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Benoit Perroud, Martin Grund, Djellel Eddine Difallah

VeriSign, Inc.
eXascale Infolab

University of Fribourg



To Sarina Jasmin.



Abstract

We present a blocks placement strategy for the Hadoop Distributed File System (HDFS).
HDFS is a core component of Apache Hadoop and provides a virtual file system to client
applications. It stores files redundantly across cluster nodes by splitting them into blocks
and replicating those according to a replication factor.

Although HDFS distributes blocks reasonably well across cluster nodes, there are cases
in which its algorithm creates server hotspots. We show a blocks placement strategy
which prevents server hotspots by distributing blocks and their replicas evenly across
cluster nodes.

Further, we explore the fact that data centers are not homogeneous anymore. Several
hardware generations are now running side by side in server clusters. We show that
by introducing a weight factor for hardware generations, we can improve the overall
performance of the cluster. This weight factor is used by our blocks placement strategy
to place more blocks onto cluster nodes with more processing power.

Finally, we run benchmark applications against the HDFS blocks placement strategy
and our blocks placement strategy. We discuss the test cases and show the performance
improvement in a small size cluster.
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1
Introduction

The amount of data created and stored worldwide has exponentially increased over the
last decade [ea08]. Today we are surrounded by devices and sensors that record a great
deal of information about us and our environment. With the growth of the internet and
mobile computing, it is easier than ever to copy and move data from one location to
another.

There is a growing demand for new tools from the industry to handle this vast amount
of data. Apache Hadoop is one of the upcoming frameworks for storage and large-scale
data processing. It consists of two layers at its core. The MapReduce layer provides a
programming model for processing large data sets in parallel with a distributed algorithm.
The Hadoop Distributed File System (HDFS) layer provides a virtual file system to client
applications. In this thesis, we focus on HDFS.

1.1. Motivation
HDFS is a distributed file system which stores files redundantly across cluster nodes for
security and availability. To store a file HDFS splits it into blocks and replicates those
according to a replication factor. The HDFS default blocks placement policy distributes
the blocks reasonably well across the cluster nodes. However, there are cases, in which
this algorithm creates server hotspots as shown in chapter 3. Hotspots put unnecessary
load onto cluster nodes and lower the overall performance of the cluster. There is already
work done to minimize server hotspots [Wan14].

Further by analyzing cluster infrastructures, we see that companies are using different
hardware generations in the same cluster. This practice comes from the fact that replacing
the whole cluster with a newer hardware generation is costly. So adding a newer hardware
generation to an existing cluster is a logical step. However, different hardware generations
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Chapter 1. Introduction

are not considered by the HDFS default blocks placement policy, and precious computing
resources are left unused.

1.2. Goals
In this thesis, we present a blocks placement strategy which addresses both problems.
We analyze the HDFS default blocks placement policy and show a blocks placement
strategy which prevents server hotspots. The algorithm distributes blocks and their
replicas evenly across all cluster nodes.

Additionally we introduce a weight factor for hardware generations. This allows us to
describe the processing power of a cluster node by giving it a specific weight factor. Our
blocks placement strategy includes this weight factor in its computation and places more
blocks on newer hardware generations.

1.3. Outline
This thesis is organized as follows.

Chapter 2 introduces Apache Hadoop in depth. We describe the architecture of Apache
Hadoop and see how the two layers interact with each other. Chapter 3 analyzes HDFS
and shows how the HDFS default blocks placement policy distributes blocks and their
replicas. Chapter 4 presents our blocks placement strategy. It gives a detailed description
of our algorithm. Chapter 5 shows some benchmarks. We discuss the results and the
impact on performance. Finally, Chapter 6 shows future work and Chapter 7 draws a
conclusion. Appendix A describes our balancer tool.

2



2
Apache Hadoop

The context of this thesis is set in the domain of Big Data. Big Data is a term used to
describe data sets that are too large to be processed using traditional data management
applications [Wika]. Apache Hadoop was initially created by Doug Cutting in 2005
because he needed a faster data processing framework for the web crawler project called
Nutch [Whi09]. Based on the MapReduce paper [DG04] which was published 2004
by Google, Cutting replaced the existing data processing infrastructure with a new
implementation and called it Hadoop. At that time Yahoo! decided to invest in the
development of Hadoop and agreed with Cutting to make it open source. Today Hadoop
is developed under the umbrella of the Apache Software Foundation and is used in many
data centers around the globe [Fou].

2.1. Architecture
Apache Hadoop is based on the Google papers [DG04] and [GGL03]. It is “a framework
that allows for the distributed processing of large data sets across clusters of computers
using simple programming models” [Fou]. Instead of using large scale-up server hardware
to process and store data, it uses commodity hardware to scale-out. It is not uncommon
for an Hadoop cluster to have hundreds of cluster nodes processing and storing exabytes
of data [Hadc].

A large part of Hadoop is written in Java. Critical code is written in C for performance
reasons. Hadoop can be run on various Linux distributions and since version 2.2.0 also
supports running on Windows.

At its core Hadoop consists of two layers. The computational layer is called MapReduce,
and the storage layer is named HDFS. Figure 2.1 shows an overview of the two layers.
Both layers are modeled as a master/slave architecture. This greatly simplifies the
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Chapter 2. Apache Hadoop

design, enabling the use of global knowledge for job scheduling and block placement. The
disadvantage of this architecture is the master node becoming a single point of failure.
In high-availability clusters, an Active/Passive configuration with a hot standby for the
master node can be used to minimize downtime.

With an increased number of cluster nodes, there is also an increased chance of a
machine failure. Hadoop is explicitly designed with hardware failures in mind. Data
stored in the cluster is replicated with a replication factor. This increases both data
availability and security. In the case of a node failure, jobs can still access copies of the
data on other nodes.

It is important to understand that Hadoop does not provide Online Transaction
Processing (although there are components in the Apache Hadoop ecosystem which build
on HDFS to provide Online Transaction Processing). By making use of the MapReduce
paradigm, Hadoop is best suited for parallelizing jobs using Batch Processing.

2.2. MapReduce
MapReduce is described by Jeffrey Dean and Sanjay Ghemawat as “a programming model
and associated implementation for processing and generating large data sets” [DG04].
As the name implies it basically consists of two computational phases.

In the map phase, the input data-set is split into chunks and processed in parallel by
map tasks. Map tasks are part of a MapReduce job and are being executed on a cluster
node. Each map task can output some data-set, which itself forms the input to reduce
tasks. Reduce tasks also run on cluster nodes and perform the final computation on the
intermediate data-set. Figure 2.2 shows an overview of the MapReduce programming
model.

The input and output data-sets of the map and reduce tasks are typically located on
HDFS. This allows the MapReduce framework to schedule task operations on cluster
nodes where the chunks can be read locally. Instead of moving data to computation as
in traditional client/server architectures, moving computation to data results in a very
high data throughput. The fact that “computation follows data”, plays an important
role as we will see in chapter 4.

Since Apache Hadoop 2.2.0, there are two implementations of the MapReduce pro-
gramming model available [Hada].

Apache Hadoop MapReduce The older Apache Hadoop MapReduce implementation
consists of a master component called the JobTracker, and one slave component per
cluster node, the TaskTracker (see Figure 2.3).
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Chapter 2. Apache Hadoop

Figure 2.1.: Hadoop Architecture
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The JobTracker is responsible for managing MapReduce jobs. It schedules tasks for
execution, monitors their progress and re-executes them in case of a task failure. The
TaskTracker simply runs and monitors the tasks as directed by the JobTracker.

Each TaskTracker is constraint by a number of map and reduce task slots. This means
that there is a limit on the number of concurrent map and reduce tasks, which can run
on a cluster node. If all slots are occupied, no more tasks can be scheduled for execution
on this particular cluster node until a task is done, and the slot is available again.

There are utilization issues that can occur if, for example, all map slots are taken
and reduce slots are empty. The cluster node would not be running at full performance
because the resource limit is calculated with all map and reduce slots occupied.

This issue and the wish to support other data processing models have lead to a new
implementation of the MapReduce programming model.

Apache Hadoop Yet-Another-Resource-Negotiator (YARN) To overcome the limi-
tations of the old Apache Hadoop MapReduce implementation, YARN splits the two
major responsibilities of the JobTracker into two separate daemons.

The global ResourceManager arbitrates resources among all applications in the system
and the per-application ApplicationManager negotiates resources from the ResourceMan-
ager. The ApplicationManager works with the per-node NodeManager to execute and
monitor the tasks (see Figure 2.4).
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Figure 2.2.: MapReduce Overview
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Figure 2.3.: MapReduce1 Architecture (Source [Mur])

Figure 2.4.: YARN Architecture (Source [Mur])
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3
Hadoop Distributed File System

In this chapter, we describe HDFS in depth and explain some of the drawbacks of its
blocks placement strategy.

3.1. Concepts and Design
HDFS is a distributed file system designed to store very large files reliably across cluster
nodes using commodity hardware. As already mentioned in chapter 2 HDFS uses a
master/slave architecture, which greatly simplifies the design. We explain some of the
HDFS features to have a better understanding of its inner workings.

3.1.1. Commodity Hardware
Using commodity hardware to scale-out is a cost-effective way to add more computational
power and storage space to a cluster. However with increasing number of cluster nodes,
the chance of a node failure increases as well. HDFS is explicitly designed with hardware
failures in mind. There is no need to bring the cluster down for maintenance. HDFS
takes care of data consistency and availability in case a cluster node has to be replaced.

3.1.2. File System
HDFS provides a virtual file system to client applications, with the ability to store very
large files. It is not uncommon for an Hadoop cluster to store files with terabytes in size.
HDFS is similar to other file systems meaning that it offers the concept of directories
and files to structure data storage. However, it has several features that optimize its
operation on very large data sets.

8



Chapter 3. Hadoop Distributed File System

Streaming Data Access Although HDFS provides read and write operations on files,
it is built around the idea that data is written once and read many times. Once a file is
written it cannot be modified. Data can only be appended. This concept comes from the
fact that data will, usually, be copied into the Hadoop cluster and analyzed many times.
Read throughput plays a bigger role in this scenario. Users, usually, want to analyze
the whole data set. Delivering a high throughput is more important than low latency on
data access.

Block Size The concept of blocks can be found in many file systems. Usually, file
system blocks have a size in kilobytes. This is the smallest unit which can be loaded into
memory in one read operation. In HDFS, this concept can also be found. However as
we are dealing with very large files, the default block size is 128MB. A block in HDFS
is the smallest replication unit. A file is split into blocks during the write operation
and distributed across cluster nodes. Also depending on the client application, a block
is, usually, the data unit on which an application copy operates on. This fact plays
an important role in our blocks placement strategy as we will see in chapter 4. By
strategically placing blocks in the Hadoop cluster, we can guide the execution of the
MapReduce layer.

Data Integrity Data can get corrupted because of data degradation [Wikb], storage
hardware faults, network faults or software bugs. To protect data against these types of
error, HDFS saves a checksum for every block stored in the cluster. For every block a
client application reads, HDFS compares its checksum against the saved value. If the
values differ, HDFS marks the block as invalid and fetches a replica from another cluster
node. Eventually, the faulty block gets replaced by a valid replica.

3.1.3. NameNode and DataNodes
In an Hadoop cluster, there are two kinds of nodes. The master node is called NameNode,
and the slave nodes are called DataNodes. Both node types are fully interconnected and
communicate using TCP. The following paragraphs describe the role of both node types
in-depth.

NameNode The NameNode manages the file system namespace and provides an entry
point to HDFS for client applications. It provides access control to files and directories and
also controls the mapping of blocks to DataNodes. Files and directories are represented
by inodes which reccord attributes like permissions, modification and access time.
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Chapter 3. Hadoop Distributed File System

The inodes and the list of blocks are called the image. The NameNode periodically
persists the image to the file system as a checkpoint. Additionally, every change to
HDFS is recorded in a write-ahead log called the journal. During startup the NameNode
initializes the namespace image from the checkpoint, and then replays changes from the
journal.

In an Hadoop cluster, there exists only one active NameNode. To provide fault
tolerance in case of a failure, a Secondary NameNode can be deployed on standby. It
replicates the image and journal from the master NameNode and merges them as a new
checkpoint. If the master NameNode goes offline, the Secondary NameNode can be
promoted as the master.

DataNode DataNodes store data blocks of all files. When a DataNode joins a cluster,
it records the namespace ID and the assigned storage ID. During startup, a DataNode
registers itself with the NameNode using both IDs and then transmits a list of block
replicas it owns, as a block report. Further block reports are sent hourly to the NameNode
to update the global block list.

To confirm normal operation of a DataNode, it sends a heartbeat every three seconds
to the NameNode. If there is no heartbeat within 10 minutes, the NameNode considers
the DataNode offline and its blocks as unavailable. To maintain the replication factor,
the NameNode eventually will trigger the creation of new replicas on other DataNodes.

3.2. Blocks Placement Strategy
As we already mentioned before, HDFS splits files into blocks before sending them to
DataNodes for storage. For security and performance reasons it also replicates a block
according to a replication factor. By default, a replication factor of 3 is used. This
basically means that the storage requirement for a file is increased by the replication
factor. However, in the domain of Big Data, storage space is not an issue and is basically
considered as infinite. In the following subsections, we have a closer look at how a block
is distributed over nodes in the cluster.

3.2.1. Algorithm
If a client wants to write a file into the cluster for storage, the HDFS layer first looks up
whether the client is part of the cluster itself. If it is a node of the cluster, the client
places the block locally on itself. Otherwise, it places the block on a random node in the
cluster.

10
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For the second block replica, a random node outside the rack of the first replica is
chosen. This is done for security reasons. If a rack related to the node of one replica
goes offline, HDFS is still able to retrieve another replica from a different rack.

For the third block replica a random node in the same rack as the second replica is
chosen. This minimizes inter-rack traffic and is a tradeoff between security and network
traffic.

For further block replicas, a random node in the cluster is chosen. Figure 3.1 shows
how the block replicas get written.

3.2.2. Pipelining
To minimize inter-node network traffic HDFS uses a technique called pipelining. When a
client writes the first block replica to a node, this node is then responsible for writing the
second replica to a random off-rack node. Further, this off-rack node is itself responsible
for writing the third replica to a random in-rack node.

The result of this pipelining is that client-cluster network traffic is reduced because
the client only writes one replica, instead of all three replicas. Additionally, inter-rack
traffic is also reduced as the node holding the second replica writes to a random in-rack
node and does not cross rack-boundary.

11
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Figure 3.1.: HDFS default blocks placement policy

Rack 1 Rack 2
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4
Hadoop Data Placement Strategy

In this chapter, we present our blocks placement strategy and show how it is an improve-
ment to the HDFS blocks placement strategy.

4.1. Goals
Hadoop Data Placement Strategy (Hadaps) has two main goals which are done in the
same algorithm. First, it tries to evenly distribute blocks across all cluster nodes. Second,
it tries to move more blocks onto hardware generations with more processing power. We
discuss these properties in depth in the following subsections.

4.1.1. Even Distribution
As we have seen in chapter 3, HDFS always places the first block replicas onto the writer
node if the node is in the cluster. This creates a very unbalanced block placement if the
writer node does not leverage MapReduce for writing data. All first block replica (and
therefore the whole file) would be placed onto the writer node. The second and third
replica end up being distributed randomly across the cluster. This property makes the
writer node a hotspot as we see in chapter 5.

We solve this problem by evenly distribute all blocks of a file across DataNodes. This
way, we activate all cluster nodes to participate in the computation. This simple idea is
the first step of our algorithm.

13
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4.1.2. Hardware Generations
By analyzing the MapReduce layer of Hadoop, we can see that it tries to execute
application copies on cluster nodes that have the required data locally available. “Moving
Computation is Cheaper than Moving Data” [Hadb] perfectly makes sense in the domain
of Big Data, because reading data locally is generally much faster than reading it over
the network.

Let’s assume that we have a CPU bound application and two hardware generations
of which the newer hardware generation has twice as much processing power. We can
state that an application copy running on the newer hardware generation will execute
twice as fast as an application copy running on the older hardware generation. Or stated
differently,

Definition. An application copy running on a newer hardware generation with twice as
much processing power can process twice as much data blocks than an application copy
running on an older hardware generation.

The same definition holds for an I/O bound application. If the disk of a newer hardware
generation is twice as fast as the disk of an older hardware generation, an application
copy running on the newer hardware generation will process twice as much data blocks
as an application copy running on an older hardware generation.

This observation leads us to the following strategy. By placing more data blocks
onto newer hardware generation nodes, the performance of an application is expected to
increase. Let the weight factor denote the processing power of a hardware generation.
Let the quota be the maximum number of blocks of a file for a node. For a specific file
with number of blocks n, we can calculate the quota of each node as follows:

quotanode = dn ∗ weight factornode

weight factortotal

e (4.1)

Example Lets assume we have a cluster consisting of two hardware generations. The
newer hardware generation has a weight factor of 2, and the older hardware generation
has a weight factor of 1. There are 6 cluster nodes of which 3 are of the newer hardware
generation, and 3 are of the older hardware generation. For a specific file with ten blocks
we can calculate the quota of the newer hardware generation:

quotanewer = d10 ∗ 2
1 ∗ 3 + 2 ∗ 3e = 3 (4.2)

And for the older hardware generation we have:

quotaolder = d10 ∗ 1
1 ∗ 3 + 2 ∗ 3e = 2 (4.3)

14
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So on the newer hardware generation nodes, a maximum of three blocks can be placed,
whereas on the older hardware generation nodes a maximum of two blocks can be stored.

4.2. Algorithm
The algorithm of Hadaps is different from the default HDFS blocks placement strategy
because it works on file level instead of the global block list. For a specific file with
replication factor r the algorithm works as follows:

• Enumerate all blocks for file f

• Enumerate all nodes for the cluster

• Calculate the quota for each node based on the weight factor

• Sort nodes by quota (higher quotas come first)

• Sort nodes with equal quota by disk utilization (lower utilization nodes come first)

• For each file replica do the following:
– Initialize the block listqueue with all blocks of file f
– Initialize the node listavailable with all nodes
– For each block in block listqueue do the following:

∗ Find the first node in node listavailable that does not contain a replica of
this block and did not reach its quota.

∗ Put the block onto this node and remove it from block listqueue

∗ Remove the node found from node listavailable

∗ If node listavailable is empty, initialize it with all nodes

Example Lets continue our example from the subsection 4.1.2. Figure 4.1 shows the
final blocks placement for our cluster.

In the beginning, we have an empty cluster. So our sorted node list is equal to
{F,E,D,C,B,A}. Remember, nodes with higher quotas come first. We initialize our block
list to {1,2,3,4,5,6,7,8,9,10}. For the first file replica (green) we just evenly distribute the
blocks over all nodes.

For the second file replica (red), we initialize our sorted node list to {F,E,D,B,A,C}.
Remember, nodes with higher quotas come first ({F,E,D}) and for nodes with equal
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Chapter 4. Hadoop Data Placement Strategy

quota, the algorithm uses lower utilization nodes first ({B,A}). Block 1 cannot be stored
on node F because node F already has block 1 from the first replica. So block 1 is put
onto node E. For block 2, node F is an available node. Block 3 cannot be put onto the
next node in the list which is node D, as it already contains block 3 from the first replica.
So block 3 is put onto the next available node in the list which is node B. The rest of the
blocks can be placed in the same way.

16
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Figure 4.1.: Hadaps Algorithm
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5
Benchmarks

In this chapter, we run two benchmark applications against the HDFS default blocks
placement policy, the HDFS standard balancer and our Hadaps balancer.

5.1. Preparation and Setup
To be able to compare the impact of the three block placement algorithms against each
other, we use TeraSort, which is included in the Hadoop distribution and HadapsTest,
an additional benchmark, we developed for our Hadaps balancer.

The tests have been executed on our cluster located at the University of Fribourg.
It consists of 15 hosts, of which 11 are of the older generation and 4 are of the newer
generation. The table 5.1 shows the hardware specification of both generations.

We use Ubuntu LTS and Cloudera CDH 5.0 as runtime stack. During our tests only
HDFS and YARN have been started as a service. The host diufpc56 was configured as
NameNode. To disable the influence of caching we flushed the hard disks and cleared the
OS cache before each test iteration using the following command.

$ sync

$ sysctl vm.drop_caches=3

Additionally, we disable the block cache on DataNodes. Replication factor for all
generated files was left at three replicas and for the block size we were using the default
value of 128MiB.

Data for the tests have been loaded into HDFS from the node diufpc56. Before loading
test data into HDFS, we wanted to have a clean, balanced state of our cluster. So we

18



Chapter 5. Benchmarks

Table 5.1.: Cluster Hardware Generations

Component Old Generation New Generation

CPU i7-2600 - 2 core i7-4770 - 4 core
RAM 32 GB 32 GB
Harddisks 1 x 500 GB 2 x 500 GB
NIC 1 GbE 1 GbE
DataNodes diufpc301

diufpc302
diufpc303
diufpc310
diufpc311
diufpc312
diufpc313
diufpc314
diufpc315
diufpc316
diufpc317

diufpc54
diufpc55
diufpc56
diufpc57
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ran the HDFS standard balancer with a threshold of 10GB.
After this initial balancing we loaded the test data for each test into the cluster. This

initial write triggered the block placement using the HDFS default blocks placement
policy. To test this policy we ran the two benchmarks and gathered execution time as
well as other important metrics.

The second step was to run the HDFS standard balancer to balance the initial block
placement. After balancing, we ran the two benchmarks again to see the improvements
over the HDFS default blocks placement policy.

The third step was to run our Hadaps balancer with a weight factor of 2 over the test
data. Finally, after balancing, we ran the two benchmarks again to see whether there is
an improvement over the HDFS default blocks placement policy and the HDFS standard
balancer blocks placement strategy. The Figure 5.1 shows the whole test cycle.

After the first test cycle, we noticed that a weight factor of 2 was probably not reflecting
the difference of the hardware generations appropriately. We decided to decrease the
weight to 1.2 to better match the minor increase of disk performance of the newer
hardware generation.

The following sections discuss each test in depth.

5.2. TeraSort
TeraSort is a well-known Hadoop benchmark written by Owen O’Malley. It basically
tries to sort 1 TB (or any amount) of data as fast as possible. In 2008, he reported
having sorted 1 TB of data in 209 seconds using a cluster of 910 nodes [Owe08]. TeraSort
consists of 3 modules, which we will describe in the following paragraphs.

TeraGen generates the official GraySort [Nyb] input data set. It uses MapReduce to
write data into the cluster. A data row consists of 100 bytes and is the smallest amount
of data to be sorted.

TeraSort itself performs the sort of the generated data set. It also leverages MapReduce
to sort the data in parallel.

TeraValidate performs the validation of the sorted data set. It ensures that the output
from TeraSort is globally sorted.

5.2.1. Generating data
For generating data, we use the following command.
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Figure 5.1.: Test Cycle

Load Data Run Standard Balancer
Run Hadaps Balancer

(weight=2)
Run Hadaps Balancer

(weight=1.2)

5 x TeraSort 5 x TeraSort 5 x TeraSort 5 x TeraSort

5 x HadapsTest 5 x HadapsTest 5 x HadapsTest 5 x HadapsTest

$ hadoop jar

/opt/cloudera/parcels/CDH/lib/hadoop-0.20-mapreduce/

hadoop-examples.jar teragen

1000000000

/terasort/terasort-input

As we see, we generate a data set of 100GB to be sorted and store it in /terasort/terasort-
input.

5.2.2. Results
The benchmark was run using the following command.

$ hadoop jar

/opt/cloudera/parcels/CDH/lib/hadoop-0.20-mapreduce/

hadoop-examples.jar terasort

/terasort/terasort-input

/terasort/terasort-output

TeraSort takes the input data set from TeraGen and writes the sorted data into
/terasort/terasort-output. Figure 5.2 shows the execution time of TeraSort after the initial
block placement with the HDFS default blocks placement policy and after rebalancing
with the HDFS standard balancer and the Hadaps balancer.
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Figure 5.2.: TeraSort Execution Time
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As we can see, TeraSort performs equally well after all four block placement policies.
To understand the reason behind this, we have to take a closer look at TeraGen.

TeraGen uses MapReduce to write the data set into the cluster. As we described in
chapter 3, data is written first onto the local node, then onto a random node in another
rack and finally onto a random node in the same remote rack. By using MapReduce,
TeraGen produces a well-balanced random distribution of blocks in the cluster already.
Rearranging those blocks with the HDFS standard balancer and the Hadaps balancer
has no effect on the performance as all nodes are already participating in delivering data
to TeraSort.

Additionally, we can observe that the impact of the hardware generation is not as big
as we hoped for. TeraSort is an I/O bound application, and therefore disk speed is a key
factor. Figure 5.3 and Figure 5.4 show the disk read performance during the execution
of TeraSort after rebalancing with our Hadaps balancer for a weight factor of 1.2 and 2
respectively. As we can see, read throughput for both weight factors is approximately
the same around 50 MB/s.

These two observations lead us to the conclusion that the random block placement
produced by TeraGen is already adequate for high performance and that the difference
in disk speed for both hardware generations are not sufficient to make an distinction in
performance.

5.3. HadapsTest
The results from the TeraSort benchmark, lead us to develop our own benchmark called
HadapsTest to test the effectiveness of our Hadaps balancer. While TeraSort produces
test data using the MapReduce framework, HadapsTest writes from a single node. This
results in the test data being very unbalanced. We see from the HDFS default blocks
placement policy that the first replica of each block will be placed on this writer node.
The second and third replica will be uniformly distributed over the remaining DataNodes
in the cluster. Thus reading a block will most likely result in a request to the writer
node as it is the first one in the node list.

5.3.1. Generating data
For generating data, we use the following command. For a complete usage of HadapsTest,
please refer to the subsection A.2.2.

$ hadoop jar hadoop-hdfs-hadaps-test-2.3.0-cdh5.0.0.jar

org.apache.hadoop.hadaps.HadapsTest write
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Figure 5.3.: Disk Throughput during TeraSort after Hadaps Balancer (weight = 1.2)
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Figure 5.4.: Disk Throughput during TeraSort after Hadaps Balancer (weight = 2)
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-out /hadapstest/data

-count 15

-size 13000:14000

We write 15 files into the directory /hadapstest/data. Each file has a random size
between 13GiB and 14GiB.

5.3.2. Results
The benchmark was run using the following command.

$ hadoop jar hadoop-hdfs-hadaps-test-2.3.0-cdh5.0.0.jar

org.apache.hadoop.hadaps.HadapsTest read

-in /hadapstest/data

-out /hadapstest/output

Figure 5.5 shows the execution time of the benchmark after the initial block placement
with the HDFS default blocks placement policy and after rebalancing with the HDFS
standard balancer and the Hadaps balancers.

As we can see rebalancing with the HDFS standard balancer does not decrease the
execution time of HadapsTest much. The benchmark finished around the 24 minutes
mark for both the HDFS default blocks placement policy and the HDFS standard
balancer. However balancing with our Hadaps balancer decreased the execution time of
the benchmark to 7:47 minutes for the weight of 2 and to 6:50 for a weight of 1.2. By
rearranging the blocks with Hadaps, we could improve the execution time by a factor of
3.

To see the reason of this improvement, we have to look at the network traffic during the
benchmark. Figure 5.6 shows the data transmission of all DataNodes during HadapsTest
after the blocks have been balanced with the HDFS standard balancer.

We see that the DataNode diufpc56 transmits most of the data to other nodes. The
transmission rate is around 125MB/s which means that the outgoing traffic is limited by
the network interface bandwidth (1Gbit/s).

To understand why every client requests blocks from the node diufpc56, we have to
understand in which order the DataNodes holding the block replica are being returned
from the NameNode. When a client requests a list of DataNodes for a block, the
NameNode sorts the final list with the method NetworkTopology.pseudoSortByDistance().
The client then uses the first entry in this list to request a block replica and proceeds to
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Figure 5.5.: HadapsTest Execution Time
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Figure 5.6.: Data Transmission during HadapsTest after Standard Balancer
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the next entry if it is unable to get the block. NetworkTopology.pseudoSortByDistance()
pushes the local DataNode to the front if there is a replica on the same node as the client.
Otherwise, it chooses the first entry in the list which is in the same rack. If there is no
rack-local DataNode, it chooses a random DataNode from a remote rack.

The important fact to notice is that for rack-local DataNodes, the algorithm always
chooses the first matching entry in the list. Because we have only one rack configured in
our setup the DataNode diufpc56 is always being pushed to the front of the list. There is
a JIRA issue which modifies the method to return a random DataNode from all rack-local
nodes holding a block replica [Wan14].

The solution to this situation is either to fix NetworkTopology.pseudoSortByDistance()
or to distribute the block replicas over all nodes. The latter is being done by our Hadaps
balancer. Figure 5.7 shows how the redistribution activates all DataNodes. All DataNodes
are now getting requests for blocks.

Again, the difference of hardware generations has a minor impact on performance. We
can see that balancing width a weight factor of 1.2 or 2 does not improve read throughput
much. Had we chosen hardware generations with a greater difference in disk speed, we
would have observed a bigger difference in execution time.
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Figure 5.7.: Data Transmission during HadapsTest after Hadaps Balancer (weight = 1.2)
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6
Future Work

In this chapter, we show what improvements could be done in the Hadaps blocks placement
strategy as well as in the Hadaps balancer.

Rack Awareness The Hadaps blocks placement strategy is currently not rack-aware.
This means that it does not provide the former security level of the HDFS default blocks
placement policy. However, extending the algorithm with rack awareness should be
straightforward, as we have already several block placement constraints in place. Adding
rack awareness as another constraint, modifies the number of optimal cluster nodes for
a block. In the case the algorithm has no optimal cluster node, carefully removing one
constraint after another should allow it to select a suboptimal cluster node.

Cgroups We could not fully test the behavior of a cluster containing hardware genera-
tions with great difference in processing power. The disk speed of our older and newer
hardware generation was too similar. However by using cgroups [Men], the processing
power of one hardware generation could be limited by a greater factor. Rerunning the
benchmarks with this setup should show a bigger performance improvement.

HDFS Encryption The Hadaps balancer tool currently does not support HDFS en-
cryption. However, it could be added with reasonable effort. We would have to keep
track of the key changes used for the encryption and use those keys to communicate the
block movement to cluster nodes.

BlockPlacementPolicy Framework The Hadaps blocks placement strategy is currently
implemented as an external balancer tool. This has the advantage of leaving the hot code
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of the HDFS default blocks placement policy untouched. We were able to experiment
with different algorithms and see their effect on cluster performance.

As the algorithm is getting more and more mature, it would be nice to hook into the
BlockPlacementPolicy framework and use the Hadaps blocks placement strategy directly
for initial blocks placement. However as we see today, the framework API would need
some heavy modifications to support Hadaps.
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7
Conclusion

HDFS is an important core component of Apache Hadoop. Not only does it simply store
data in a virtual file system, HDFS also greatly affects and guides the MapReduce layer.
By carefully placing blocks in the cluster, we can improve the performance of HDFS
and thus also the overall performance of Apache Hadoop. This thesis contributes to the
research of optimal data placement in large-scale server clusters.

Activating all cluster nodes plays an important role in a distributed computation
framework. We show that distributing blocks and their replicas evenly across cluster
nodes, improves the read performance of HDFS. The MapReduce layer is able to place a
greater number of application copies onto cluster nodes with data locally available.

We also introduce a weight factor for hardware generations. A higher weight factor
is assigned to hardware generations with greater processing power. We show that by
moving blocks onto cluster nodes with higher weight factor, the overall performance of
the cluster is improved.

We have conducted benchmarks on a small server cluster to test our Hadaps blocks
placement strategy. The results showed a great improvement in read performance after
rebalancing an unbalanced cluster with our Hadaps balancer.

In conclusion, we believe that our Hadaps blocks placement strategy is an improvement
over the HDFS default blocks placement policy and that our Hadaps balancer yield a
greater performance over the HDFS standard balancer.
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A
Hadaps Tools Usage

In this chapter, we show how to build the Hadaps balancer and the benchmark tools and
how to execute them from the command line.

A.1. Building
The source code for Hadaps is currently located on a private Git [Git] repository on
Bitbucket [Atl]. Hadaps is developed based on the Apache Hadoop 2.3 release branch
and has also been ported for the Cloudera CDH 5.0 release branch found on GitHub.
There are three branches available in the repository. The master branch is where all
development is done. It contains all commits and files which are used during development.
This branch is based on Apache Hadoop 2.3. The apache and cloudera feature branches
contain only the code to be released squashed into one commit. They are based on
Apache Hadoop 2.3 for the apache branch and Cloudera CDH 5.0 for the cloudera branch
respectively. We have successfully built the master branch using Windows and Linux. For
the apache and cloudera branches, the build procedure has been tested only on Ubuntu
LTS.

Getting the source code We assume that you have read access to the repository.
Getting the source code is straightforward using the git clone command.

$ git clone git@bitbucket.org:fluxroot/hadaps.git

Git will download the whole repository containing the full Apache Hadoop 2.3 source
code, the full Cloudera CDH 5.0 source code and all Hadaps modifications.
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Setup the build environment Hadaps is integrated into the Hadoop build process
and has no additional dependencies. You can use the same toolchain as for Hadoop.
For a guide on how to setup a build environment for Hadoop, have a look at the file
BUILDING.txt at the root of the source code.

Compilation The Hadaps source code adds two additional Maven projects to the tools
project. The Hadaps balancer code is located under the hadoop-hadaps directory, and
the benchmark code can be found under the hadoop-hadaps-test directory. Both
projects are built as part of the Hadoop build process. To create the distribution archive
you can execute the following command.

$ mvn clean package -Pdist -DskipTests -Dtar

Maven will build the Hadoop distribution archive. If everything has been successfully
built, you should see the following output at the end of the compilation.

...

[INFO] Reactor Summary:

...

[INFO] Hadoop Data Placement Strategy ................ SUCCESS [1.502s]

[INFO] Hadoop Data Placement Strategy Test ........... SUCCESS [1.576s]

...

[INFO] BUILD SUCCESS

...

The distribution archive can be found at hadoop-dist/target/hadoop-〈version〉.tar.gz.

A.2. Usage
Hadaps has been fully integrated into the Hadoop distribution. You can install the
distribution archive as you normally would. For a guide on how to install and setup
Hadoop, please follow the Hadoop documentation.

The Hadaps balancer and benchmark JAR files can be found in the directory share/

hadoop/tools/lib. You can execute them as you normally would, with the hadoop
jar command. The following sections describe the commands in detail.
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A.2.1. Hadaps Balancer
The Hadaps balancer needs a configuration file which defines various parameters like gen-
erations and weights. You will find an empty XML configuration file called hadaps.xml
in the etc/hadoop configuration directory. The table A.1 lists all available parameters
for the configuration file. For a complete example of the configuration file, please have a
look at listing A.1.

To run the Hadaps balancer from the command line, you can execute either the JAR
file with the hadoop jar command or you can just call the hdfs command. The following
command executes the JAR file manually.

$ hadoop jar share/hadoop/tools/lib/hadoop-hadaps-<version>.jar

org.apache.hadoop.hadaps.Hadaps

As the Hadaps balancer is integrated into the hdfs command, you can also just execute
the following command.

$ hdfs hadaps

This is the preferred way to run the Hadaps balancer. At startup, the Hadaps balancer
parses the configuration file and assigns the given generation weight to the listed nodes.
Then it builds a list of all files specified which have to be balanced. The Hadaps balancer
works concurrently on three files.

A.2.2. Hadaps Benchmark
The Hadaps Benchmark has two execution modes. The write mode generates data for
the benchmark, and the read mode is used to execute the benchmark itself.

Write Mode The write mode writes data from the current host into HDFS without
using the MapReduce framework. This will produce intentionally a very unbalanced
block placement. It accepts several command line arguments, which are described below.

$ hadoop jar share/hadoop/tools/lib/hadoop-hadaps-test-<version>.jar

org.apache.hadoop.hadaps.HadapsTest write

[-out <test directory>]

[-count <number of files>]
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Listing A.1: hadaps.xml Example Configuration File

1 <?xml version="1.0" encoding="UTF-8"?>

2 <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

3 <configuration>

4 <property>

5 <name>hadaps.generations</name>

6 <value>gen1,gen2</value>

7 </property>

8 <property>

9 <name>hadaps.gen1.hosts</name>

10 <value>

11 node1.unifr.ch,

12 node2.unifr.ch

13 </value>

14 </property>

15 <property>

16 <name>hadaps.gen1.weight</name>

17 <value>1</value>

18 </property>

19 <property>

20 <name>hadaps.gen2.hosts</name>

21 <value>

22 node3.unifr.ch,

23 node4.unifr.ch

24 </value>

25 </property>

26 <property>

27 <name>hadaps.gen2.weight</name>

28 <value>1.5</value>

29 </property>

30 <property>

31 <name>hadaps.files</name>

32 <value>

33 3:/directory1,

34 4:/directory2

35 </value>

36 </property>

37 </configuration>

35



Appendix A. Hadaps Tools Usage

Table A.1.: hadaps.xml Configuration Options

Name Value

hadaps.generations Comma-separated list of generation names
hadaps.〈generation〉.hosts Comma-separated list of host names or IP addresses of

target DataNodes
hadaps.〈generation〉.weight Floating point number which defines the weight of the

generation. The oldest generation should have a weight
of 1.

hadaps.files Comma-separated list of files or directories in the format
〈replication factor〉:〈path〉

[-size <minsize in megabytes>:<maxsize in megabytes>]

• -out <test directory>

Specifies where the test files will be written.

• -count <number of files>

Specifies the number of test files to be generated.

• -size <minsize in megabytes>:<maxsize in megabytes>

Specifies the size of the test files. To have some variation in size, this argument
takes the minimum and maximum file size in megabytes as parameter.

Read Mode The read mode executes the benchmark. It will use the MapReduce
framework to read the files. It accepts the following command line arguments.

$ hadoop jar share/hadoop/tools/lib/hadoop-hadaps-test-<version>.jar

org.apache.hadoop.hadaps.HadapsTest read

[-in <input directory>]

[-out <output directory>]

[-iteration <number of iterations>]

[-csv <filename>]
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• -in <input directory>

Specifies where the test files are located. This is the output directory from the
Write Mode.

• -out <output directory>

Specifies where the result files will be written.

• -iteration <number of iterations>

Specifies the number of iteration, the benchmark will execute.

• -csv <filename>

Specifies the file name of the CSV file, which contains the results.
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Apache Hadoop A software framework for storage and large-scale data processing. iii,
1–5, 31, 32, 41

Batch Processing A processing in which a system executes a job without manual user
intervention. 4

Cloudera CDH Cloudera Distribution Including Apache Hadoop. 18, 32

DataNode A cluster node which stores the raw data in an Hadoop cluster. 9, 10, 18,
19, 23, 25, 27, 36

Git A free and open source distributed version control system. 32

Hadaps balancer Our balancing tool written for this thesis. 23, 25, 29, 31–34

HDFS standard balancer The balancing tool included in the Apache Hadoop distribu-
tion. 20, 21, 23, 25, 31

MapReduce A programming model for processing large data sets in parallel with a
distributed algorithm. vii, 1, 3–5, 7, 9, 13, 14, 20, 23, 31, 34, 36, 41

NameNode The master node which stores the metadata in an Hadoop cluster. 9, 10,
18, 25

Online Transaction Processing A processing in which a system responds immediately
to user requests. 4

Ubuntu LTS Ubuntu Long Term Support, an Ubuntu release that will receive 5 years
support. 18, 32

YARN Yet-Another-Resource-Negotiator, a new MapReduce implementation. 40
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