuring the time to decision. (p=0.0054, Classic: Mean 1999.21ms, SD

1052.69ms; Blob2: Mean 3616.73ms, SD 2701.59ms).

But on the other hand were the results more correct using the FigureBlob2 implementa-

tion with 91% correct answer of our implementation against 76% correct answer of the

Classic implementation. This second results but didn’t show statistical significant values

(p=0.096).

This makes it difficult to interpret this results. Unfortunately we had only 11 participants

in the final validation which possibly was not enough to gain meaningful results.

Chapter 5

Conclusion

“I love standards, there are so many to choose from!”

Unattributed

5.1 Conclusion

Thorough investigation of different concepts and approaches allowed us to find a set

of basic features. The described dimensions and thereof resulting requirements build a

starting point for a new development of identicons. These requirements target a general

not well defined use case.

By using a test-driven development we could decide at each iteration which direction was

worth exploring. This allowed us to refine our implementation to the end product. The

experiments provide at the same time first scientific evidence about the performance in a

laboratory environment. How the new implementation performs in a real world situation

needs still to be discovered.

The results show that any kind of structured visualization provide a clear advantage over

working with the only text representation of identifiers. Which makes us wonder why

such techniques are not more often seen in daily used applications.

5.2 Improvements

The presented work is only the beginning of a field of possible powerful visualizations of

identifiers. We tried to create a general visualization of identifiers which can be applied

40

Chapter 5. Conclusion 41

in different domains. But we see immense improvement of our approach as also domain

specific features which could be added to enhance the use of the identicons.

5.2.1 Additional Functionality

Our approach was based on hash identifiers which are completely free of any meaning.

It is but easily imaginable to incorporate features of the data in the visualization: to

visually group data from the same user, to visualize the age of a document, etc. An

easy approach to do this would be to use color for this information. But more subtle

and interesting solutions can be imagined by enhancing the shape, adding structures or

extending the visual.

5.2.2 Enhancing Barcodes or QR-Codes

This proposition is not directly related to the main topic of this thesis. We would like to

document the idea which occurred us in the course of working on the Moji-Identicons. Our

approach was solemnly focused at the development of a new visualization of identifiers

which is independent of other technologies.

The approach we would like to see is enhancing existing machine readable barcodes or

2D-codes to compare them more easily by humans. This is a rather delicate task as

it should not interfere with the reading capability of machines. We imagine by adding

color features to the mainly black and white codes would give users the ability to easily

exclude differing identifiers. Aside of changing the color it is also feasible to play with

the length of barcode bars. Or by providing additional graphical elements to the user.

5.3 Outlook

In a scope of a semester at the university we were able to investigate the topic of identifier

visualization thoroughly. Also we could create some prototypes which show that the

specified requirements are implementable. The development process was iterative and

test driven, meaning the different stages were tested immediately with a small population

of users.

Chapter 5. Conclusion 42

5.3.1 Next Steps

After finalizing the own implementation we want to open-source our work and provide

easy to integrate code. The main problem is to get to the interested people which can

comment with constructive criticism, ideas for extensions and spread the word.

This document itself will be publicly available but will not officially published. If we find

time in the near future an attempt will be made to publish a short paper. This would at

least introduce the concept of an identicon to the scientific community. At best trigger

some future work in this field.

5.3.2 Towards a Standard

Because in our perspective the main use case for identicons is comparing identifiers

throughout different systems and media we strongly recommend to develop a standard.

It is necessary that different systems generate the same visualizations to make the life

of the users easier. Without the standardization of this process the whole point of our

concept is rendered useless.

It is surpassing the scope of this work to define a standard as such. We estimated that

it needs an expert board to evaluate the different features such a visualization needs to

incorporate. Further intensive testing would be required. The definitive solution should

perform with people out of different geographic regions and cultures. The goal is to find

the optimal parameters which work and are additionally to this performant in as big as

possible amount of use cases.

fin

Appendix A

Glossary

canvas Element of HTML5 providing a graphic canvas

DVCS Distributed/Decentralized Version Control System

http://en.wikipedia.org/wiki/Distributed_revision_control

HTML5 Hypertext Markup Language Version 5

http://www.w3.org/TR/html5/

SHA1 Secure Hash Algorithm Version 1

http://en.wikipedia.org/wiki/SHA-1

TID Paypal Transaction Identifier

https://www.paypalobjects.com/IntegrationCenter/ic_

transaction-search-and-details.html

UUID Universally unique identifier

http://tools.ietf.org/html/rfc4122

UPU S10 Universal Postal Union S10

UPU [2011]

43

http://en.wikipedia.org/wiki/Distributed_revision_control
http://www.w3.org/TR/html5/
http://en.wikipedia.org/wiki/SHA-1
https://www.paypalobjects.com/IntegrationCenter/ic_transaction-search-and-details.html
https://www.paypalobjects.com/IntegrationCenter/ic_transaction-search-and-details.html
http://tools.ietf.org/html/rfc4122

Appendix B

Proposal

44

MSc Proposal eidos

Msc Proposal, eidos

Abstract

This document describes a proposal for a MSc Thesis in Computer Science. In the feld of
information management (databases, version control systems, digital archiving, data ex-
change) current and emerging technologies take advantage of long unique identifers.
These are either based on the information at hand, like different forms of hash functions or
are chosen completely by random. In both cases the users (mostly developers) have
trouble working with these identifers because of their relatively big size. In the scope of
this Msc Thesis we propose a way to help the users to work in a more human friendly way
with long unique identifers.

Idea

A UUID (Unique Universal Identifer) like 2efd5421-dbf0-4fea-82c0-77d634a5d9a2 or a SHA1 as used by
GIT 43c5ed1b003ced7f396b7c21f8b73845cbeb80bb are identifer strings which are non-trivial to parse for a
human being. These identifers have in general no order in any way. Therefore the most
important task done on such kind of data is to search a specifc identifer in a list of such.
Further this task can basically described as a matching task where two identifers at a time
are compared and tested for a match.

Such tasks are mostly performed by systems in the background, which are extremely per-
formant at it. This makes sense as this kind of identifers is developed exactly with ma-
chines in mind. But in the development phase the developers are over and over faced with
the problem for debugging and testing purposes to compare such identifers with the na-
ked eye.

Humans are pretty good in recognizing and comparing different strings, but only if they
make sense to them. But identifers make no sense and are huge. One of the tricks used in
working with such identifers is to only represent a small part of the identifer. This works
quite good because of the randomized nature of these identifers. (GitHub as example uses
the frst 10 chars of a string e.g. 43c5ed1b00).

But the human can do much better if these strings would be represented more adapted to
his visual capabilities. The main idea of eidos is to introduce a library which allows to gen-
erate a visual representation of the identifers described above. An identifer could have
the size of an icon. It should be optimized that the human eye can compare differing such
icons as fast as possible. Also here only a part of the identifer can be represented to the
human. It will not be possible to generate representations which show the whole identifer
and are pleasing to look at too.

Following a frst not at all elaborated visualization to show how long identifers could be
represented only for explanation purposes:

Two examples of 16x16 pixel icons representing different identifers. To compare such
icons and fnd matches should be much easier as comparing identifer strings.

Michael Luggen 1 | 3 January 2012

MSc Proposal eidos

Scope

The choice of the design of the representation of the visualization as also the right image
format (PNG, JPG, GIF) to work with.

User tests of the visualizations to fnd the optimal version for a performant comparison
task.

Developing a library which allows to generate visualizations of the most used different
identifer types; like the different hash functions SHA-1, SHA-256, MD5, crc16/32, further
the random identifers like GUID and UUID, and also imaginable is a representation of
MAC, and IPv4, IPv6 addresses.

The implementation of a reference library in a programming language to be chosen yet.
And further an example of at least one other implementation in an other programming
language.

Creating a small website to publish the idea and the library. Spreading the word ...

Problem Dimensions

Visual

• The design of the representation itself. The choice and combination of the different
elements which can be used; form, structure, symbols, color, gradients.

• Testing how the user performs by doing the different task like fnding, and compar-
ing representations.

• Distinction of the different identifer types through the design.

Aesthetics

• The aesthetics of the visualization will play an important part in the adaption of the
concept by the public.

• A static part of the visualization should make the recognition factor of the visualiza-
tions evident. (The visualization should be recognized as such without any addi-
tional labeling.)

Technical

• Interchangeable representation as visualization. It should be possible that the full
identifer can be extracted out of the visualization of the generated image. (Even if
not all information is clearly presented to the viewer.)

• The use of image formats without generating any licenses problems. Also without
the use of external libraries as this could break the extraction of the identifer if the
external dependencies change there implementation.

• Probabilities of collisions when creating the human readable part of the representa-
tions.

Michael Luggen 2 | 3 January 2012

MSc Proposal eidos

Planning

The following Gant-Chart shows a fairly rough planning of the work through the semester.
An updated and more detailed version will be provided at the end of the exploring phase.

Sources
[1]

Chroma-Hash Demo: http://mattt.github.com/Chroma-Hash/. Accessed: 2012-01-04.

[2]

Dhamija, R. 2000. Hash Visualization in User Authentication. (2000).

[3]

Globally unique identifer - Wikipedia, the free encyclopedia:

http://en.wikipedia.org/wiki/Globally_unique_identifier. Accessed: 2012-01-08.

[4]

Klanten, R., Bourquin, N. and Ehrmann, S. 2008. Data Flow: Visualising Information in Graphic Design. Die

Gestalten Verlag.

[5]

List of hash functions - Wikipedia, the free encyclopedia: http://en.wikipedia.org/wiki/List_of_hash_functions.

Accessed: 2012-01-08.

[6]

Menezes, A.J., Menezes, A.J. and Menezes 1996. Handbook of Applied Cryptography. Crc Press.

[7]

Miller, G. 1956. The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing

Information. The Psychological Review. 63, (1956), 81-97.

[8]

Perrig, A. and Song, D. 1999. Hash Visualization: a New Technique to improve Real-World Security. IN

INTERNATIONAL WORKSHOP ON CRYPTOGRAPHIC TECHNIQUES AND E-COMMERCE. (1999), 131--

138.

[9]

Tufte, E.R. and Tufte, E.R. 2005. Envisioning information. Graphics Press.

[10]

Ware, C. 2004. Information Visualization. Perception for Design.: Perception for Design. Morgan Kaufmann.

Michael Luggen 3 | 3 January 2012

Bibliography

Adrian Perrig and Dawn Song. Hash visualization: a new technique to improve real-world

security. In In International Workshop on Cryptographic Techniques and E-Commerce,

page 131–138, 1999.

Alfred Binet. La suggestibilité. Paris : Schleicher, 1900. URL http://archive.org/

details/lasuggestibilit00bine.

Andreas Gohr. MonsterID, January 2007. URL http://www.splitbrain.org/

projects/monsterid.

Ben Fry and Casey Reas. Processing.org, 2001. URL http://www.processing.org/.

David Marr. Vision: A computational investigation into the human representation and

processing of visual information. WH Freeman, 1982.

Don Park. Visual security: 9-block IP identification, January

2007. URL http://www.docuverse.com/blog/donpark/2007/01/18/

visual-security-9-block-ip-identification. http://web.archive.org/

web/20080703155519/http://www.docuverse.com/blog/donpark/2007/01/18/

visual-security-9-block-ip-identification.

Gertrude Stein. Geography and plays. Boston, The Four seas company, 1922. URL

http://archive.org/details/geographyplays00steirich.

Hermann Ebbinghaus. Über das Gedächtnis. Untersuchungen zur experimentellen Psy-

chologie. Leipzig: Duncker & Humblot, 1885. URL http://archive.org/details/

berdasgedchtnis01ebbigoog.

Jared Tarbell. Nine block pattern generator, March 2002. URL http://www.levitated.

net/daily/lev9block.html.

Jared Tarbell. Nine block, October 2003. URL http://www.complexification.net/

gallery/machines/nineblock/.

48

http://archive.org/details/lasuggestibilit00bine
http://archive.org/details/lasuggestibilit00bine
http://www.splitbrain.org/projects/monsterid
http://www.splitbrain.org/projects/monsterid
http://www.processing.org/
http://www.docuverse.com/blog/donpark/2007/01/18/visual-security-9-block-ip-identification
http://www.docuverse.com/blog/donpark/2007/01/18/visual-security-9-block-ip-identification
http://web.archive.org/web/20080703155519/http://www.docuverse.com/blog/donpark/2007/01/18/visual-security-9-block-ip-identification
http://web.archive.org/web/20080703155519/http://www.docuverse.com/blog/donpark/2007/01/18/visual-security-9-block-ip-identification
http://web.archive.org/web/20080703155519/http://www.docuverse.com/blog/donpark/2007/01/18/visual-security-9-block-ip-identification
http://archive.org/details/geographyplays00steirich
http://archive.org/details/berdasgedchtnis01ebbigoog
http://archive.org/details/berdasgedchtnis01ebbigoog
http://www.levitated.net/daily/lev9block.html
http://www.levitated.net/daily/lev9block.html
http://www.complexification.net/gallery/machines/nineblock/
http://www.complexification.net/gallery/machines/nineblock/

Bibliography 49

J. P. Lewis, Ruth Rosenholtz, Nickson Fong, and Ulrich Neumann. VisualIDs: automatic

distinctive icons for desktop interfaces. ACM Trans. Graph., 23(3):416–423, August

2004. ISSN 0730-0301. doi: 10.1145/1015706.1015739. URL http://doi.acm.org/

10.1145/1015706.1015739.

OpenSSH. OpenSSH 5.1 release notes, July 2008. URL http://www.openssh.com/txt/

release-5.1.

Rachna Dhamija. Hash visualization in user authentication. 2000. URL http://

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.2948.

Shamus Young. New website features - twenty sided, December 2007. URL http:

//www.shamusyoung.com/twentysidedtale/?p=1460.

UPU. Identification of postal items – 13-character identifier, October 2011. URL www.

upu.int.

Colin Ware. Information Visualization. Perception for Design.: Perception for Design.

Morgan Kaufmann, 2. a. edition, May 2004. ISBN 1558608192.

Wikipedia. Identicon - wikipedia, the free encyclopedia, February 2007. URL http:

//en.wikipedia.org/wiki/Identicon.

http://doi.acm.org/10.1145/1015706.1015739
http://doi.acm.org/10.1145/1015706.1015739
http://www.openssh.com/txt/release-5.1
http://www.openssh.com/txt/release-5.1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.2948
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.2948
http://www.shamusyoung.com/twentysidedtale/?p=1460
http://www.shamusyoung.com/twentysidedtale/?p=1460
www.upu.int
www.upu.int
http://en.wikipedia.org/wiki/Identicon
http://en.wikipedia.org/wiki/Identicon

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis Content
	1.2 Motivation
	1.2.1 Larger identifiers
	1.2.2 New Data Processing Technologies
	1.2.3 Communication Protocols

	1.3 Use Cases
	1.3.1 Memorizing
	1.3.2 Transferring
	1.3.3 Comparing

	2 Visualization of Identifiers
	2.1 History of Hash Visualization
	2.2 VisualID
	2.3 Overview: Identicons
	2.3.1 Definition
	2.3.2 Available Implementations
	2.3.3 Identicon & MonsterID
	2.3.4 VisualHostKey
	2.3.5 Other descendants

	2.4 Focus & Innovation
	2.4.1 Specialization on the Use Case Comparing
	2.4.2 Acceptance
	2.4.3 Dimensions

	2.5 Requirements of Moji-Identicons
	2.5.1 Basics
	2.5.2 Aesthetics
	2.5.3 Recognizable
	2.5.4 Colorless media / Colorblind people
	2.5.5 Bijectivity

	2.6 Disregarded functionality

	3 Approach
	3.1 Approach
	3.2 Prototyping Environment
	3.2.1 First tests
	3.2.2 Transition to JavaScript

	3.3 Final Environment
	3.3.1 Technologies
	3.3.2 2D Geometry Library

	3.4 Structure
	3.4.1 Stage: Point Matrix
	3.4.2 Stage: Visualization
	3.4.3 Ensuring Bijectivity

	3.5 Followed Design Guidelines
	3.5.1 Color
	3.5.2 Connected Shapes

	4 Evaluation
	4.1 Catalog of Identicons
	4.1.1 Own Development
	4.1.2 Available Implementations

	4.2 Experimental Plan
	4.3 Evaluation Application
	4.3.1 JavaScript Implementation
	4.3.2 Frameworks, Components and Services
	4.3.3 Workflow

	4.4 Experiments & Results
	4.4.1 Pre-Test
	4.4.2 Base Level
	4.4.3 Text vs. Truncated Text
	4.4.4 Color Variations
	4.4.5 Shape Variations
	4.4.6 Final Validation

	5 Conclusion
	5.1 Conclusion
	5.2 Improvements
	5.2.1 Additional Functionality
	5.2.2 Enhancing Barcodes or QR-Codes

	5.3 Outlook
	5.3.1 Next Steps
	5.3.2 Towards a Standard

	A Glossary
	B Proposal
	Bibliography

