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from Wabern

Supervisors
Prof. Dr. Philippe Cudré-Mauroux
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Abstract

This thesis analyses the adequacy and the performance of the Apache Spark
Streaming engine in the context of anomaly detection in water distribution
networks (WDN). It builds on an already proposed scenario in which sensors
are extensively deployed in a WDN allowing for distributed, near-real-time
anomaly detection. For this purpose, it uses several variations of LISA
statistics and according statistical tests.
In order to show that Spark Streaming is applicable to such a setting, al-
gorithms computing these statistics in Spark Streaming were developed.
Subsequently, the resulting prototype was tested in a simulated WDN setting.
Finally, the performance of the different algorithms as well as the impact of
several network characteristics were measured.
The results show that the calculation of LISA statistics can be achieved with
reasonable performance by using Spark Streaming. Furthermore, they reveal
certain characteristics and limitations of Spark Streaming.
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1
Introduction

The ever growing availability of communication technology has lead to vast amounts
of data being generated from the electronic monitoring of city infrastructure in today’s
urban areas. With emerging technologies capable of processing large amounts of data,
efforts to leverage its value and to improve existing infrastructure have increased. The
research field pursuing these efforts is called Smarter Cities, and it covers numerous
types of infrastructure including public and private transport, electrical networks and
communication infrastructure.
The present thesis deals with a particular type of infrastructure, namely water distribution.
In traditional water distribution networks (WDNs), anomaly detection relies heavily on
human labour, e.g. manual water quality sampling and reports by citizens. Automated
monitoring usually only includes hydraulic parameters such as water pressure and flow,
and covers only small parts of the WDN. Consequently, anomaly detection suffers from
high delays in traditional WDNs. Reacting to time sensitive issues such as theft and
leakage is therefore difficult [13].
D.E. Difallah, P. Cudré-Mauroux, and S.A McKenna proposed the use of Smarter Cities
technologies as potential solution to these issues [13]. Their scenario envisages to deploy
affordable sensors throughout the entire WDN which measure different characteristics,
such as pressure, flow or water quality. These sensors send their measurements wirelessly
to intermediate computing stations (called base stations). Ultimately, the sensor data is
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Chapter 1: Introduction

stored in an Array Database Management System (ADBMS). The goal of this implemen-
tation is to detect anomalies in the network by using particular statistical metrics, which
are calculated on the base stations and stored along with the sensor data in the ADBMS.
It has been shown that the architecture and the methods used in this approach are feasible
to detect anomalies in large scale WDN. Ongoing research in several related fields,
however, has opened opportunities for improvements. In particular, stream processing
systems combinable with Big Data technologies have become available and are constantly
improving. This thesis evaluates such a system in the context of the WDN outlined
above.
In detail, the goal of this thesis is to implement the statistical calculations proposed
in [13], and to evaluate the performance of Spark Streaming in this scenario. For this
purpose, a prototype application is built to fit the architecture of the proposed system
whose performance is then evaluated in various settings.
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2
Related Work

As mentioned in the previous chapter, the goal of this thesis is to implement statistical
calculations with Spark Streaming and to evaluate the performance of the solution. In
the following chapter, the theoretical background necessary for this purpose is explained
in three parts. In detail, the first part covers the statistical foundation for the algorithm
implementation. In the second part, the Big Data platform used for the implementation
is explained. The third part briefly summarises the WDN application proposed in [13].

2.1 Local Indicators of Spatial Association

Spatial correlation statistics have been a part of geographical studies for many years.
They provide a means for detecting clusters of similar values and outliers. Local indica-
tors of spatial association (LISA) were first introduced for cluster and outlier detection in
geographical studies. They are based on observations of the same property at different
points in a two-dimensional space and express relationships between such observations
weighted by the spatial distance between them [12].
Research has shown that LISA statistics may also be used as a means to detect local
anomalies in WDNs [13]. For this purpose, they modelled the network topology as a
proximity-matrix which contains, for each sensor, a row of distance values. These values
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Chapter 2: Related Work

represent the length of the water pipe connection between two sensors (with length=0 if
two sensors are not connected).
For this thesis, a simplified version of this model is used, in which to each connection
between two nodes a weight of 1 is assigned. Nodes which are not directly interconnected
in the network are treated as non-related. Furthermore, in order to apply the originally
time stationary LISA indicators to a constant stream of sensor observations, the indicators
are repeatedly calculated for observations recorded in distinct time intervals.

2.1.1 Spatial LISA

The spatial, time stationary LISA statistics used throughout this thesis is the local Moran’s
I . It is defined in Equation 2.1, where va is the observed value at position a, N is the
number of neighbouring (i.e. connected) sensors, vn is the measured value at neighbour
n, m is the mean of all measured values and S is their standard deviation [14].

LISA(va) =

(
va −m
S

)[ N∑
n=1

(
1

N

)(
vn −m
S

)]

Equation 2.1: Spatial LISA

Spatial outliers are represented by negative values for LISA(va), while positive
values indicate clusters. Furthermore, the ”magnitude [of the value] informs on the extent
to which [original measurements] and neighbourhood values differ” [14].

2.1.2 Cluster / Outlier Type

While the local Moran’s I statistics provide a means to detect clusters and outliers, they
are not feasible to determine the cluster type. A strongly positive LISA(va) = I , for
example, identifies a local cluster. However, it cannot be used to determine if the cluster
is a so-called hot-spot (high value amidst other high values, also called high-high or HH)
or a cold-spot (low value amidst low values, also called low-low or LL). The same applies
to outliers (LH / HL) identified by negative values for I . While methods to determine
types of clusters and outliers have been proposed (e.g. Getis-Ord Gi and G∗

i [12]), they
are not within the scope of this thesis [12] [14].
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Chapter 2: Related Work

2.1.3 Temporal LISA

In order to apply LISA to WDNs, an extension to the spatial Moran’s I which includes a
temporal dimension was proposed in [13]. More specifically, ”K [was enlarged] around
a node a to include its own previous measurements in addition to both the current and
past measurements from its neighbours”[13]. Applied to the definition given above, the
temporal Moran’s I is formally defined as shown in Equation 2.2.

LISAT (va) =

(
va −m
S

)[(
1

(N + T +NT )

)( N∑
n=1

(
vn −m
S

)
+

T∑
t=1

(
vat −mt

St

)
+

N∑
n=1

T∑
t=1

(
vnt −mt

St

))]

Equation 2.2: Temporal LISA (source: [13])

Here, T is the number of past values included and t represents the tth measurement
before the current one. Accordingly, vat is the value measured at node a t measurements
before the current one and mt and St are the mean and the standard deviation of the
whole population at time t. The resulting values are to be interpreted analogously to
spatial LISA.

2.1.4 Statistical Significance - Monte Carlo Simulation

While the LISA statistics provide information on a measured value in relation to its
neighbouring measurements, they do not allow statements on the statistical significance
of this information. For this purpose, a statistical test has to be conducted. In this thesis, a
Monte Carlo simulation is used to test a LISA value against a null hypothesis of complete
spatial randomness (CSR).
In detail, a number of L distinct sets of random neighbours are chosen for each calculated
LISA value LISA(va). Thereafter, for each of these sets the LISA value is calculated,
resulting in a set of random LISA values for va. This set is then ordered into a sequence
which represents the sample probability distribution, and consequently the significance
level for LISA(va) can be deduced by comparing LISA(va) to this probability distribu-
tion [14].

5



Chapter 2: Related Work

The formal definition of this simulation for spatial LISA is given in Equation 2.3 where
l ∈ L represents a concrete set of random neighbours, n(l) represents the random neigh-
bours and N is the number of random neighbours for l.

LISA(l)(va|CSR) =
(
va −m
S

)[ N∑
n=1

(
1

N

)(
n(l) −m

S

)]
l = 1, . . . , L

Equation 2.3: Monte Carlo Simulation for Spatial LISA (adapted from [13])

For the temporal LISA variant, two different variations of Equation 2.3 are used. In
the first variation, the set of N random neighbours is extended with T random past values
from a node’s actual neighbours. This variation allows for quick calculation without
knowing the complete past network state, while still providing statistical significance for
calculated values.

LISAT (l)(va|CSR) =
(
va −m
S

)[(
1

(N +NT )

)( N∑
n=1

(
v
(l)
n −m
S

)
+

N∑
n=1

T∑
t=1

(
v
(l)
nt −mt

St

))]

Equation 2.4: Monte Carlo Simulation for Temporal LISA

The second variation considers the complete past network state, in that it extends the
set of N random neighbours with random past values from the complete network. The
formal definition shown in Equation 2.4 is analogous for both variations. However, for
the first variation v(l)nt is chosen from the measurements at time t of the actual neighbours
of v, whereas for the second variation, it is chosen from all node’s measurements at time t.
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2.2 Apache Spark and Spark Streaming

In recent years, the MapReduce programming model, and subsequently its various im-
plementations and surrounding platforms (e.g. Apache Hadoop), have received much
attention both in science and in commerce. However, while Apache Hadoop provides a
viable solution to many problems, recent work has shown various limitations with the
programming model itself as well as with its field of application [16] [19] [17]. More
specifically, applications which ”reuse a working set of data across multiple parallel
operations”[22] cannot be efficiently implemented by using MapReduce.
To address this issue, researchers at the University of Berkeley created Spark, an open-
source, in-memory cluster computing platform. This platform specifically targets ap-
plications which run jobs iteratively or provide interactive query interfaces. Through
in-memory data processing Spark substantially enhances the performance of MapRe-
duce-like applications without sacrificing scalability or fault-tolerance [22].
The general-purpose data abstraction model introduced by Spark (cf. Section 2.2.2)
furthermore allowed the platform to be expanded to suit different use cases. In particular,
the need for a real-time data processing engine with a high-level interface was addressed
by creating Spark Streaming. Building on the Spark platform, this component uses an
interval-based programming model to provide real-time processing capabilities while
assuring fault tolerance, consistency and integration with batch-processing [4].
The Spark project was adopted as an Apache Incubator project in 2013 and was promoted
to a top-level project in 2014. Consequently, the name of the platform was changed to
Apache Spark.

2.2.1 Spark Architecture

The Spark-platform is implemented in Scala and is hence run within the JVM. It can be
deployed as a standalone application on a cluster, as a client application of either Apache
Hadoop 2+ (YARN) or Apache Mesos, or to a simulated cluster on a single machine
(hereafter referred to as local master). In addition to a Scala API, interfaces in Java and
Python are available. As the Scala API was used for the work presented in this thesis,
the additional APIs are not discussed.
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Figure 2.1: Spark Program Architecture (source: [21])

Spark provides two options for running applications. Firstly, an interpreter based on
the included interpreter in the Scala language distribution allows users to interactively
run queries on large data sets through the Spark engine. Secondly, applications can be
written as Scala programs called driver programs and can be submitted to the cluster’s
master node after compilation.
Independently of the option chosen, the program runs on a cluster which is based on
a configuration object called SparkContext defining the connection to the Spark
master node. The master node, or driver, schedules tasks at the worker nodes, which
submit their results back to the driver after task completion (depicted in Figure 2.1).

2.2.2 Resilient Distributed Datasets

Resilient Distributed Datasets (RDDs) are the main data abstraction concept used in
Spark. RDDs are formally defined as ”read-only, partitioned collection[s] of records”[21].
More specifically, data from a persistent source is used to generate RDDs, which provide
operations for data manipulation (so-called ”transformations” [21]) such as map(),
filter() or join(). Due to the read-only nature of RDDs (immutability), these
transformations generate new RDDs (so-called child RDDs) instead of altering the data
itself.
In a Spark application, usually many transformations are linked to calculate results.
An RDD contain this sequence of transformations (forming a directed, acyclic graph
(DAG), called ”lineage” in Spark) which is used to calculate its data partitions from the

8



Chapter 2: Related Work

original data. The lineage graph is used to regenerate an RDD after a failure, ensuring
fault-tolerance within an application. In addition to the lineage, RDDs contain meta data
such as information on the location of their data partitions.
Moreover, RDDs also provide operations called ”actions” which yield one or several val-
ues as a result. These actions include count(), foreach() and saveAsTextFile(),
among others. Commonly, these actions are used to store data either on a file system, or
in an arbitrary destination using foreach() [21].

2.2.3 Dependencies and Scheduling

As stated above, each RDD consists of a set of data partitions and lineage, along with a
function to compute its elements based on the lineage and information on data location.
Lineage information is actually stored as a set of dependencies to parent RDDs. The
creators of Apache Spark distinguish two types of dependencies, namely narrow and
wide dependencies. As shown in Figure 2.2, narrow dependencies occur if ”each partition
of the child RDD depends on a constant number of partitions of the parent” [21].

Figure 2.2: Spark Dependencies (source: [21])

Operations creating narrow dependencies include map(), filter() and union().
Wide dependencies, on the other hand, are created by transformations in which the result
is dependent on a large part of the parent’s RDD’s partitions (possibly all of them).
Examples for such transformations are groupByKey() and join().
How an RDD depends on its parent is also important in terms of job scheduling, as it
dictates how transformations can be distributed to cluster workers. RDDs created by a

9



Chapter 2: Related Work

transformation with narrow dependencies permit that each partition can be computed in-
dependently of other partitions on a cluster worker. In case of wide dependencies, on the
other hand, ”data from all parent partitions [is required] to be available and to be shuffled
across the nodes using a MapReduce-like operation” [21]. The scheduler used by Apache
Spark considers this information as depicted in Figure 2.3. It groups transformations into
stages, each of which contains as many transformations with narrow dependencies as
possible. Stages are delimited by transformation with wide dependencies. This allows to
distribute easily parallelisable task (i.e. narrow dependencies) efficiently [21].

Figure 2.3: Spark Scheduling Stages (source: [21])

2.2.4 Spark Streaming

As an extension to the Apache Spark batch processing platform, the creators of Apache
Spark implemented a stream processing engine called Spark Streaming. For processing
the input streams Spark Streaming uses an approach which differs from many existing
streaming engines (such as Storm or Samza). While these systems are event based, and
hence process each record in real time, Spark Streaming uses a ”micro-batch” [15] [7].
More specifically, Spark Streaming captures input from a stream for a pre-defined interval.
At the end of the interval, it creates a batch upon which data manipulation operations are
performed. Each batch is stored as a set of RDDs, which allows the data to be processed
by using the Apache Spark engine. An API, called Discretised Stream (DStream), for
manipulating data on such streams of RDDs is provided by Spark Streaming.

10
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2.2.4.1 Discretised Streams

Analogously to RDDs in Apache Spark, Spark Streaming programs define transforma-
tions and actions on DStreams to manipulate and store data read from an input stream.
Several connectors to input sources are provided by the DStream API, along with several
types of transformations and output actions.
A distinction can be drawn between two types of transformations available on DStreams.
There are transformation such as map() or filter()which can be applies to DStreams
of any type, whereas some transformations can only be applied to DStreams which con-
tain key-value tuples. join(), groupByKey() and reduceByKey() are examples
of such transformations.
All transformations described above are stateless, meaning that for each batch inter-
val only the data collected in this interval is considered. However, Spark Streaming
also provides several ways of making transformations stateful. Firstly, ”windowing” a
DStream creates a sliding window over several batch intervals. For example, calling
window(Seconds(5)) on a DStream in a job with a batch duration of one second
will yield a DStream containing, at each batch interval, input data of the last five seconds.
Secondly, data can also be aggregated over time by using either more specialised forms
of windowing such as reduceByWindow() or the updateStateByKey() trans-
formation [23].

Figure 2.4: DStream Processing Model (source: [23])

11
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Figure 2.4 depicts the programming model described above. In particular, two subse-
quent batches of the same program are shown. At t = 1, the input dataset in transformed
using stateless transformations. The resulting dataset is included in the transformations
at t = 2 by using a stateful transformation.

2.2.4.2 Data Input

As stated above, there are several connectors for input streams already included in Spark
Streaming, namely connectors for Apache Kafka, Apache Flume, Twitter, ZeroMQ, Ama-
zon Kinesis and MQTT. Furthermore, connectors for reading from file systems and for
listening on a socket are included. However, the API of Spark Streaming also allows for
creating custom input stream sources, called receivers.
The receiver API provides methods to repeatedly push data to a Spark Streaming applica-
tion. Spark Streaming collects the data and processes it according to the driver application
at each batch interval. One or multiple instances of such receivers can be registered with
an application, each of which provides a separate DStream within the driver program. At
application start-up, Spark Streaming creates the instances and registers them as tasks at
different cluster nodes [3].

2.2.5 Spark Streaming vs. Apache Storm

Stream processing systems which target Big Data use cases have become more and more
popular in recent years. Most notably, Apache Storm has gained much attention as it
greatly simplifies both configuration and application programming compared to earlier
real-time stream computation approaches [9]. In an earlier master thesis, Simpal Kumar
used Apache Storm to compute LISA statistics in the context of WDN [18]. In order
to differentiate this thesis from the work presented in [18], the following section gives
a brief overview of the similarities and differences between Apache Storm and Spark
Streaming .
In terms of application management, the two systems are similar. In particular, both
systems use a single application master node, called Nimbus in Apache Storm and driver
node in Spark Streaming. In addition, in both systems cluster workers receive parts of the
application code to run. However, in Apache Storm state management and coordination
between the Nimbus and the worker program instances (called Supervisors) is handled
by Zookeeper. Hence, both the Nimbus and the Supervisors are stateless while the driver
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node handles state in Spark Streaming [10].
In contrast to the cluster management, the stream processing is handled differently in the
two systems. Apache Storm processes tuples of input values in an event based fashion,
so that each arriving input value is processed as it enters the program, whereas Spark
Streaming uses a micro-batch approach as described in Section 2.2.4.
The programming model offered by Apache Storm is comparable to some extent to the
one offered by Spark Streaming. Programs written for Apache Storm define Topologies
which consist of input sources (Spouts) and operations (Bolts), and express a graph
of operations which is traversed by each tuple of input values. Spouts are similar to
receivers in Spark Streaming and Bolts correspond to DStream operations. However,
the way in which operation parallelism is achieved is different in the two systems. In
Spark Streaming, the master node distributes Scala closures to workers, which process
data simultaneously (data parallelism [6]). Apache Storm, on the other hand, creates
tasks from Bolts and distributes these on the cluster to run them simultaneously (task
parallelism [11]) [8] [5].
Consequently, aggregation operations cannot be done as simple calls in Apache Storm.
Instead, Bolts have to be registered with so-called field groupings. Thereby, tuples with
equal values in one field are distributed to the same worker task which in turn enables
aggregation operations.
In conclusion, while Spark Streaming and Apache Storm offer similar capabilities for
stream processing, their architectures differ considerably. Most notably, Apache Storm
uses a record-at-a-time processing model, whereas Spark Streaming processes stream
data as micro-batches, which leads to different programming models.

2.3 Anomaly Detection in Water Distribution Networks

As already mentioned, the fundamental framework of this thesis is a WDN scenario
described in [13]. This scenario covers a complete architecture for anomaly detection
in the context of WDN, including a multi-layered hardware architecture as well as the
according software components. It also shows how LISA statistics can be applied in the
context of a continuous-time setting.
The base layer of the hardware architecture consists of sensors deployed at the network
nodes, i.e. ”pipe junctions and network end points where water is extracted for consump-
tion” [13]. These sensor are simple electronic devices designed for durability and energy
efficiency and are consequently limited in terms of functionality. More specifically, they
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only need to measure particular characteristics of the WDN and to periodically transmit
these measurements to intermediate computing stations.
These so-called base stations serve several purposes. Apart from collecting sensor mea-
surements, they calculate local LISA statistics. Furthermore, they are interconnected
and form an overlay network in which measurements and detected anomalies are shared.
Finally, an ADBMS stores all sensor measurements and anomalies, and provides means
for more complex analytic operations. In particular, LISA statistics can be calculated
globally by using data from the complete network [13].
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3
Implementation

To evaluate if and how the original scenario described in [13] can be applied to Spark
Streaming, several prototypes for different algorithms have been developed in the course
of this thesis. This chapter covers the general architecture of these prototypes as well as
some abstractions and simplifications made from the original implementation. Further-
more, the core algorithms of the implementation, which calculate the statistical measures
described in Section 2.1, are explained in detail.

3.1 Architecture

Figure 3.1 shows an overview of the application architecture used in all scenarios which
are explained in the following. Based on information on a simulated WDN topology
sensor values (key-value pairs in the figure) are generated by a Spark Streaming receiver.
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Figure 3.1: Application Architecture Overview

The Spark Streaming driver application thereafter processes these sensor values
according to one of the algorithms covered in Section 3.2. Finally, input values and
calculation results are stored to a Hadoop File System (HDFS). Each of these processes
is detailed in one of the following sections.

3.1.1 Network Topology

LISA indicators are calculated based on relationships between measurements at different
sensors in a WDN, as described in Section 2.1. In [13], they were applied to sensor data
captured from a real-world network as well as to data from a simulated network. The
structure of this simulated network is used in all network topologies in this thesis.
More precisely, all topologies used in this thesis are generated, quadratic, grid-like
networks. Hence, nodes can only be connected to a maximum of four other nodes. The
side-length of the grid is equal to the square of the number of nodes in the topology. A
simplified example consisting of 16 nodes is shown in Figure 3.2.
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Figure 3.2: Simple Topology Model (adapted from [18])

Several different topologies were generated in order to test the algorithms (cf. Sec-
tion 4) differing both in terms of the number of sensor nodes and the density (i.e. number
of connections between nodes). For this purpose, simple proximity matrix files which
list all connections for each node were generated by using a Python script. The content
of such a file, representing the topology in Figure 3.2, is shown in listing 1. In order to
use this information in a Spark Streaming program, the files were converted into an XML
representation at program initialisation.
Moreover, the XML also contains a second network component, namely so-called base
stations. In the real-world network, these are computing stations which collect sensor
measurements from a group of sensors through wireless connections. They are intercon-
nected and form a stream-processing subsystem. In this implementation, however, nodes
in a cluster running Spark Streaming are used as stream-processing system, which is also
shown in Figure 3.2. As a distinction to sensor nodes, they are subsequently referred to
as cluster workers.
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1 0100000000000000
2 1000010000000000
3 0001000000000000
4 0010000100000000
5 0000010000000000
6 0100101001000000
7 0000010100000000
8 0001001000000000
9 0000000000001000

10 0000010000100000
11 0000000001010010
12 0000000000100001
13 0000000010000100
14 0000000000001010
15 0000000000100100
16 0000000000010000

Listing 1: Sample Proximity Matrix File

3.1.2 Receiver

As stated above, all network topologies used in this thesis are artificial. As no actual
sensor data was available for the Spark Streaming program the data needed to be simu-
lated. In order to mimic the behaviour of sensors and base stations in a real-world WDN,
simulated values for separate parts of the network are collected at each cluster worker
(as shown with dotted blue areas in Figure 3.2).
As described in Section 2.2.4.2, Spark Streaming provides an API for writing custom
input sources, called receivers. While this receiver API is quite well suited to push
simulated sensor data into a Spark Streaming application, it is not possible to control
at which cluster worker a receiver instance will be registered. As they are registered as
Spark tasks, it is even possible that multiple receivers may be assigned to a single worker.
This behaviour may have negative impact on the performance of an application, as task
slots are occupied by receivers for the whole run time of an application.
Consequently, recreating the exact application structure described in [13] using Spark
Streaming was not feasible. Instead, a single receiver instance for simulated sensor
values was used for all algorithms. There are two different variations of the receiver
implementation for spatial and temporal LISA calculations. In case of spatial LISA, the
receiver emits tuples containing an integer as sensor node key and a simulated sensor
value. In case of temporal LISA, instead of a single value, an array of length k + 1

containing one new value as well as the k last values is emitted. Here, k is a parameter
configurable for each application run.
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In the real-world topology, a sensor measures a number of different metrics, such as
water quality and pressure. As the presented implementation focuses on the calculations
and the performance of Spark Streaming rather than on the one-to-one applicability to
the real-world scenario, only values for a single artificial metric are emitted by each
sensor. More specifically, for each sensor node random values distributed according
to a Gaussian function with Mean 0.0 and Standard Deviation 1.0 are generated at the
receiver.
The rate at which these values are pushed into the application has been adapted to the
characteristics of Spark Streaming. To ensure correctness of the LISA calculations,
exactly one value per sensor and batch duration is generated. Consequently, the sensor
rate is aligned with the batch duration of an application run. This issue is discussed in
further detail in Section 4.

3.1.3 Output Processing

The DStream API provided by Spark Streaming offers a simple output function which
is used for all output, namely saveAsTextFile(). For the algorithm described
subsequently, this function is used to store both input values and final results to a HDFS
location. Several Python scripts are used to validate the calculated results, and to parse
the log files written by Spark Streaming for performance evaluation.

3.2 Algorithms

The following section details the implementation of the various LISA and Monte Carlo
algorithms with Spark Streaming. Important parts of all algorithms are depicted as
graphs, which consist of the elements shown in the legend in Figure 3.3. All graphs show
sequences of operations (depicted as connectors) on DStreams (blocks).
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Figure 3.3: Legend

3.2.1 Spatial LISA

The input of the LISA algorithm consists of key-value pairs in the form (key(a), vala)

for each sensor a emitted by the custom receiver described above. As explained in
Section 2.1, all values need to be standardised by using the form (V alue−Mean)

StandardDeviation
. Conse-

quently, as shown in Figure 3.4, calculating both the mean and the standard deviation are
the first steps in the algorithm, where the resulting DStream (Mean DStream (M)) from
the calculation of the mean value is used to calculate the standard deviation (Standard
Deviation DStream (S)). In a next step the standardised values (StdVal) are calculated by
mapping M as well as S to each value of the initial DStream by using a simple map()
transformation.
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Figure 3.4: Spatial LISA Algorithm

The calculation of the average of all standardised neighbour values requires two steps.
Firstly, each value is mapped to all neighbouring sensors’ keys. As a result, the values
of all according neighbours are mapped to each key. In a second step, a groupByKey()
transformation can be used to collect these values and calculate their average for each
key (Neighbour Values Average DStream). The resulting DStream is joined to the StdVal
DStream in order to calculate the LISA values (LISA Values DStream).
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3.2.2 LISA with Temporal Association

Figure 3.5: Temporal LISA Algorithm

For the temporal variation of the LISA algorithm, described in Section 2.1.3, the receiver
used for the spatial LISA algorithm was modified to emit a list of values for each key,
containing a new (”current”) value along with k past values. S, m and StdVal for current
values are calculated analogously to the spatial LISA algorithm. To calculate the mean
and the standard deviation for each past network state d ∈ 1, ..., k, all values are mapped
to the according state d. Thereafter, calculating the standardised values is done analo-
gously to the spatial LISA algorithm for each d.
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As the current as well as the past neighbour values are necessary for calculating the
temporal LISA values (cf. Figure 2.2), the mapping of the neighbours’ keys described
in the previous sections is also applied to every d. Finally, all resulting DStreams are
combined to calculate the results.

3.2.3 Spatial Monte Carlo Simulation

As a statistical significance test for spatial LISA values, the spatial Monte Carlo Simu-
lation algorithm is built to complement the spatial LISA algorithm. The standardised
values DStream (StdVal) is used as input. For this thesis, due to the poor performance of
the algorithm created initially, an improved variation was created. While the improved
version should be favoured over the initial version in any further work, the initial version
is described for reference and in order to highlight certain properties of Spark Streaming
(cf. Section 4.5).

Figure 3.6: Spatial Monte Carlo Simulation - Naive Approach

Along the standardised value DStream, a second DStream is used as input. This
DStream is created by a custom receiver, which emits 1000 random neighbour sets for
every batch and for each node. More specifically, these sets consist of one up to four
distinct random node keys representing neighbours. Furthermore, the sets are unique for
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every batch and node i.e. they are distinct combinations of node keys.
The two variations of the algorithm mentioned above differ in the way one of the in-
termediate results is calculated, namely the averages of the random neighbour values.
In both versions, firstly all standardised values of a batch are materialised at one node
(blue box in figures 3.6 and 3.7). In the initial version of the algorithm, the resulting map
is thereafter mapped to each of the random neighbour key sets, allowing the averages
of the random neighbour values to be calculated directly. In the improved approach,
however, the resulting map is mapped to each of the node keys. The resulting DStream
thus contains the complete key-value map in this batch at each node key, which allows
all subsequent calculation to run in parallel without dependencies between DStream
partitions. To calculate the average neighbour values, this DStream is thereafter joined
with the DStream containing the random neighbour key sets.

Figure 3.7: Spatial Monte Carlo Simulation - Improved Approach

Finally, in both versions of the algorithm the Random Neighbour Averages (RNA)
DStream is joined with the initial input DStream and with the LISAVal DStream resulting
from the spatial LISA algorithm in order to calculate the random LISA values. To obtain
the significance level for these LISA values, the hypothetical position of the values in the
according sequence of random LISA values is used. For example, if a LISA value would
be entered in the sequence at position 996, the significance level α for this LISA value
would be α = 996

1001
≈ 0.995, or 99.5%.
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3.2.4 Temporal Monte Carlo Simulation

The most advanced algorithm implemented in this thesis applies a Monte Carlo Simu-
lation to the temporal variant of LISA statistics. Therefore, standardised values from
random neighbours are sampled among both past and current network states. As pro-
posed in [13], two approaches of the algorithm were implemented. In the first version,
random values are sampled from the complete network state for each node (”global
selection”). In order to reduce traffic between cluster workers, as well as to reduce the
overall calculation complexity, the second version of the algorithm only samples random
values from node neighbours (”local selection”).

Figure 3.8: Temporal Monte Carlo Simulation

Both the global and the local selection algorithm are based on the improved version of
the spatial Monte Carlo Simulation described above and work analogously except for the
selection of random past neighbour values. As shown in Figure 3.8, at first the DStream
of lists of random neighbour sets (cf. Section 3.2.3) is split into single sets each of which
is attributed to a key. Thereafter, the result is joined to the DStream containing all current
node key-value pairs per node key, which is constructed as shown in Figure 3.7. The
resulting DStream is in turn joined with the selected past neighbours values, allowing
to calculate the list of average random neighbour values for each node key. Finally, the
random LISA values, and subsequently the significance levels for the measured values,
are obtained analogously to the spatial Monte Carlo Simulation described in the previous
section.
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1 val randomNeighbourAvgs = allRandomLisaValues.map(t => {
2 val pastValuesSize = t._2._2.values.head.size
3 val filteredMap = t._2._2.filter(me => me._1 != t._1)
4

5

6 val randomPastValues: List[Double] = (for (i <- 0 until pastValuesSize) yield
7 (for (_ <- 1 to new Random().nextInt(4)+1) yield
8 new Random().shuffle(filteredMap.values).head(i)).toList).toList.flatten
9

10 val randomCurrentValues: List[Double] = t._2._1._1
11 .filter(me => t._2._1._2.contains(me._1)).values.toList
12 val allRandomValues: List[Double] = randomCurrentValues ++ randomPastValues
13 (t._1, allRandomValues.foldLeft(0.0)(_+_)/
14 allRandomValues.foldLeft(0.0)((r,c) => r+1))
15 })

Listing 2: Global Selection of Random Past Neighbour Values

Listing 2 shows the code for the calculation of the random neighbour averages (final
DStream in Figure 3.8). A map() transformation is applied to each key-value pair in
the DStream containing all past standardised values as well as one up to four randomly
selected current standardised values (line 1). In lines 6 to 8, past standardised values are
selected randomly from the global network state. More specifically, for each past network
state i, a set of random values is selected from the variable filteredMap. The number
of past standardised values is randomly chosen between one and four. filteredMap
consists of all past standardised values, excluding values for the node for which the
significance level is to be calculated.

1 val randomNeighbourAvgs: DStream[(Int, Double)] = allRandomLisaValues.map(t => {
2 val pastValuesSize = t._2._2.values.head.size
3

4 val randomPastNeighbours: List[List[Int]] =
5 (for (rk <- 0 until pastValuesSize) yield
6 (for (_ <- 1 to new Random().nextInt(4)+1) yield
7 new Random().shuffle(nodeMap(t._1).getNeighbour.toList)
8 .head.substring(4).toInt).toList).toList
9

10 val randomPastValues: List[Double] =
11 (for ((n, idx) <- randomPastNeighbours.zipWithIndex) yield
12 (for (i <- n) yield t._2._2(i)(idx)).toList).toList.flatten
13

14 val randomCurrentValues: List[Double] = t._2._1._1
15 .filter(me => t._2._1._2.contains(me._1)).values.toList
16 val allRandomValues: List[Double] = randomCurrentValues ++ randomPastValues
17 (t._1, allRandomValues.foldLeft(0.0)(_+_)/
18 allRandomValues.foldLeft(0.0)((r,c) => r+1))
19 })

Listing 3: Local Selection of Random Past Neighbour Values
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In contrast to the global selection algorithm, the local selection algorithm considers
actual neighbouring nodes for the selection of past random neighbour values only. As
shown in listing 3, the map() operation used is very similar to the global selection
algorithm. However, instead of selecting values from the complete network, random sets
of node keys are selected among the node’s actual neighbours for each i (lines 4 to 7).
Thereafter, values from this list are obtained according to these keys (lines 9 and 10, cf.
Section 2.1.4).
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4
Experiments

This chapter explains the setting, the parameters and the results of the experiments
conducted for each of the algorithms described in the preceding chapter. In particular,
the test bed and input data is explained, along with performance measurements and the
according interpretations for each of the scenarios examined.

4.1 Setting

4.1.1 Test Bed

As a test bed for evaluating the performance of Spark Streaming on LISA statics calcu-
lation, a Hadoop YARN cluster of 16 nodes managed by Cloudera Manager v5.1 was
used. The specifications of the cluster nodes are shown in Table 4.1. For submitting
applications to Spark Streaming, the spark-submit command with the parameter
--master yarn-cluster was used, which initiates the Spark driver to run as an
application master managed by YARN [1].
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Component Node Type 1 Node Type 2

CPU i7-2600 - 2 core i7-4770 - 4 core
RAM 32 GB 32 GB
Harddisks 1 x 500 GB 2 x 500 GB
Quantity 12 4

Table 4.1: Cluster Node Specifications (adapted from [20])

4.1.2 Topology

For comparability, all experiments were conducted with the same topology (hereafter
called ”standard topology”) where not mentioned otherwise. It consists of 1600 nodes,
and forms a connected graph. As explained in Section 2.1, all connections in the graphs
are assigned a weight of 1, and are hence treated as equal in the calculations.

4.1.3 Input / Output

The input data used for all experiments was continuously generated by a custom Spark
receiver at a certain rate. Where not mentioned otherwise, the rate corresponds to the
selected batch duration insofar as for every node, a single value per batch is generated.
The values are generated randomly using a Gaussian distribution with a mean of 0.0 and
a standard deviation of 1.0 (cf. section 3.1.2) [2].
During each experiment execution, all generated input values, as well as the according
calculated output values, were stored on a HDFS location. Furthermore, for the evaluation
of calculation durations, the log file of the Spark driver node was taken into consideration.

4.2 Spatial LISA Calculation

The first experiment conducted was the calculation of the local Moran’s I, or spatial
LISA, as described in Section 3.2.1. At a first stage, the LISA algorithm was run with
the standard topology, at a rate of 20 values per second and an according window length
of 3 seconds. The goal of this experiment was to show how the number of cluster nodes
used influence the time needed for each batch to be calculated. Separate runs for one,
two, four, eight and 16 cluster nodes were evaluated.
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Figure 4.1: Single LISA Run for 1 and 16 Nodes

Figure 4.1 shows the batch durations in single runs for one (red) and 16 nodes (green).
As is clearly visible, after an initial drop the calculation time remains more or less stable.
Furthermore, the graphs shows that the calculation is slower with more nodes. More
detailed evidence of this outcome is visible when comparing the average calculation time
of all runs conducted, shown in Figure 4.2.
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Figure 4.2: Average Calculation Times

One possible explanation for this behaviour lies in the output. As each worker has
to save its calculated data, the overhead for writing to HDFS might cause a larger delay
when more workers are involved. An analysis of the log files shows that indeed the
time used to save results to HDFS increases proportionally to the number of workers,
as shown in Table 4.2. While these differences in delays may explain part of the global
difference, they cannot account for the total overhead caused by additional workers. This
becomes apparent when comparing the two values side-by-side.

Workers Average Save Duration (in s) Average Batch Duration (in s)

1 0.1748 s 0.6654 s
2 0.1849 s 0.6882 s
4 0.2022 s 0.7741 s
8 0.2329 s 0.9489 s
16 0.2473 s 1.1874 s

Table 4.2: HDFS Save Duration per Number of Workers

To analyse the impact of the data volume, the experiment was repeated with higher
load in a second stage. As the throughput could not be increased by scaling up the

31



Chapter 4: Experiments

input rate (cf. Section2.2), different topologies were chosen to achieve this goal. More
specifically, topologies with 3600, 10’000 and 25’600 nodes were chosen. The measured
average calculation times are shown in Table 4.3.

Workers 1600 nodes 3600 nodes 10’000 nodes 25’600 nodes

1 0.6654 s 0.8046 s 1.3034 s 2.2423 s
2 0.6882 s 0.8600 s 1.2756 s 1.9329 s
4 0.7741 s 0.9736 s 1.2400 s 2.0994 s
8 0.9489 s 1.0200 s 1.3746 s 2.4511 s
16 1.1874 s 1.2597 s 1.7245 s 2.7867 s

Table 4.3: Average Calculation Time per Number of Nodes and Cluster Workers

Furthermore, the evaluation of CPU and network usage support the findings described
above. Figure 4.3 shows the CPU usage as stacked graph, i.e. the entire coloured area
represent the cumulated CPU usage while the colours themselves represent single cluster
worker CPU usage. The y-axis scale represents the cumulated percentage, where the
complete CPU utilisation would be 1600% (as there are 16 cluster workers). The x-axis,
represents the time as continuous stream. Two consecutive runs of the spatial LISA
algorithm are shown in the figure; on the left a run with 25600 nodes and one cluster
worker between the markers at 7:05 and at 7:11, and a second one with the same number
of nodes and 16 cluster workers on the right between the markers at 07:12 and at 07:19 .
As is clearly visible in the figure, CPUs utilisation is rather low (below an average of 5%
per worker), and also unevenly distributed in the run with 16 workers.
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Figure 4.3: Sample CPU Usage in the Cluster

The network utilisation for the same two runs is shown in Figure 4.4 in a similar
fashion. Here, the dark blue area represents traffic received within the cluster network,
while the light blue area represents traffic sent. The graph shows that in an initial phase,
the traffic between workers reaches a peak. Thereafter, it recedes to a more or less steady
level for the remainder of the run time. With 16 workers, the traffic remains much higher
than with only one worker.

Figure 4.4: Sample Network Usage in the Cluster
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In order to interpret these results, the structure of the local Moran’s I and of the
according algorithm (sections 2.1 and 3.2.1) have to be considered in detail. As depicted
in Figure 3.4, both the mean and the standard deviation depend on the complete set of
measurements taken during a batch interval. While the reduce() transformations used
in the algorithm are partially parallelisable, all intermediate results have to be collected
at the driver node, and redistributed to the workers for subsequent steps of the algorithm
in order to produce to final results (e.g. the mean of all values). The increased network
traffic in the run with 16 workers reflects this result.
In addition, the low CPU utilisation described above leads to a possible explanation of
the performance behaviour. As the calculations in the algorithm are very simple, the
overhead of parallelisation may outweigh the achieved gain in calculation performance
from the additional cluster workers. Consequently, the behaviour is consistent indepen-
dently of the load with which the algorithm is run.

4.3 LISA with Temporal Association

Similar to the first stage of the experiment described above, the algorithm for calculating
LISA with temporal association was run on Spark for the standard topology, with a
rate of 20 values per minute and and a window duration of 3 seconds. In addition, the
numbers of past sensor values to be included (k) were chosen as 1, 2, 5 and 10. Figure 4.5
depicts the average calculation times measured for these k different values, including
k=0 (LISA without temporal association) as reference. Similar to the results described in
the previous section, the calculation time does increase with a larger number of workers.
In addition, the number of additional values in the calculation (k) does not influence the
performance in any significant way.
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Figure 4.5: Temporal LISA - Average Duration for Different K’s

4.4 Impact of Topology Density

To investigate a further detail of the calculation, namely the number of neighbours per
node, the algorithm used for Section 4.2 was run against different topology types. Firstly,
a sparse topology was used, with a low number of connections so that every node is
connected with at least one other node. This topology is not connected, i.e. it forms a
disconnected graph with a minimum degree of 1. Secondly, a connected topology was
used, i.e. it forms a connected graph. Finally, a dense topology was used, in which all
possible connections occur, i.e. corner nodes have a degree of 2, other border nodes have
a degree of 3 and all other nodes have a degree of 4. For each of these topology types,
topologies with 1600 nodes were generated and evaluated by using 16 cluster workers.
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Figure 4.6: Average Calculation Duration for Different Topology Types

Type Size Number of Edges Average Calculation Time

Sparse 1600 1103 12.799 s
Connected 1600 1599 13.736 s
Dense 1600 3120 13.596 s

Table 4.4: Calculation Durations for Topology Types

Figure 4.6 depicts a comparison of the average calculation times for each topology
with the according values given in Table 4.4. The histogram shows that the calculation
is marginally faster with the sparse topology than with the connected topology. On the
other hand, the performance of the calculation with the sparse topology is virtually equal
to the performance with the connected topology. As each node has a maximum of four
neighbours, however, this result is expected - the complexity of the calculation does
not increase significantly with this low number of additional nodes (cf. Figure 2.1) and
hence the performance with the different topologies used is expected to be similar. The
measured differences in the performance are likely to result from noise such as network
or CPU usage from other applications running in the cluster during the runs.
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4.5 LISA with Monte Carlo Simulation

A further experiment conducted was to run the LISA algorithm in combination with a
Monte Carlo Simulation to test for statistical significance, as described in sections 2.1.4
and 3.2.3. More precisely, both the naive and the improved approach were evaluated. As
before, the standard topology was used. However, due to the longer calculation durations,
the input rate and batch window had to be adapted to one value per minute and one
minute, respectively. Furthermore, the run duration was set to 20 minutes, and three runs
were executed for one, two, four, eight and 16 workers.
set lmargin 15 set rmargin 15 set tmargin 7 set bmargin 7

Figure 4.7: Scheduling Delays - Naive Approach

The first version of the algorithm proved to be rather inefficient, as visible from
Figure 4.8. In fact, the speedup caused by increasing the number of workers from 1 to 16
was measured at approximately 1.3, which would not justify to run the calculation in a
distributed way on a cluster. Furthermore, the average calculation duration of more than
100 seconds is generally very slow in a near-real-time context.
This algorithm nicely illustrates the effect of a too small batch interval configuration
compared to the actual batch calculation durations. As shown in Table 4.5, in all cases
the average batch duration remains well over the configured interval of 60 seconds. As a
result, batches get increasingly delayed over time as shown in Figure 4.7. Furthermore,
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at some point values which arrived during different intervals were processed in a single
interval, which lead to incorrect results for the calculations. To address this issue, the
batch duration would have had to be adjusted to over 100 seconds, which is not desirable
for near-real time analytics of WDN sensor data. Hence, the algorithm was evaluated in
detail in order to find improvements.
The job details, provided by Spark UI, indicated that one operation could be the un-
derlying cause for the poor performance of the algorithm. This was confirmed by an
analysis of the according log files. The mapValues() operation used to create values
satisfying 1

N

∑N
n=1 StdV alrkn for each key took on average 131.3 seconds for 1 worker,

and 99.0 seconds for 16 workers. This accounts for the largest part of the calculation time.
The according average calculation durations are depicted in Figure 4.8, representing the
values listed in Table 4.5. Due to these results, the algorithm was adapted as discussed in
Section 3.2.3.

Figure 4.8: Monte Carlo Simulation Performance - Naive Approach

In contrast to the simple LISA calculations as well as to the naive approach presented
above, the measured calculation durations in case of the improved Monte Carlo Simu-
lation algorithm were more aligned with the expectation of a performance gain for an
increasing number of workers (as depicted in Figure 4.9). As the averages in Table 4.5
show, a speedup of approximately 2.5 resulted from adding a second worker. With 16
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workers, the speedup reached approximately 9 compared to one worker.

Workers Naive Approach Improved Approach

1 135.820 s 118.955 s
2 118.769 s 47.946 s
4 97.504 s 28.615 s
8 112.816 s 18.352 s
16 102.551 s 13.200 s

Table 4.5: Average Calculation Duration in Seconds

When comparing the graph of the improved algorithm (Figure 4.9) to the one of
the naive algorithm (Figure 4.8), several differences emerge. Firstly, the performance
improvement is quite drastic, as previously mentioned. Secondly, the average duration
scales almost linearly with additional cluster workers. Thirdly, also the divergence of
individual measurements decreases significantly, which means that calculation durations
are favourable even in a worst case scenario when using 16 workers.

Figure 4.9: Improved Monte Carlo Simulation Performance
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4.6 LISA with Temporal Association and Monte Carlo
Simulation

As explained in Section 3.2.4, two variations of the Monte Carlo Simulation for temporal
LISA statistics were implemented in the course of this thesis. Both variations were tested
under similar conditions, namely using the standard topology and 16 cluster workers for
all runs. However, the batch interval had to be increased to 200 seconds for the global
selection algorithm (from 60 seconds for the local variation) in order to obtain valid
results. Furthermore, both algorithms were tested for k ∈ 1, 2, 5. Higher values for k
proved to be impracticable for the global selection due to high batch durations.

Figure 4.10: Temporal Monte Carlo - Algorithm Comparison

Figure 4.10 depicts the measured average batch durations for the different ks for both
algorithm variations. The impact of considering additional past network states on the
batch duration in the global selection variation is clearly visible. In fact, the increase
of the calculations when increasing k is approximately linear, with ~36.67 seconds for
k = 1, ~76.39 seconds for k = 2 and ~179.78 seconds for k = 5. In case of the local
selection variation, on the other hand, the impact of an increased value for k on the
batch duration is much smaller. The average calculation duration increases from ~14.30
seconds for k = 1 and ~14.88 seconds for k = 2 to ~18.33 seconds for k = 5.
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While the results for the global selection algorithm may seem to indicate bad overall
performance, they are explicable and to be expected: for each additional network state,
a full Monte Carlo Simulation has to be performed in which the complete global state
has to be considered for each node value (cf. Section 4.5). This leads to a high level
of wide dependencies in the computation graph of the algorithm, which in turn leads to
long calculation durations.
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5
Conclusion

In chapters 3 and 4, both the implementation of LISA statistics on Spark Streaming
and the performance of this implementation were discussed. It was shown that the
implementation of algorithms for calculating LISA indicators and according statistical
tests are feasible with Spark Streaming. Furthermore, the performance evaluation showed
that the majority of these calculations can be run with reasonable performance in a near
real-time manner.
The main conclusions which can be drawn from the implementation of this thesis is
twofold. On the one hand, the high level API provided by Spark Streaming allowed for
simple algorithms for LISA calculations. Even in the most complex case, namely the
temporal Monte Carlo Simulation, the algorithm could be implemented on a moderate
complexity level. On the other hand, recreating the WDN metering scenario described
in [13] proved to be difficult mainly due to the characteristics of Spark Streamings data
input API. This lead to several abstractions in the application architecture.
The performance evaluation for the LISA calculations have showed that Spark Streaming
is well suited to handle the workload generated by a WDN even on a small cluster. The
spatial LISA algorithm was run in various scenarios, namely with different numbers of
nodes and different topology types in terms of the amount of connections. Furthermore,
the performance impact of considering past network states was measured by running
several configurations of the temporal LISA algorithm. In all cases, the calculation
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duration per batch remained in a range which would easily allow for an ad-hoc analysis
in a real-world WDN scenario.
However, one peculiarity was found when comparing different numbers of cluster work-
ers. The results showed decreasing performance with additional cluster workers. This
effect may result from the nature of LISA indicators as the calculation of both the stan-
dard deviation and the mean requires knowledge of the complete network state, which
leads to unfavourable wide dependencies. Further work will be required to fully clarify
this issue, as discussed in the subsequent section.
The evaluation of the statistical tests yielded more divergent results. In the spatial varia-
tion, reasonable delays were achieved with an algorithm adapted to the characteristics of
Spark. The temporal variation of the algorithm, on the other hand, proved to perform
poorly due to its dependency on the complete current and past network states. Reasonable
performance could only be achieved with an adjustment proposed by [13].

5.1 Future Work

The problem covered by this thesis is very specific in terms of both technology (Spark
Streaming) and of applicability to a real-world scenario (WDN). However, its scope had
to be confined considerably. Consequently, there are many possibilities for improvements
and further work. These include improvements of the algorithms and of the architecture,
as well as the adaptation towards a realistic scenario.
As shown in Chapter 3, statistical algorithms are a central part of the implementation.
As they were mainly developed as a proof of concept of using Spark Streaming for
such calculations, they are in no way optimised for performance. Improvements could
include a better adaptation to the characteristics of Spark Streaming, and to data-parallel
calculations in general, as well as the exploitation of data locality.
In addition, while the implementation architecture is based on the scenario described
by [13], many adjustments and abstractions had to be made. Clearly, an interesting
complement to this thesis would be to integrate the implementation into this scenario
with less adjustments and to test it in a real-world setting.
A crucial part of such an extension would be an adjustment of the data input architec-
ture. Currently, sensor values are simulated with respect to the Spark Streaming batch
interval as discussed in Section 3.1.2. Sensors deployed in WDNs, however, do not emit
measurements in a synchronised fashion. In consequence, calculation results could be
falsified if multiple values measured by a single sensor would be processed within one

43



Chapter 5: Conclusion

batch. A possible solution to this issue could be the use of input values which are an
average of sensor measurements over a certain time span as input values.
In conclusion, this thesis has shown that Spark Streaming is suitable for anomaly de-
tection in the context of sensors deployed in a WDN, but there is still much room for
improvement and extension.
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A
Appendix

A.1 Complete Source Code

The complete source code resulting from this thesis is available at the following URL:
https://github.com/snoooze03/SparkLisa
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