

Building	
 a	
 full-­‐text	
 index	

on	
 a	
 NoSQL	
 Store 	

MASTER 	
 THES IS 	

THI 	
 THU 	
 HANG 	
 NGUYEN 	

August 2013

Supervisors: 	

Prof. Dr. Philippe CUDRÉ-MAUROUX
Dr. Gianluca DEMARTINI

the eXascale Infolab
Department of Informatics

University of Fribourg
Switzerland

	

i

Abstract	

My interest in the research project ‘Building a full-text index on a NoSQL Store’ grows out of
a master program’s course on Advanced Database Systems delivered by Prof. Dr. Philippe
CUDRÉ-MAUROUX, and the seminar ‘NoSQL Databases : Cassandra’ presented by Benoit
PERROUD, Software engineer at Verisign, during the Spring semester 2012.

NoSQL databases are divided into four main categories:

- Wide Column Store, also known as Column Families
- Document Store
- Key Value, also known as Tuple Store
- Graph Databases

In other to implement a full-text index, Apache Cassandra is chosen, which belongs to the
Column Families category.

The chapters of this research report will be structured as follows.

Chapter 1 presents the technologies involved in this research: the n-gram model, the inverted
file index, Apache Cassandra, and Apache Solr which is an enterprise search engine. In
Chapter 2, the environment setup will be described step by step as required by Apache
Cassandra, and Apache Solr. Each environment will be tested against a small sample of
search queries before the experimentation phases. In Chapter 3, a set of 250 search queries
will be performed according to an experimentation plan on Apache Cassandra and Apache
Solr. Performance data will be recorded during the experimentation and compared.

For brevity, the full product name Apache Cassandra is shortened to Cassandra, and Apache
Solr to Solr.

ii

Contents	

Abstract .. i

Contents ... ii

List of Figures .. iv

List of Tables .. vi

Source Code Listings .. vii

1 Introduction ... 1

1.1 Objectives .. 1

1.2 N-gram at the word level ... 1

1.3 Inverted file indexing ... 2
1.3.1 Indexing based on n-gram model ... 2
1.3.2 Inverted index creation ... 3
1.3.3 Query processing .. 4
1.3.4 Ranking of results ... 4

1.4 Cassandra ... 4
1.4.1 Overview: Cassandra, a NoSQL approach ... 4
1.4.2 Cassandra data model ... 5
1.4.3 Cassandra architecture .. 7
1.4.4 Write in Cassandra .. 9
1.4.5 Read in Cassandra .. 11
1.4.6 Delete in Cassandra .. 13

1.5 Solr ... 14

2 Environment Setup and Tests .. 15

2.1 Introduction .. 15

2.2 Task 1: Check for correct version of Java ... 15

2.3 Task 2: Install Tomcat web server ... 15

2.4 Task 3: Install Solr search engine on Tomcat web server 16
2.4.1 Install Solr Beta (apache-solr-4.0.0-BETA) ... 16
2.4.2 Install Solr Official (apache-solr-4.2.1) .. 20

	

iii

2.5 Task 4: Install Apache Cassandra database management system 24
2.5.1 Install apache-cassandra-1.0.12 .. 24
2.5.2 Configure Cassandra multi-node cluster .. 27

2.6 Task 5: Put the system to work ... 33
2.6.1 Query with Solr .. 33
2.6.2 Query with Cassandra ... 38

3 Experimentation and Comparison of Search Query Performance 43

3.1 Objectives .. 43

3.2 Experimentation on Cassandra multi-node cluster .. 43
3.2.1 Understanding the index creation module in Java .. 44
3.2.2 The performance of index creation ... 46
3.2.3 Understanding the search query module in Java .. 48
3.2.4 Experimentation plan .. 50
3.2.5 The performance of search query ... 53

3.3 Experimentation on Solr single node cluster ... 64
3.3.1 Understanding the search query module in Java .. 64
3.3.2 Experimentation plan .. 65

3.4 Performance comparison between Cassandra and Solr on single node cluster . 67
3.4.1 Query group 1: 249th query with search string "term limits" 68
3.4.2 Query group 2: 145th query with search string "women clergy" 71
3.4.3 Query group 3: 247th query with search string "air traffic controller" 73

3.5 Conclusion ... 75
3.5.1 The findings .. 75
3.5.2 Next step ... 76

Source Code .. 77

References ... 83

Web Resources .. 84

iv

List	
 of	
 Figures	

Figure 1.1 Two vietnamese documents to be indexed ... 2	

Figure 1.2 Inverted file from documents AP1, and AP2 .. 3	

Figure 1.3 A column without timestamp .. 6	

Figure 1.4 Two column families with row keys new:york and york:usa 6	

Figure 1.5 A super column named bigram ... 7	

Figure 1.6 A super column family named n-gram ... 7	

Figure 1.7 Processing of data write request ... 8	

Figure 1.8 Write on cluster ... 11	

Figure 1.9 Read on one node .. 12	

Figure 1.10 Read on cluster .. 13	

Figure 2.11 Tomcat Web Application Manager ... 19	

Figure 2.12 Solr home page ... 20	

Figure 2.13 WAR file to deploy ... 21	

Figure 2.14 SolrCore Initialization Failures ... 22	

Figure 2.15 Tika-data-config.xml .. 23	

Figure 2.16 Token .. 28	

Figure 2.17 Nodes, Data centers and Racks ... 28	

Figure 2.18 Parameters of a ring when a node dies ... 33	

Figure 2.19 Dataimport interface ... 34	

Figure 2.20 Indexing results ... 34	

Figure 2.21 Make query: no occurrence of search string found ... 35	

Figure 2.22 Make query: 1558 occurrences found ... 37	

Figure 2.23 Average execution time .. 38	

Figure 3.24 Index creation module .. 45	

Figure 3.25 parseDocument method .. 45	

Figure 3.26 Extended methods ... 46	

Figure 3.27 Performance of index creation .. 47	

Figure 3.28 Java code to form the queries ... 49	

Figure 3.29 Listing of two queries, delimited by <top> and </top> .. 50	

Figure 3.30 All experiments for the 249th query: Average execution times 55	

Figure 3.31 All experiments for the 145th query: Average execution times 56	

	

v

Figure 3.32 All experiments for the 247th query: Average execution times 58	

Figure 3.33 All experiments for the 249th query ... 63	

Figure 3.34 Solr: Java code to form the queries ... 64	

Figure 3.35 testQuery module: Java code to execute a search query 65	

Figure 3.36 Excerpt of schema.xml ... 68	

Figure 3.37 All experiments for the 249th query: Average execution times 70	

Figure 3.38 All experiments for the 145th query: Average execution times 72	

Figure 3.39 All experiments for the 247th query: Average execution times 74	

vi

List	
 of	
 Tables	

Table 2.1 Performance of query execution .. 38	

Table 3.2 Average execution time of index creation module .. 46	

Table 3.3 Plan of Experiment no.1 ... 51	

Table 3.4 Plan of Experiment no.2 ... 51	

Table 3.5 Plan of Experiment no.10 ... 52	

Table 3.6 Percentage of hits by query groups .. 53	

Table 3.7 Experiment no.10: 249th query .. 54	

Table 3.8 All experiments for the 249th query .. 54	

Table 3.9 All experiments for the 145th query .. 56	

Table 3.10 All experiments for the 145th query: Linear regression analysis 57	

Table 3.11 All experiments for the 247th query .. 58	

Table 3.12 All experiments for the 247th query: Linear regression analysis 60	

Table 3.13 Experiments nos 9 and 10: Standard deviations of query execution times 62	

Table 3.14 Plan of Experiment no.1 ... 66	

Table 3.15 Plan of Experiment no.2 ... 66	

Table 3.16 Plan of Experiment no.10 ... 67	

Table 3.17 Aggregation of execution times for AND, OR operators 67	

Table 3.18 All experiments for the 249th query .. 69	

Table 3.19 All experiments for the 249th query: Linear regression analysis 71	

Table 3.20 All experiments for the 145th query .. 71	

Table 3.21 All experiments for the 247th query .. 73	

Table 3.22 All experiments for the 249th query: Linear regression analysis 75	

	

vii

Source	
 Code	
 Listings	

Listing A.1	
 Module testQueries .. 77	

Listing A.2	
 Module testQuery ... 77	

Listing A.3	
 Module endElement ... 77	

Listing A.4	
 Module testANDUnigram .. 79	

Listing A.5	
 Module removeStopWordsAndStem ... 80	

Listing A.6	
 Module parseDocument ... 80	

Listing A.7	
 Module splitPhraseBigram ... 81	

Listing A.8	
 Module splitPhraseTrigram .. 81	

Listing A.9	
 Module splitPhraseUnigram ... 81	

	
 1	

Introduction	

1.1 Objectives	

Today, one of important issues in database-oriented applications is searching on big volume
of data to satisfy user information needs. Large amount of available data raises other issues to
be addressed, particularly, the performance of query processing and the reliability of database
systems.

In research literature and in industry, different approaches to searching were published and
marketed to cope with those challenges. The contribution of this master thesis is to implement
a search solution which uses n-gram model to create inverted index in Apache Cassandra. The
performance of this implementation will then be compared with Apache Solr search engine.

In Section 1.2, n-gram at the word level will be discussed. Section 1.3 presents an indexing
technique called inverted file combined with n-gram model. Section 1.4 examines the
mechanism of read and write operations and how data consistency is maintained. In Section
1.5, a brief overview of Apache Solr will be given.

1.2 N-­‐gram	
 at	
 the	
 word	
 level	

N-gram is defined as “a sequence of variable characters that stands for a word or string of
words in a corpus” (Dictionary.com). More precisely, a corpus is extracted by sliding into
sequences with a fixed-length (n) without linguistic meaning.

Depending on application context and natural language, we choose n-gram’s parameters
(characters, words, stems) in order to obtain the desired search performance. For example,
each n-gram string consists of serial n characters for Asian languages such as Japanese,
Korean, and Chinese. In Latin languages, English for example, n-gram strings are extracted
based on words.

Let us consider the following text, “the weather is well today.” Then, 3-grams generated as
sequences of characters from this sentence are: “the”, “he ”, “e w”, …, “day”, “ay ”, “y ”.
3-grams based on words are: “# the weather”, “the weather is”, “weather is well”, “is well
today” and “well today #”. In this case, # is a special character added to the first 3-gram and
to the last one.

To resume, n-gram models can be imagined as placing a small window over a sentence or a
text, through which only n words or n characters are visible at the same time. For this
research, only words will be considered to build unigrams, bigrams, and trigrams. Unigram is

1.3	
 Inverted	
 file	
 indexing	

2

the simplest n-gram model. In fact, a search query used unigram gives a large volume of
results. It could be called irrelevant results, and n-gram starts to become interesting when n is
two (a bigram) or greater.

In the next section, we will discuss about the inverted file indexing based on n-gram model,
its problems that could occur, and how to eliminate those problems.

1.3 Inverted	
 file	
 indexing	

1.3.1 Indexing	
 based	
 on	
 n-­‐gram	
 model	

Indexes help speed up retrieval of data without scanning the entire dataset. We cannot predict
the search strings that people will use to query a database. Each word in a document could be
part of a potential search term. This suggests that indexing on words is a good strategy to
speed up retrieval of relevant documents.

In an inverted file, each entry consists of a key, its frequency of occurrences and the
associated document IDs. Each key can be atomic in unigram or complex in bigram, trigram.
Keys are case insensitive in this research.

To illustrate the n-gram and to explain how an inverted file is created, let’s assume a set of
two vietnamese documents identified by AP1, and AP2 as shown in Figure 1.1. The first text
‘hoc sinh hoc sinh hoc’ means ‘students study biology’, and the second
one means ‘Study ,study more ,study forever’.

Figure 1.1
Two vietnamese documents to be indexed

From the text of AP1, trigrams based on words are ‘hoc sinh hoc’, and ‘sinh hoc
sinh’. A full inverted file including unigrams, bigrams, and trigrams is shown in Figure 1.2.

Chapter	
 1	
 	
 Introduction	

3

As the length of texts, and the number of documents increase, the inverted file size is likely to
become bigger. One of the problems with n-grams is that a search query could yield an
excessive number of irrelevant matches. Indeed, some words are so common that almost
every document contains them, such as “a”, “the”, “it”, …; in certain domains, e.g.,
information technology, a set of domain-related words frequently appears, such as
‘computer’, ‘network’, … It is useless to index them. They are called stop words.
Irrelevant matches could be reduced, but not completely eliminated, by filling a list of
stopwords as much as possible for a given domain.

Another issue is that indexing words having the same root in natural language, verbs in
different tenses, nouns in singular and plural forms, could yield an excessively big inverted
file. To deal with this challenge, stemming is used to to reduce the inverted file size, and to
enhance thereby the performance of index.

For example, a stemming algorithm reduces:

- the words "fishing", "fished", "fish", and "fisher" to the root word, "fish";

- the words "argue", "argued", "argues", "arguing", and "argus" to the stem "argu";

- the words "argument" and "arguments" to the stem "argument".

1.3.2 Inverted	
 index	
 creation	

The procedure to create an inverted index from a set of data on 28'000 scientific papers is
pseudo-coded by the following algorithm:

Figure 1.2
Inverted file from documents AP1, and AP2

1.4	
 Cassandra	

4

For each document
 load its content
 remove stopwords from content
 stem related words
 create new document resulting from above operations
 create n-gram (unigram, bigram, trigram) from new document
 For each n-gram
 count frequency of occurrences
 create new entry (n-gram, docID, freq) in inverted file
 End For
End For

After processing all 28'000 documents, Cassandra contains an optimized inverted file in
which stopwords have been removed and related words stemmed.

1.3.3 Query	
 processing	

The procedure to process a query against Cassandra database is presented by the following
algorithm in pseudo code:

For each query
 remove stopwords from search string
 stem related words
 create new search string from above operations
 create n-gram (unigram, bigram, trigram) from new search string
 For each n-gram
 make a query on Cassandra database
 End For
 produce final query results using operator specified by user (AND,
OR)
End For

1.3.4 Ranking	
 of	
 results	

A search query execution might result in zero, one, or many documents. The occurrences of
the search string within each document found differ from one document to another. For this
reason, the search engine normally ranks the documents in decreasing order of the
occurrences in each document.

We will not discuss the details of the ranking mechanism, since this topic is out of our
research scope.

1.4 Cassandra	

1.4.1 Overview:	
 Cassandra,	
 a	
 NoSQL	
 approach	

Cassandra is a nonrelational database management system designed to run on clusters with
great flexibility. The design of nonrelational databases does not rely on relational schema. For
the proponents of the NoSQL database approach, NoSQL systems are more efficient than
relational database systems especially in "Big data" applications, scale much better and are
more flexible to adjust to changes in data structure. Indeed, in NoSQL database systems such
as Cassandra, new fields can be freely added to database records without having to redefine

Chapter	
 1	
 	
 Introduction	

5

first the data structure (schema). Scalability means that, for example, if a high volume of data
requires more processing power, then new machines can be added into the cluster without
stopping operation.

NoSQL data models can be categorized into four groups: key-value, document, column-family
and graph. Cassandra belongs to the column-family category. Column-family data model is
discussed in (Sadalage, Fowler, 2013).

Database in Cassandra is structured as columns. The column is the basic unit of storage. Each
column consists of a name-value pair where the name behaves as the key. Each name-value
pair is a single column always stored with a timestamp. The timestamp is used for many
purposes: data expiration, resolving write conflicts, dealing with stale data, etc.

We now study how Cassandra fulfills the three requirements stated in the CAP theorem
(Consistency, Availability and Partitioning) (Hewitt, 2011; Datastax Apache Cassandra 1.0
Documentation; Datastax FAQ).

- Consistency: All database clients will read the same value for the same query, even given
concurrent updates.

Cassandra has mechanism to synchronize up-to-date data on all replicas. Furthermore, tunable
consistency for client request is possible at different consistency levels for both read and write
depending on client requirements for response time versus data accuracy.

- Availability: All database clients will always be able to read and write data.

Cassandra is a distributed database management system designed for high availability and
fault tolerance. There is no single point of failure in Cassandra clusters thanks to automatic
data replication between nodes in the clusters, between physical server racks, between
geographically dispersed data centers.

- Partition Tolerance: Partition is a communications break between two nodes which are
both up. Partition tolerance means that the cluster continues to function even if there is a
partition between nodes.

Cassandra always offers partition tolerance. In the sense of CAP theorem, a system with high
partition tolerance and availability like Cassandra will give up some consistency in order to
do it.

Cassandra has a query language that supports SQL-like commands, known as Cassandra
Query Language (CQL). CQL has many more features for querying data but not all the
features that SQL has, for example, joins and sub-queries. Basic queries on Cassandra include
the GET, SET and DEL. The GET command is used to read data back from either a whole
column family or a desired column from the column family. If we want to update data or
create new ones, the SET command is used. With DEL command, we can delete either a
column or the entire column family.

1.4.2 Cassandra	
 data	
 model	

Let's define the main components of a data model in Cassandra: column, column family,
super column, and super column family.

1.4	
 Cassandra	

6

A Column is a tuple containing a name, a value and a timestamp represented by
name:value:timestamp. The following example gives a column with name
AP900101-0088, value 3, and timestamp 123456788.

{
name: AP900101-0088,
value: 3
timestamp: 123456788
}

For simplicity, the couple name:value will be used to define a column in our discussion.

A Column Family is a couple name:value, where name is the column family name
which is also called row key, and value is an array of columns as defined above. In Figure
1.4, the column family is named new:york, its value is an array containing three columns
sorted by column name.

A Super Column is a couple name:value, where name is the super column name, and
value is an array of column families as defined above. The array is sorted by column family
name. In Figure 1.5, the super column is named bigram, its value is an array of two column
families: new:york and york:usa.

Figure 1.3
A column without timestamp

Figure 1.4
Two column families with row keys new:york and york:usa

Chapter	
 1	
 	
 Introduction	

7

A Super Column Family is a couple name:value, where name is the super column
family name, and value is an array of super columns sorted by super column name. In Figure
1.6, the super column family name is n-gram, its value is an array containing three super
columns: bigram, trigram and unigram.

1.4.3 Cassandra	
 architecture	

The architecture of Cassandra is made of three building blocks: memtable, sstable, and
commitlog. These three components and their dependencies are best explained by
examining the mechanism of a WRITE operation in an individual node.

a.	
 commitlog	
 and	
 memtable	

Let's assume that a query contains the following data to be processed:
column_family_name;column_name:column_value, for example,
new:york;AP900101-0088:3.

When the above data write request (new:york;AP900101-0088:3) is sent to a
Cassandra node, two operations will take place (Figure 1.7).

- The first one is simple to understand: data are appended to the commitlog.

- The second operation affects a memtable whose contents are structured as column
families identified by column family name, also known as row key. Two cases must be
distinguished to process the data write request:

§ Case 1: The data contains a row key (new:york) already existing in memtable.

Figure 1.5
A super column named bigram

Figure 1.6
A super column family named n-gram

1.4	
 Cassandra	

8

- If the column name (AP900101-0088) already exists in the column family
identified by new:york, then that column will be updated with the new value 3
within column family.

- If AP900101-0088 does not exist, a new column AP900101-0088:3 will be
created in the new:york column family.

§ Case 2: memtable does not contain any column family whose row key is new:york. A
new column family will be created with column family name new:york and column
family value AP900101-0088:3 (one-element array).

commitlog acts as a crash recovery log for data. Once both commitlog and memtable
are written, the processing of data write request is successfully completed.

b.	
 sstable	

When memtable is full, its contents will be flushed into sstable which is located on disk.

An sstable, which stands for Sorted String Table, includes three structures as shown in
Figure 1.8 the data stored in file Data.db, a row index in Index.db and a bloom filter in
Filter.db. Each sstable owns two additional files, CompressionInfo.db, and
Statistics.db to store information about data compression, and statistics about row size,
column count, etc., respectively.

- Data in sstable are maintained per column family as in memtable. Since sstable
could not be changed, the next flushed data will be written to a new sstable.

Figure 1.7
Processing of data write request

Chapter	
 1	
 	
 Introduction	

9

- Bloom filter is used to perform key lookup efficiently.

Cassandra has an interesting background process called compaction whose purpose is to
prevent the degradation of read performance. Indeed, each data flush requires a new
sstable. Hence, a given column family could be flushed into several sstables. Thus, for
example, retrieving a column value with a given row key and column name might require
several reads. As the number of sstable increases, the read speed will deteriorate. To
prevent it, the compaction process merges sstables into a new sstable, and
recreates new corresponding indexes. Row keys will now be recorded at one and only one
place.

1.4.4 Write	
 in	
 Cassandra	

In this section, the write operation in Cassandra will be analyzed first in an individual node,
then in the entire cluster with a single data center.

a.	
 In	
 an	
 individual	
 node	

We will explain how a Cassandra node deals with the following three data write requests.
Note that the third request has the same row key as the first one, new:york.

write (new:york, AP900101-0088:3)
write (york:usa, AP900101-0088:3 AP900115-0021:1)
write (new:york, AP900101-0088:4 AP900112-0251:5 AP900115-0021:1)

The first request causes memtable and commitlog to be filled as follows:

memtable new:york, AP900101-0088:3

commitlog new:york, AP900101-0088:3

Executing the second request updates memtable and commitlog as follows:

memtable new:york, AP900101-0088:3
york:usa, AP900101-0088:3 AP900115-0021:1

commitlog new:york, AP900101-0088:3
york:usa, AP900101-0088:3 AP900115-0021:1

In the third request,

§ the column name AP900101-0088 in new:york column family already exists in
memtable. Therefore, only the corresponding column value needs to be updated from 3
to 4.

§ The two columns AP900112-0251:5 and AP900115-0021:1 are new.

1.4	
 Cassandra	

10

memtable and commitlog are updated as follows after processing the third request:

memtable new:york, AP900101-0088:4 AP900112-0251:5 AP900115-0021:1
york:usa, AP900101-0088:3 AP900115-0021:1

commitlog new:york, AP900101-0088:3
york:usa, AP900101-0088:3 AP900115-0021:1
new:york, AP900101-0088:4 AP900112-0251:5 AP900115-0021:1

Let's assume that memtable is now full, i.e., reaches a predefined threshold. At that
moment, its contents are flushed into a new sstable as shown belows along with the
creation of associated row index and bloom filter.

sstable new:york, AP900101-0088:4 AP900112-0251:5 AP900115-0021:1

york:usa AP900101-0088:3 AP900115-0021:1

Cassandra maintains a log to record all events which occur with write operations as shown in
the excerpt below:

INFO 00:57:41,234 flushing high-traffic column family
CFS(Keyspace='helen', ColumnFamily='ngram') (estimated 53706918 bytes)
 INFO 00:57:41,234 Enqueuing flush of Memtable-
ngram@965617323(1838366/53706918 serialized/live bytes, 63389 ops)
 INFO 00:57:41,235 Writing Memtable-ngram@965617323(1838366/53706918
serialized/live bytes, 63389 ops)
 INFO 00:57:41,719 Completed flushing
/var/lib/cassandra/data/helen/ngram/helen-ngram-hf-316-Data.db (1827443
bytes) for commitlog position ReplayPosition(segmentId=1363086294640,
position=19491818)

b.	
 In	
 the	
 cluster	

Let’s consider a cluster of 8 nodes numbered from 1 to 8 with replicator factor N = 3.

A data write request (new:york, AP900101-0088:3) is sent by a client to a node in the
cluster, say, node 7. Node 7 will send that data write request to each of N = 3 replica nodes
(say, nodes 1, 3 and 4 in Figure 1.7), then wait for their write success or failure responses.

Consistency level sets the number of successful writes before sending an acknowledgement to
the client. The possible values are: ANY, ONE, QUORUM, LOCAL_QUORUM,
EACH_QUORUM, ALL. For instance, if the consistency level is preset to:

§ ONE, at least one replica node must write successfully, i.e., both commitlog and
memtable of that node are written.

§ ALL, all three replica nodes must write successfully.

One node, say, node 1, dies and cannot receive the data write request from node 7. When
node 1 is back to life, Cassandra uses a hinted handoff technique to make available the
data write request to node 1 which will then process it.

Chapter	
 1	
 	
 Introduction	

11

Even if hinted handoff does not work, the stale data can be fixed by the read
repair or Anti-Entropy Node Repair features of Cassandra to maintain data
consistency.

1.4.5 Read	
 in	
 Cassandra	

In this section, the read operation in Cassandra will be presented first in an individual node,
then in the entire cluster with a single data center.

a.	
 In	
 an	
 individual	
 node	

Let’s assume that a query consists to retrieve a whole column family whose row key is, for
example, new:york.

The above read request is sent to a Cassandra node, which will return an array of columns
associated with the column family identified by new:york. This array is retrieved from the
combination of two sources: memtable, and one or more sstables. More precisely
(Figure 1.9),

§ first, memtable is scanned;

§ second, sstable will be searched for row key new:york using bloom filter to
determine efficiently whether or not new:york exists in sstable. If new:york
exists, data to be retrieved will be located by row index.

Cassandra architecture is so designed to optimize read performance for data retrieval.

Figure 1.8
Write on cluster

1.4	
 Cassandra	

12

b.	
 In	
 the	
 cluster	

Let’s consider a cluster of 8 nodes numbered from 1 to 8 with replicator factor N = 3.

A data read request to retrieve a whole column family whose row key is, for example,
new:york, is sent by a client to a node in the cluster, say, node 7. N = 3 alive replica nodes
(1, 3 and 4) will be sorted by proximity thanks to snitch. Node 7 will act as
StorageProxy and must perform the following tasks (see Figure 1.10):

§ sends the read request to retrieve the column family identified by new:york to the
nearest node, say, node 1;

§ sends digest requests to other nodes;

Then, node 1 will return the whole new:york column family, i.e., actual data. Node 3 and 4
return a digest data which is a hash of the columns, their values, timestamps and other
meta-data. Node 7 will compare digest data with actual data. If there is a perfect match,
Cassandra will not perform read repair. If digest and actual data do not match,
Cassandra has to read full column family from digest replicas and make update to out-of-date
replicas based on timestamp. This mechanism always runs in the background to ensure
data consistency in the cluster.

Figure 1.9
Read on one node

Chapter	
 1	
 	
 Introduction	

13

Consistency level sets the number of successful reads before sending query results to the
client. The possible values are: ONE, TWO, THREE, QUORUM, LOCAL_QUORUM,
EACH_QUORUM, ALL. For instance, if the consistency level is preset to:

§ ONE: query results returned from node 1 is sufficient.

§ QUORUM: for N = 3, (3 / 2) + 1 = 2 replica nodes will be requested to read actual data.
This means that either node 3 or 4 must also read actual data.

§ ALL: nodes 1, 3, and 4 will be requested to read actual data. Then node 7 will compare and
take the most recent data as query results. If one of three nodes crashes, the read operation
fails.

Normally, Cassandra depends on OS to cache sstable files. Hence, we can speed up read
operations by adding RAM to store information that is in use or used most recently, and
enabling the various caches that Cassandra has.

Memory pressure is frequently encountered during read and write operation if Cassandra is
not configured appropriately. When such error occurs, a warning message displays with the
instructions to solve that incident.

WARN 18:58:49,862 Heap is 0.7574948846581447 full. You may need to
reduce memtable and/or cache sizes. Cassandra will now flush up to the
two largest memtables to free up memory. Adjust
flush_largest_memtables_at threshold in cassandra.yaml if you don't
want Cassandra to do this automatically
 WARN 18:58:49,862 Flushing CFS(Keyspace='helen', ColumnFamily='ngram')
to relieve memory pressure

1.4.6 Delete	
 in	
 Cassandra	

Let’s assume that a delete query contains the row key new:york of a column family to be
deleted from the database.

Figure 1.10
Read on cluster

1.5	
 Solr	

14

As sstable is immutable, Cassandra cannot simply remove a new:york column family
from the sstable. The following operations will be carried out instead:

§ Cassandra updates the column family value, i.e., each value in the array of columns, with a
special value called tombstone.

§ Later, the column family identified by new:york will be removed after a compaction
process which runs at predefined time interval. Two situations may occur during a delete
request:

Situation 1: One replica node crashes. Other remaining replica nodes have tombstone
value in new:york column family.

Situation 2: One replica node is down longer than the predefined compaction time interval
gc_grace_seconds (default: 10 days). Data repair must be performed by administrators
on every node in the cluster to prevent to tombstone data to reappear.

1.5 Solr	

As Jonathan Ellis said in his interview about 'Integrating Enterprise Search with Analytics' on
April 16, 2012, Solr is a gold standard for search.

Solr is an open source enterprise search platform based on the powerful Lucene Search
Library. Solr's major features include "power full-text search, hit highlighting, faceted search,
dynamic clustering, database integration, rich document (e.g., Word, PDF) handling, and
geospatial search" (Apache Solr).

- Web services: Solr is a Java-based web application, but the users don’t need to have any
knowledge about Java, and can invoke Lucern Search in any programming language.

- Faceting: A facet represents a specific perspective on content that is typically clearly
bounded and mutually exclusive. The combination of all facets and values are often called a
faceted taxonomy. Faceted search allows users to customize their own custom navigation by
combining various perspectives. Take an example of a tourist who would like to plan his
vacation trip in Vietnam: "Destination" facet (values: Sud, Middle, South), "Duration" facet
(values: 3, 7, 14 days), "Transportation" facet (values: by air, by car, by train). He could
combine values from different facets to drill into search results.

- Easy configuration: Only two XML files, schema.xml and solrconfig.xml, must be edited in
order to declare fields to be indexed and their characteristics.

Administration interface: It facilitates the routine tasks such as data loading, index replication,
monitoring, logging and cache management

	
 2	

Environment	
 Setup	
 and	
 Tests	

2.1 Introduction	

In this master thesis, a full-text index on Cassandra will be created, then its performance will
be compared to the index of Solr search engine. The full-text index on Cassandra will use two
indexing techniques, n-gram and reverse.

To this end, an environment must be set up on a computer running Ubuntu, which consists of
four tasks:

- Task 1: Check for correct version of Java.
- Task 2: Install Tomcat web server.
- Task 3: Install Solr search engine on Tomcat web server.
- Task 4: Install Cassandra

2.2 Task	
 1:	
 Check	
 for	
 correct	
 version	
 of	
 Java	

Solr is written in Java. Hence, Java Runtime is a prerequisite. For Solr 1.4, we must ensure
that the installed Java version be at least 1.6. The following check shows that our Java version
1.7.0 is correct.

martin@ubuntu:~$ java -version
java version "1.7.0"
Java(TM) SE Runtime Environment (build 1.7.0-b147)
Java HotSpot(TM) Server VM (build 21.0-b17, mixed mode)

2.3 Task	
 2:	
 Install	
 Tomcat	
 web	
 server	

Solr is a component installed on a web server which could be Jetty, Resin or Tomcat. The
latter was selected for this research project.

From the terminal under Ubuntu, the command sudo apt-get install tomcat7 will
install Tomcat 7.0. After installation, the following command is issued with administrator
privilege to open tomcat-user.xml for editing.

2.4	
 Task	
 3:	
 Install	
 Solr	
 search	
 engine	
 on	
 Tomcat	
 web	
 server	

16

martin@ubuntu:/etc/tomcat7$ sudo gedit tomcat-users.xml

The above XML file must now be edited to enable the manager login as user “tomcat” with
password “tomcat” (insecure). To this end, the appropriate lines must be uncommented by
removing <!-- and --> . Of course, usernames and passwords can be added or modified as
needed.

<!--
 <role rolename="manager"/>
 <role rolename="admin"/>
 <user username="tomcat" password="tomcat" roles="manager,admin"/>
-->

Finally, Tomcat must be restarted for the changes to take effect:

martin@ubuntu:/etc/init.d$ sudo ./tomcat7 restart

Our Tomcat web server is now ready for use.

Note: The installation process of Tomcat creates a directory /tomcat7 under /etc, and a
number of standard subdirectories under /etc/tomcat7.

2.4 Task	
 3:	
 Install	
 Solr	
 search	
 engine	
 on	
 Tomcat	
 web	
 server	

During the course of this master project, two versions of Solr were released. There was
practically no support for those versions. On the Net, Solr users community do exchange
experiences to solve installation and configuration problems. However, most solutions are not
applicable to a specific environment. One must proceed and learn by trial and error.

Therefore, Task 3 will describe two completely different installation and configuration
procedures based on the author's own experience with the Beta and Official releases.

2.4.1 Install	
 Solr	
 Beta	
 (apache-­‐solr-­‐4.0.0-­‐BETA)	

There are two ways to package webapps for deployment in Tomcat, using either the system
instance or your own instance. In this project, the system instance was chosen to deploy Solr
in order to benefit from webapp autodeployment by Tomcat, i.e., once started, Tomcat will
automatically pick up Solr.

Let's assume that two Solr webapps must be created: one for development and another for
production, i.e., two instances of Solr side-by-side. Furthermore,

- the Solr installation directory will be /usr/share/solr,

- and during the installation process, the deployment descriptor files (solrdev.xml and
solrprod.xml) will be placed in /etc/tomcat7/Catalina/localhost.

§ Step 1: download Solr

Chapter	
 2	
 	
 Environment	
 Setup	
 and	
 Tests	

17

The latest version of Solr search engine can be downloaded at
http://www.apache.org/dyn/closer.cgi/lucene/solr/. Then, the downloaded product is
decompressed by executing successively gunzip and tar xvf into a temporary directory
apache-solr-4.

After decompression, a WAR file called apache-solr-4.0.0-BETA.war must be
present in directory /apache-solr-4/dist. For ease of use during Solr installation, it is
recommended to shorten apache-solr-4.0.0-BETA.war to solr.war.

§ Step 2: create Solr directory trees

In order to create development and production Solr webapps, two directory trees are now
created manually under /etc/tomcat7:

/etc/tomcat7/data/solr

/etc/tomcat7/data/solr/prod
/etc/tomcat7/data/solr/prod/collection1
/etc/tomcat7/data/solr/prod/collection1/data
/etc/tomcat7/data/solr/prod/collection1/conf

/etc/tomcat7/data/solr/dev
/etc/tomcat7/data/solr/dev/collection1
/etc/tomcat7/data/solr/dev/collection1/data
/etc/tomcat7/data/solr/dev/collection1/conf

As shown above, within /data/solr, two Solr locations with identical directory structure
are defined: one for development (/dev), another for production (/prod). /collection1
contains two subdirectories data and conf. While conf contains configuration files of a
given instance, the data subdirectory will be used by Solr to write indexes and logs.

§ Step 3: move solr.war to a shared location

The solr.war file is copied from the temporary directory /apache-solr-4/dist into
/usr/share/solr:

martin@ubuntu:~/Downloads/apache-solr-4/dist$ cp solr.war
/usr/share/solr/solr.war

/usr/share/solr is a shared directory from which solr.war file will be invoked by as
many instances as needed, e.g., by a development instance and a production instance.

§ Step 4: create two descriptor files

The two deployment descriptor files (solrdev.xml and solrprod.xml) must be created
in system-wide instance at location /etc/tomcat7/Catalina/localhost as
specified at the beginning of section 2.4.1.

First, open the directory /etc/tomcat7/Catalina/localhost:

2.4	
 Task	
 3:	
 Install	
 Solr	
 search	
 engine	
 on	
 Tomcat	
 web	
 server	

18

martin@ubuntu:~$ cd /etc/tomcat7/Catalina/localhost

create solrdev.xml for the development instance

martin@ubuntu:/etc/tomcat7/Catalina/localhost$ gksudo gedit solrdev.xml

- line 2: solrdev Tomcat Context fragment points docBase to the shared directory (see Step 3)
/usr/share/solr/solr.war

- line 3: in the environment, the location of solr/home is
/etc/tomcat7/data/solr/dev.

create solrprod.xml for the production instance

martin@ubuntu:/etc/tomcat7/Catalina/localhost$ gksudo gedit
solrprod.xml

- line 2: solrdev Tomcat Context fragment points docBase to the shared directory (see Step 3)
/usr/share/solr/solr.war

- line 3: in the environment, the location of solr/home is
/etc/tomcat7/data/solr/prod.

§ Step 5: set write permission on Solr output directories

All results (indexes, logs) will be output by Solr webapp into /collection1/data of
production and development instances, respectively. Therefore, write permission must be set
on /etc/tomcat7/data/solr/prod/collection1/data and
/etc/tomcat7/data/solr/dev/collection1/data by the following commands:

martin@ubuntu:~$ sudo chmod 757 -R
/etc/tomcat7/data/solr/prod/collection1/data
martin@ubuntu:~$ sudo chmod 757 -R
/etc/tomcat7/data/solr/dev/collection1/data

Chapter	
 2	
 	
 Environment	
 Setup	
 and	
 Tests	

19

§ Step 6: launch Solr

Restart Tomcat. Solr instances will be picked up automatically by Tomcat as system instance.

If we now access the Tomcat Web Application Manager, we will see two paths, /solrdev
and /solrprod, from which applications may be launched in either development or
production instance (Figure 2.11).

§ Step 7: Configure production and development instances

Of course, the configuration may be performed by the brute force approach through manual
editing several required files in XML, TXT, JavaScript, and so on. However, time can be
saved by using the sample configuration files bundled with the Solr distribution and located at
/example/solr/conf in the temporary download directory /apache-solr-4.

There are two important sample configuration files required to run an instance,
schema.xml and solrconfig.xml.

The following sequences of commands are used to copy the sample configuration files into
the destination directories of development and production instances, respectively.

martin@ubuntu:~$ cp -R * /etc/tomcat7/data/solr/dev/conf
martin@ubuntu:~$ cp -R * /etc/tomcat7/data/solr/prod/conf

Once copied, we now have the basic configuration files which must be then edited to fulfill
our needs. After restarting Tomcat with the proper configuration files, Solr home page will be
displayed as shown in Figure 2.12.

Figure 2.11
Tomcat Web Application Manager

2.4	
 Task	
 3:	
 Install	
 Solr	
 search	
 engine	
 on	
 Tomcat	
 web	
 server	

20

2.4.2 Install	
 Solr	
 Official	
 (apache-­‐solr-­‐4.2.1)	

§ Step 1: Download Solr

The latest version of Solr search engine can be downloaded at
http://lucene.apache.org/solr/downloads.html. Then, the downloaded product is decompressed
by executing successively gunzip and tar xvf into a temporary directory apache-solr-
4.2.1. After decompression, a WAR file called apache-solr-4.2.1.war must be present
in directory /apache-solr-4.2.1/dist.

§ Step 2: Deploy apache-solr-4.2.1.war into Tomcat7 web server

- First, launch the Tomcat Web Application Manager at localhost:8080/manager/html.

- Go to WAR file to deploy under Deploy section (Figure 2.13)

- In the field Select WAR file to upload, click <browse> to navigate to the /apache-solr-
4.2.1/dist directory, and choose apache-solr-4.2.1.war.

- Click <Deploy>

Figure 2.12
Solr home page

Chapter	
 2	
 	
 Environment	
 Setup	
 and	
 Tests	

21

Upon successful deployment, Tomcat manager displays a new line giving the following
information under Applications section:

- Path: /apache-solr-4.2.1
- Display Name:
- Running: true
- Sessions: 0
- Commands: Start, Stop, Reload, Undeploy

§ Step 3: Set up Solr home

- Navigate to the Tomcat directory $TOMCAT_PATH, i.e., /usr/local/apache-
tomcat-VERSION.

- The original file $TOMCAT_PATH/webapps/apache-solr-4.2.1/WEB-
INF/web.xml contains the following section:

<!--
<env-entry>
 <env-entry-name>solr/home</env-entry-name>
 <env-entry-value>/put/your/solr/home/here</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
</env-entry>
-->

- Edit this section as follows:
(a) remove the comment lines <!-- and -->
(b) replace /put/your/solr/home/here by your Solr home, i.e., for this research:
$SOLR_HOME=/usr/local/apache-solr-4.2.1/example/example-
DIH/solr.

§ Step 4: Configure Solr instance

Normally, clicking on the path /apache-solr-4.2.1 under the Applications section of
Tomcat Web Application Manager will navigate to Solr home page. However, since
configuration is not yet done, this will result in SolrCore Initialization
Failures,as shown in Figure 2.14.

Figure 2.13
WAR file to deploy

2.4	
 Task	
 3:	
 Install	
 Solr	
 search	
 engine	
 on	
 Tomcat	
 web	
 server	

22

Configuring Solr instance involves editing three files: solrconfig.xml, schema.xml,
and tika-data-config.xml.

a. solrconfig.xml

solrconfig.xml contains most of configuration parameters for Solr.

 <lib dir="../../../../contrib/extraction/lib" />
 <lib dir="../../../../contrib/dataimporthandler/lib/" regex=".*jar$"
/>
 <lib dir="../../../../dist/" regex="apache-solr-dataimporthandler-
.*\.jar" />

Edit the original version by replacing all occurrences ../../../../ with absolute path
/usr/local/apache-solr-4.2.1/ which contains subfolders /contrib and
/dist

Let's note that solrconfig.xml contains another important section for data import. This
section refers to an xml file tika-data-config.xml which does not work in our
environment. Therefore, it will be created from scratch later in section (c) below.

 <requestHandler name="/dataimport"
class="org.apache.solr.handler.dataimport.DataImportHandler">
 <lst name="defaults">
 <str name="config">tika-data-config.xml</str>
 </lst>
 </requestHandler>

b. schema.xml

schema.xml contains all of the details about which fields documents that will be imported
can contain, and how those fields should be dealt with when adding documents to the index,
or when querying those fields.

In this research, the xml documents which will be imported have the following simple
structure:

Figure 2.14
SolrCore Initialization Failures

Chapter	
 2	
 	
 Environment	
 Setup	
 and	
 Tests	

23

<FILE>
<DOC>
<DOCNO> … </DOCNO>
<TEXT> … <TEXT>
</DOC>
</FILE>

Therefore, schema.xml must be edited to include DOCNO, TEXT as fields and TEXT as
default search field.

<fields>
 <field name="DOCNO" type="string" indexed="true" stored="true"/>
 <field name="TEXT" type="text" indexed="true" stored="true" />
</fields>
 <!-- field for the QueryParser to use when an explicit fieldname is
absent -->
 <defaultSearchField>TEXT</defaultSearchField>

c. tika-data-config.xml

The following listing shows the contents of tika-data-config.xml created from
scratch, since the original version only works for specific purposes different from this
research.

Figure 2.15 shows Tika-data-config.xml file that indices Solr server connect to datasource as
explained below:

Figure 2.15
Tika-data-config.xml

2.5	
 Task	
 4:	
 Install	
 Apache	
 Cassandra	
 database	
 management	
 system	

24

- line 2: FileDataSource: use to read from local files. The file is read with the default
platform encoding. It can be overridden by specifying the encoding in solrconfig.xml.

- line 5: FileListEntityProcessor: An EntityProcessor instance which can stream file names
found in a given base directory matching patterns and returning rows containing file
information.

It supports querying a give base directory by matching:

- regular expressions to file names
- excluding certain files based on regular expression
- last modification date (newer or older than a given date or time)
- size (bigger or smaller than size given in bytes)
- recursively iterating through sub-directories

Its output can be used along with FileDataSource to read from files in file systems.

- line 6: File type is XML file.

- line 7: The XML input files are located at /usr/local/apache-solr-
4.2.1/APXML/xmlfiles/

- line 10: The primary key for the entity is DOCNO. It is optional and only needed when
using delta-imports.

- line 13: XPathEntityProcessor: uses a streaming xpath parser to extract values out of
XML documents. It is typically used in conjunction with FileDataSource.

- line 14: /FILE/DOC demarcates a record.

- line 16 and line 17: two elements will be read.

2.5 Task	
 4:	
 Install	
 Apache	
 Cassandra	
 database	
 management	

system	

2.5.1 Install	
 apache-­‐cassandra-­‐1.0.12	

This version is released on 4th October 2012.

Step 1: Perform pre-installation operations

It is necessary to upgrade Ubuntu system software in order to avoid some conflicts caused by
Cassandra new installation. The following commands are issued sequentially to upgrade the
software.

martin@ubuntu:~$ sudo apt-get update
martin@ubuntu:~$ sudo apt-get upgrade

Then, Ubuntu must be told where to look for the Cassandra installation package, since the
package is not in the standard Ubuntu repositories. To this end,

Chapter	
 2	
 	
 Environment	
 Setup	
 and	
 Tests	

25

- open sources.list which provides information about the location of packages for
Ubuntu

martin@ubuntu:~$ gksudo gedit /etc/apt/sources.list

- append the following two lines to sources.list.

deb http://www.apache.org/dist/cassandra/debian 10x main
deb-src http://www.apache.org/dist/cassandra/debian 10x main

The 10x argument tells APT (Advanced Packaging Tool) to install the 1.0.x branch of
Cassandra. The latest Cassandra release is 1.1.6. To install this version, the .../debian
10x main must be change to.../debian 11x main.

- save sources.list

- run sudo apt-get update to update the system software. An error will absolutely
occur with the following message giving an important information: the GPG Public Key
value.

W: GPG error: http://www.apache.org unstable Release: The following
signatures couldn't be verified because the public key is not available:
NO_PUBKEY F758CE318D77295D

- issue the following three commands to add the repository's GPG Public Key

martin@ubuntu:~$ gpg --keyserver wwwkeys.eu.pgp.net --recv-keys
F758CE318D77295D
martin@ubuntu:~$ sudo apt-key add ~/.gnupg/pubring.gpg
martin@ubuntu:~$ sudo apt-get update

Step 2: Install Cassandra

martin@ubuntu:~$ sudo apt-get install cassandra

Step 3: Configure Cassandra (single node)

In order to avoid conflicts with other programs, the port number and host of Cassandra could
be changed by editing the file cassandra.yaml.

martin@ubuntu:/etc/cassandra$ gksudo gedit cassandra.yaml

Change listen_address, rpc_address and seeds to 134.21.245.168 which must be
the same as IP Address of the computer where Cassandra is installed. Also, rpc_port could
be changed if needed.

2.5	
 Task	
 4:	
 Install	
 Apache	
 Cassandra	
 database	
 management	
 system	

26

listen_address: 134.21.245.168
rpc_address: 134.21.245.168
- seeds: 134.21.245.168
rpc_port: 9160

Step 4: Start Cassandra

Cassandra should be restarted for the changes to take effect:

(a) start Cassandra as a Service

martin@ubuntu:/etc/init.d$ sudo ./cassandra start

(b) start Cassandra as a Stand-Alone process

martin@ubuntu:$ cd $CASSANDRA_HOME
martin@ubuntu:$ sh bin/cassandra -f

Cassandra version can be checked by the command /bin/cassandra-cli. In the
following, the actual Cassandra version is 1.0.12 corresponding to the argument 10x that was
set before Cassandra installation (see Step 1).

martin@ubuntu:/bin$ cassandra-cli
Welcome to Cassandra CLI version 1.0.12

Type 'help;' or '?' for help.
Type 'quit;' or 'exit;' to quit.

[default@unknown]

When connecting to Cassandra, there are two frequent problems that cause the connection to
fail (connection refused error):

- the previous Cassandra process has not been killed
- the cassandra.yaml file has not been correctly edited (see Step 3)

The following command could be used to verify whether Cassandra is listening on the right
address.

martin@ubuntu:/etc/init.d$ netstat -ant | grep 9160
tcp 0 0 134.21.245.168:9160 0.0.0.0:*
LISTEN

The above response shows that Cassandra is listening on the address 134.21.245.168,
port number 9160 that was set in Step 3.

Chapter	
 2	
 	
 Environment	
 Setup	
 and	
 Tests	

27

Step 5: Stop Cassandra

To stop the Cassandra process, find the Cassandra Java process ID (PID), and then kill -9 that
process using its PID. There are several ways to find a PID, e.g., via JConsole. For example,
the following command kills the process with PID 1539.

martin@ubuntu:$ kill -9 1539

2.5.2 Configure	
 Cassandra	
 multi-­‐node	
 cluster	

a.	
 Terminology:	
 multi-­‐node	
 cluster	
 and	
 related	
 concepts	

The planning, configuration and deployment of a multi-node cluster require a thorough
understanding of important related concepts which will be briefly discussed in this section.

A multi-node cluster is a group of one or more connected nodes.

In Cassandra, each data center has a name and can span one or more nodes in the cluster. A
data center is also a replication group.

A number of related stable nodes will be chosen as seeds. Each data center should have more
than one seed node. At least one seed from the seed node list must be contacted by each
newly created node to be able to find each other and to allow information exchange between
nodes using Gossip mechanism.

The rack configuration allows Cassandra to optimize replica placement for better fault
tolerance. For example, the rack configuration can tell Cassandra to keep replicas on different
racks, so that, if one rack is down, data will not be lost.

A snitch defines how nodes are grouped into data centers and racks for write and read
operations and informs Cassandra about the network topology for efficient routing of
requests. Furthermore, a snitch allows Cassandra to distribute replicas among racks. There are
three available snitches: SimpleSnitch, RackInferringSnitch and PropertyFileSnitch.

Each node in the cluster owns a part of token range from 0 to 2^127-1. If the Nth node in the
cluster has token value T(N), the node owns range from T(N-1)+1 to T(N). Cassandra decide
nodes where a data should be stored based on the consistent mapping of the row key and
token range. (ref: http://wiki.apache.org/cassandra/GettingStarted)

2.5	
 Task	
 4:	
 Install	
 Apache	
 Cassandra	
 database	
 management	
 system	

28

The ring is a range mapping formed by the server token values which are stored and wrap
around.

b.	
 Configure	
 a	
 4-­‐node	
 cluster	
 with	
 a	
 single	
 data	
 center	

§ Step 1: Collect information on the cluster and network topology

First, we will configure a multi-node cluster, then data centers will be defined, giving a multi-
data center cluster. To this end, the following cluster characteristics must be defined and
collected:

- Cluster name: ?
- How many nodes the cluster will have?
- Node names?
- How many nodes per data center (or replication group)?
- Seed nodes?
- The IP address of each node?
- The token for each node?
- The chosen snitch?

Figure 2.16
Token

4-­‐node	
 cluster

NodeA

NodeB

NodeC

NodeD

Rank	
 1

Rank	
 1

Rank	
 2Rank	
 2

Figure 2.17
Nodes, Data centers and Racks

Data	
 center	
 1

Rack	
 1 Rack	
 2

NodeA

NodeB

NodeC

NodeD

Chapter	
 2	
 	
 Environment	
 Setup	
 and	
 Tests	

29

For example, a 4-node cluster must be configured spanning 2 racks in a single data center.

- The cluster name is 4-node Cluster

- The cluster has 4 nodes: nodeA, nodeB, nodeC, nodeD

- The single data center has 4 nodes.

- There are two seed nodes: nodeA and nodeC

- The IP addresses of nodes as the following:

nodeA: 192.168.0.20 (seed1)
nodeB: 192.168.0.12
nodeC: 192.168.0.22 (seed2)
nodeD: 192.168.0.10

- The token for each node will be calculated later in Step 2

- The SimpleSnitch is chosen for our single data center deployment

Step 2: Calculate 4 tokens for the new nodes in the cluster

Each Cassandra node is assigned a token at startup. A token can be set either by assigning
explicitly a value to the initial_token property in the cassandra.yaml
configuration file, or automatically via the bootstrap process.

The explicit value of initial_token is calculated by carrying out the following four
operations:

(a) Create a blank file called tokengentool which stands for "token generator tool"

vi tokengentool

(b) Insert the following Python statements into tokengentool. This piece of program
requires the user to enter the number of nodes in the cluster. The program then generates the
values of initial_token from 0 to 2^127-1 which will be displayed on screen.

#! /usr/bin/python
import sys
if (len(sys.argv) > 1):
 num=int(sys.argv[1])
else:
 num=int(raw_input("How many nodes are in your cluster? "))
for i in range(0, num):

 print 'token %d: %d' % (i, (i*(2**127)/num)))

2.5	
 Task	
 4:	
 Install	
 Apache	
 Cassandra	
 database	
 management	
 system	

30

(c) Save and close the file, then make it executable by the following chmod command:

martin@ubuntu:$ chmod +x tokengentool

(d) Run tokengentool:

./tokengentool

When the question "How many nodes are in your cluster?" displays, enter the total number of
nodes in the cluster, e.g., 4 in our example. The computed values of tokens are listed on
screen as below:

token 0: 0
token 1: 42535295865117307932921825928971026432
token 2: 85070591730234615865843651857942052864
token 3: 127605887595351923798765477786913079296

Note that the value of the first token is always zero.

Step 2: Configure each node in the 4-node cluster

The configuration parameters are defined in cassandra.yaml. This is an important
configuration file which must be present for each node at location
$CASSANDRA_HOME/conf/. In this step, cassandra.yaml is edited to include cluster
configuration data collected in the previous steps. Any change to this file requires the node to
be restarted. The following four examples give some main configuration parameters of
NodeA, NodeB, NodeC and NodeD excerpted from their respective cassandra.yaml.

- The seed provider maintains a comma-delimited list of hosts (contact points) that Cassandra
nodes use to find each other and learn the topology of the ring.

- The listen address indicates IP address or associated hostname that other Cassandra nodes
use to connect to this node.

- The rpc address is for remote procedure calls from client connections.

NodeA:

cluster_name: ‘4-node Cluster’
initial_token: 0
seed_provider:
 - seeds: "192.168.0.20,192.168.0.22"
listen_address: 192.168.0.20
rpc_address: 192.168.0.20

endpoint_snitch: SimpleSnitch

Chapter	
 2	
 	
 Environment	
 Setup	
 and	
 Tests	

31

NodeB:

cluster_name: ‘4-node Cluster’
initial_token: 127605887595351923798765477786913079296
seed_provider:
 - seeds: "192.168.0.20,192.168.0.22"
listen_address: 192.168.0.12
rpc_address: 192.168.0.12
endpoint_snitch: SimpleSnitch

NodeC:

cluster_name: ‘4-node Cluster’
initial_token: 85070591730234615865843651857942052864
seed_provider:
 - seeds: "192.168.0.20,192.168.0.22"
listen_address: 192.168.0.22
rpc_address: 192.168.0.22
endpoint_snitch: SimpleSnitch

NodeD:

cluster_name: ‘4-node Cluster’
initial_token: 42535295865117307932921825928971026432
seed_provider:
 - seeds: "192.168.0.20,192.168.0.22"
listen_address: 192.168.0.10
rpc_address: 192.168.0.10
endpoint_snitch: SimpleSnitch

Step 3: Start Cassandra 4-node cluster

There are two ways to start/restart the cluster: as a Service or as a Stand-Alone process.

(a) issue the following command on each node to start Cassandra as a Service

martin@ubuntu:/etc/init.d$ sudo ./cassandra start

(b) issue the following command on each node to start Cassandra as a Stand-Alone process

martin@ubuntu:$ cd $CASSANDRA_HOME
martin@ubuntu:$ sh bin/cassandra -f

Step 4: Check node health

At any time, the health of each cluster node could be checked either via JConsole which
has a user-friendly GUI, or via the nodetool utility which is a command line interface.
Since JConsole consumes a significant amount of system resources, nodetool utility is

2.5	
 Task	
 4:	
 Install	
 Apache	
 Cassandra	
 database	
 management	
 system	

32

preferred and explained in detail below. The readers who are interested in JConsole could
visit http://www.datastax.com/docs/1.0/operations/monitoring.

Let's recall that $CASSANDRA_HOME is set to /usr/local/apache-cassandra-
1.1.6 in our configuration. In $CASSANDRA_HOME/bin, there are many utilities for
cluster management, SSTable monitoring, node checking, etc.

The nodetool utility provides commands for viewing table metrics, server metrics, and
compaction statistics. The utility also includes decommissioning a node, repair ring node, and
moving partitioning tokens.

A given node is considered healthy if the command nodetool info executes successfully
by displaying all parameter values of that node as shown below, otherwise the command fails
with an error message Connection refused.

root@ubuntu:/usr/local/apache-cassandra-1.1.6/bin# nodetool info
Token : 82077673235279609097885452317579849321
Gossip active : true
Thrift active : true
Load : 2.43 GB
Generation No : 1368717669
Uptime (seconds) : 18943
Heap Memory (MB) : 399.05 / 2008.00
Data Center : datacenter1
Rack : rack1
Exceptions : 0
Key Cache : size 672 (bytes), capacity 104857584 (bytes), 17 hits,
19 requests, 0.846 recent hit rate, 14400 save period in seconds
Row Cache : size 0 (bytes), capacity 0 (bytes), 0 hits, 0
requests, NaN recent hit rate, 0 save period in seconds

The nodetool utility can also be used to check the health of the ring as shown in Figure
2.18.

- Status column shows whether or not that node is available.

- The Effective-Ownership column indicates the percentage of the ring (keyspace)
handled by that node.

- As a ring, the first and the last token are the same.

Chapter	
 2	
 	
 Environment	
 Setup	
 and	
 Tests	

33

2.6 Task	
 5:	
 Put	
 the	
 system	
 to	
 work	

2.6.1 Query	
 with	
 Solr	

The test will be carried out in three steps:

Step 1: import a large volume of data about 10’000 scientific papers: author, paper’s content,
year of publication, etc.

Step 2: make queries using search criteria based on keywords or any character strings.

Step 3: record search performance data into an Excel file for later comparison with Cassandra
performance.

Step	
 1:	
 import	
 data	

- Raw data about 10'000 scientific papers are downloaded from a server of the Department of
Informatics (diuflx09.unifr.ch), then converted into XML files of 1'000 records each.
A record contains data pertaining to one scientific paper.

- Move those XML files into /usr/local/apache-solr-
4.2.1/APXML/xmlfiles/. This directory must be the same as defined by the value of
baseDir in tika-data-config.xml (see Section 2.4.2.).

- In the Apache Solr navigator (Figure 2.19), scroll to tika core, then click on Dataimport
to display the Dataimport interface.

- Choose full-import command from the popup menu which offers two alternatives
(full-import, delta-import).

- Finally, click on <Execute Import> blue button, and wait until import be completed.

Figure 2.18
Parameters of a ring when a node dies

2.6	
 Task	
 5:	
 Put	
 the	
 system	
 to	
 work	

34

- During data import, an index is created from the 10'000 records. Figure 2.20 shows that
10'000 records (documents) from 10 files (Fetched 10'010 - 10'000 = 10) were processed.

Step	
 2:	
 make	
 query	

As shown in Figure 2.21:

- Enter the search string “per capita alcohol consumption” into the field labeled
'q'. Note that by default, the line <solrQueryParser defaultOperator="OR"/>
in schema.xml tells Solr that it must search "per OR capita OR alcohol OR
consumption". Of course, the defaultOperator can be changed to "AND" manually.

- Select xml as output format in the field labeled 'wt'. Other proposed formats are json,
python, ruby, php, csv.

Figure 2.19
Dataimport interface

Figure 2.20
Indexing results

Chapter	
 2	
 	
 Environment	
 Setup	
 and	
 Tests	

35

- Click <Execute Query> blue button.

Solr displays the document tree of an XML file resulting from the search, and containing two
interesting information:

- The line <int name="QTime">7</int> tells us that the query execution takes 7
milliseconds.

- The line <result name="response" numFound="0" start="0"/> tells us
that Solr did not find any occurrence of “per capita alcohol consumption”.

For the author who knows that there is at least one occurrence of that search string, the above
query result is evidently incorrect. By experience with Solr, the author also observes that this
error systematically occurs at every first query.

Figure 2.21
Make query: no occurrence of search string found

2.6	
 Task	
 5:	
 Put	
 the	
 system	
 to	
 work	

36

To get the correct result, the following work-around must be carried out, then the same query
must be repeated.

Work-around step 1: remove the files in directory /data/index

root@ubuntu:/usr/local/apache-solr-4.2.1/example/example-
DIH/solr/tika/data/index# rm *

Work-around step 2: restart Tomcat

root@ubuntu:/usr/local/apache-tomcat-7.0.27/bin# sh shutdown.sh
root@ubuntu:/usr/local/apache-tomcat-7.0.27/bin# sh startup.sh

Work-around step 3: check the presence of required files after restarting Tomcat

These files define together the index used by Solr to execute queries.

root@ubuntu:/usr/local/apache-solr-4.2.1/example/example-
DIH/solr/tika/data/index# ls
_0.fdt _0_Lucene40_0.frq _0_Lucene40_0.tip _0.si
_0.fdx _0_Lucene40_0.prx _0_nrm.cfe segments_2
_0.fnm _0_Lucene40_0.tim _0_nrm.cfs segments.gen

Now, repeat the query with search string "per capita alcohol consumption". This
time, Solr returns the correct XML document tree (Figure 2.22) that contains 1558 scientific
papers out of 10'000. The query execution takes 211 milliseconds to complete.

Chapter	
 2	
 	
 Environment	
 Setup	
 and	
 Tests	

37

Step	
 3:	
 record	
 search	
 performance	

Table 2.1 shows the performance of query execution. The first line records the performance of
searching 1'000 scientific papers. The same query was repeated 15 times, giving 15 observed
execution times from which the average in milliseconds (AVG) and the standard deviation
(STDEVP) were computed.

The same experiment was carried out with increasing number of scientific papers: 2'000,
3'000, …, 10'000.

With the "AND" operator, the average execution time is significantly lower than that with the
"OR" operator. With both operators, the standard deviation indicates wide dispersion about the
average, due to caching mechanism. For example, for the 15 experiments with 1'000 records,
the cache is initially empty before the first experiment; from the second experiment onwards,
read access to database is no longer necessary, thanks to the cache contents which can be
efficiently reused.

Cache management is critical to query performance and needs time to gain experience in
customizing parameters. This aspect is outside the scope of this research project.

Figure 2.22
Make query: 1558 occurrences found

2.6	
 Task	
 5:	
 Put	
 the	
 system	
 to	
 work	

38

2.6.2 Query	
 with	
 Cassandra	

a.	
 Create	
 keyspace,	
 column	
 family	

Cassandra data modelling is based on the concepts of Column, Super Column, Row, Column
Family, Keyspace:

"The keyspace is the top level unit of information in Cassandra. Column families are
subordinate to exactly one keyspace. While variations exist, all queries for information in
Cassandra take the general form get(keyspace, column family, row key)." (Featherston, 2010;
Sadalage, 2013).

This section presents the three steps to create a keyspace and column families of our data
model which will be translated into a Cassandra database:

Table 2.1
Performance of query execution

Figure 2.23
Average execution time

Chapter	
 2	
 	
 Environment	
 Setup	
 and	
 Tests	

39

- Step 1: connect to Apache Cassandra
- Step 2: create keyspace
- Step 3: create column families
- Step 4: insert data
- Step 5: make query

§ Step 1: connect to Apache Cassandra

- Start Apache Cassandra (see Step 4 in Section 2.5.1).

- Launch the command line interface.

bin/cassandra-cli is an interactive command line interface for Cassandra. Run the
following commands to launch it:

martin@ubuntu:$ cd $CASSANDRA_HOME/bin
martin@ubuntu:$ cassandra-cli

A connection with Apache Cassandra is then etablished and the interface is ready to accept
the commands. As shown below, the connection with Cassandra on "Test Cluster" is
successful at IP address 127.0.0.1 on port 9160.

Connected to: "Test Cluster" on 127.0.0.1/9160
Welcome to Cassandra CLI version 1.0.12

Type 'help;' or '?' for help.
Type 'quit;' or 'exit;' to quit.

[default@unknown]

§ Step 2: create a keyspace

The create keyspace command will be used to declare a new keyspace called helen.
The keyspace name helen was chosen as one of the characters in the Trojan War of Greek
mythology (Cassandra, Hector, Menelaus, Helen, etc.). helen will store data about scientifc
papers grouped into column families. The following properties define Cassandra Replication
(Feipeng, 2012).

- NetworkTopologyStrategy is used since our application is deployed to multiple (2)
racks.

- The replication_factor determines the total number of replicas. Here, the value 2
means data are committed to 2 separate nodes, and also that each node now acts as a replica
for 2 separate token ranges.

2.6	
 Task	
 5:	
 Put	
 the	
 system	
 to	
 work	

40

create keyspace helen
 with placement_strategy = 'org.apache.cassandra.locator.
NetworkTopologyStrategy'
 and strategy_options = {replication_factor:2};

The use command means that subsequent commands will apply to the keyspace helen.

use helen;

Note: A semicolon (‘;’) is required to end each command.

§ Step 3: create column families

Within the helen keyspace, 10 column families will be created using the create column
family command. Each column family consists of a given number of scientific papers for
the purpose of querying Cassandra and measuring its performance as a function of column
family size.

The first column family named 1000records stores 1'000 scientific papers, the second
named 2000records stores 2'000 scientific papers:

[default@helen] create column family 1000records and comparator =
'AsciiType';
[default@helen] create column family 2000records and comparator =
'AsciiType';

Similar commands must be entered to create the remaining column families. The last one is:

[default@helen] create column family 10000records and comparator =
'AsciiType';

§ Step 4: insert data

There are at least two ways to insert data into Cassandra:

- Using cassandra-cli: for each scientific paper, one must insert not only information
about the paper (author, tittle, contents, date of publication, and so on), but also, for each n-
gram string in the paper's contents, its number of occurrences and the associated document ID.
For example, the following command insert the unigram string capita into column family
1000records, which occurs 20 times in the scientific paper whose ID is SP12398.

set 1000records['capita']['SP12398'] = 20;

There will be as many such insertions as n-gram strings (unigram, bigram and trigram) in the
paper. This method is very time consuming because of the large number of n-gram strings to
be indexed for a given document, hence although technically possible, it is practically
unfeasible.

Chapter	
 2	
 	
 Environment	
 Setup	
 and	
 Tests	

41

- Using a Java program specifically coded for data insertion. This program aims at two
purposes:

- read data about scientific papers from XML input files

- count the number of occurrences of each n-gram string in the paper's contents
associated with a document ID.

Each XML input file contains a chunk of 1'000 scientific papers. For each experiment, the
exact number of XML files to be read by the Java program is determined by the desired size of
the experiment's dataset (1'000, 2'000, …, 10'000 records).

This method is clearly much more efficient than the previous one thanks to the automated
data input and counting of occurrences of n-gram string.

The design of this Java program will be presented later in part b of Section 2.6.2.

§ Step 5: make query

To compare the performance between Solr and Cassandra, a query using the same search
string “per capita alcohol consumption” will be tested. For better efficiency, we
will develop a special piece of Java program to make queries against Cassandra database
instead of using cassandra-cli or cassandra-cql.

This piece of program is included in the query module of the Java program presented in part b
of Section 2.6.2.

b.	
 Develop	
 a	
 Java	
 program	
 for	
 index	
 creation	
 and	
 queries	

This program consists of two modules: the index creation module and the query module.

§ Functionalities of the index creation module

The data insertion module performs the following operations in Cassandra:

- read data about scientific papers from an XML input file;

- store the data according to the document structure defined by the XML tags (DOCNO,
FILEID, …, TEXT);

- split the contents of TEXT into n-gram strings (unigram, bigram and trigram), e.g., per,
capita, alcohol, consumption, per capita, capita alcohol, alcohol
consumption, per capita alcohol, capita alcohol consumption.

- remove stopwords and perform stemming;

- create an inverted index to store the n-gram strings (excluding stopwords) and associated
document IDs;

- load the inverted index into Cassandra.

2.6	
 Task	
 5:	
 Put	
 the	
 system	
 to	
 work	

42

§ Functionalities of the query module

The query module performs the following operations:

- split the search string "per capita alcohol consumption" into n-gram
substrings;

- remove stopwords and perform stemming;

- search Cassandra database for scientific papers using n-gram substrings as keywords;

- write search results into output file.

The query module can include several queries with different search strings to be executed in a
single run.

	
 3	

Experimentation	
 and	
 Comparison	
 of	

Search	
 Query	
 Performance	

3.1 Objectives	

According to more or less recent statistics (e.g., Putnam C., 2010; McGee M. 2012),
Facebook’s users create 3.2 billion ‘LIKE’ and comments every day, upload 2.5 billion photos
each month, along with other data such as video, blog notes, maps, etc.. Once logged in, a
Facebook member can search, for example, his friend by last name among billions of people.
When a member uploads a picture of his last summer holidays on his wall, Facebook searches
that member's friends in order to inform them about his upload. These two examples show
that searching is an important operation in social networks such as Facebook. Of course,
searching is a basic operation of search engines, too.

The search operation must deal with big volume of data efficiently. Therefore, the
performance of indexing techniques plays a critical role in the efforts to reduce processing
time.

In this master thesis, a full-text index in Apache Cassandra was designed using n-gram model
and implemented. Its performance was then compared with another powerful search engine,
Apache Solr.

The remaining of this chapter is structured as follows. Section 3.2 explains the index creation
module and the search query module coded in Java under Cassandra. Next, the
experimentation plan is presented. Then, the performance results will be analyzed based on
the search experiments carried out on a Cassandra multi-node cluster. Section 3.3 explains the
search query module coded in Java under Solr, and the experimentation plan which is carried
out in this environment. Section 3.4 is devoted to the performance comparison between
Cassandra and Solr in terms of query execution time. In Section 3.5, the findings of this
research project will be summarized.

3.2 Experimentation	
 on	
 Cassandra	
 multi-­‐node	
 cluster	

The sample data are records of 28'000 scientific papers. Each record contains one paper's
attributes: document number, file id, headline, author, author's company, content of paper, etc.

3.2	
 Experimentation	
 on	
 Cassandra	
 multi-­‐node	
 cluster	

44

Prior to experimentation, the sample data are converted into 28 XML documents. Each
document groups 1'000 records.

The first experiment will be carried out with one XML document (1'000 records). An n-gram
based index is created for this first experiment as described in section 3.6.2 of Chapter 3.

The second experiment will be carried out with two XML documents (2'000 records). An n-
gram based index is created for this second experiment.

The third one with three XML documents (3'000 records) and its own n-gram based index will
be carried out, and so on.

The twenty-eighth experiment will include 28 XML documents (28'000 records) with its own
n-gram based index.

Within each experiment:

- The n-gram based index creation time is collected.

- A search query is then executed 15 times and the execution times measured, from which
the average execution time and the standard deviation are computed.

3.2.1 Understanding	
 the	
 index	
 creation	
 module	
 in	
 Java	

The index creation module, coded in Java, consists of the steps described in section 2.6.2,
Chapter 2. In this section, the Java source code of this module will be explained.

Figure 3.24 is an excerpt from the index creation module in the 10th experiment.

- line 1: The XML input files are located at
/home/thuhang/NetBeansProjects/ngram2cassandra/xmlfiles

- line 5: The statement noFiles = 10 declares that there are 10 XML input files for this
experiment.

- line 7: The for statement specifies that the loop will be executed 10 times, one for each
input file.

- line 8: n-gram object is created from SAXParserNGram class.

- line 9: The method parseDocument of n-gram object has one argument,
XMLFileName[x].This method parses the (x+1)th input file and indexes it according to n-
gram model with n = 1, 2, 3.

- line 11: The resulting index is written into Cassandra database.

Chapter	
 3	
 	
 Experimentation	
 and	
 Comparison	
 of	
 Search	
 Query	
 Performance	

45

In order to understand the parseDocument method of SAXParserNGram class, let's start
from the SAX's1 DefaultHandler class. This class has methods to receive notifications
during an XML file parsing (e.g., end of the document, end of an element, character data
inside an element, parser warning, and so on). For our experiments, an XML reader class,
SAXParserNGram, is developed, which inherits from DefaultHandler class. This
inheritance allows SAXParserNGram to call the parse method of SAXParser.

Line 9 shows that the parseDocument method invokes the parse method of
SAXParser. The argument this means DefaultHandler. Hence, SAXParser will
parse the content of an input XML file, doc, using DefaultHandler.

Three methods have been extended in SAXParserNGram to allow the retrieval of element
contents, attributes, and text contents during parsing: startElement, characters, and
endElement (Figure 3.26).

1 SAX stands for Simple API for XML.

Figure 3.24
Index creation module

Figure 3.25
parseDocument method

3.2	
 Experimentation	
 on	
 Cassandra	
 multi-­‐node	
 cluster	

46

Once retrieved, the element contents, attributes, and text contents will be used to remove
stopwords, and build the n-gram based index. The full Java source code is available in the
Appendix A.

3.2.2 The	
 performance	
 of	
 index	
 creation	

The performance analysis of index creation consists to observe the execution time of the for
loop described in section 2.1 (Figure 3.24). The observed execution times of ten experiments,
for single node cluster, and 28 experiments, for 4-node cluster are listed in Table 3.2 and
plotted in Figure 3.27.

In Table 3.2, as the number of records to be indexed grows, we observe that the average
execution time increases in both cluster configurations.

Furthermore, Figure 3.27 shows graphically the average execution times of index creation on
4-node cluster (blue diamond markers) and on single node cluster (red square markers). We
observe that both curves follow the same upward trend. In other words, Figure 3.27 suggests

Figure 3.26
Extended methods

Table 3.2
Average execution time of index creation module

Chapter	
 3	
 	
 Experimentation	
 and	
 Comparison	
 of	
 Search	
 Query	
 Performance	

47

that, in both cluster configurations, there is a linear relationship between the number of
records and the average execution time. The slope of single node cluster is smaller than the 4-
node cluster’s one, i.e., for a given number of records in experiment, the index creation on
single node cluster takes less time than on the 4-node cluster. This fact can be explained by
the mechanism of writing on multi-node cluster. When a write request is sent in one node in
the cluster, depending on the predetermined Consistency level, that node has to wait for a
number of success write from replicas nodes before sending the success or failure
confirmation to the client.

For the single node cluster, the computed coefficient of determination R2 = 0.9978 shows a
strong linear relationship between the number of records and the average execution time.
Using the classical linear regression model y = ax + b, we obtain the following estimates:

a = 0.0234, b = -0.5284
average execution time = 0.0234 * number of records - 0.5284

For the 4-node cluster, the computed coefficient of determination R2 = 0.9968 also shows a
strong linear relationship between those two variables. Using the classical linear regression
model y = ax + b, we obtain the following estimates:

a = 0.0327, b = 15.505
average execution time = 0.0327 * number of records + 15.505

The estimated regression coefficient, 0.0327 (minutes), is interpreted as an increase of the
average execution time resulting from a unit increase of the number of scientific papers in
experiment.

Figure 3.27
Performance of index creation

3.2	
 Experimentation	
 on	
 Cassandra	
 multi-­‐node	
 cluster	

48

3.2.3 Understanding	
 the	
 search	
 query	
 module	
 in	
 Java	

Each experiment consists of processing a sequence of 250 search queries by a Java program.
The search strings required by queries are stored in an XML file which consists of 250 XML
top elements. Each top element includes num, title, desc, and narr elements. The
title element is of particular interest to us since it contains the search string for a given
query.

Figure 3.28 shows an excerpt of the Java program that forms the queries based on the title
element as explained below:

- line 10: The 250 queries are stored in
/home/thuhang/NetBeansProjects/ngram2cassandra/queries.xml.

- line 18: The for statement specifies that the loop will be executed 250 times, one for each
query, i.e., an XML top element.

- line 20: The method getChildText extracts the search string, i.e., an XML title
element.

- line 25: The method testNGram removes stopwords from the search string, performs
stemming, creates unigram, bigram, trigram tokens. Then, testNGram builds a query with
the OR operator connecting the tokens and another query with the AND operator. Finally,
testNGram sends the two queries to Cassandra. The full Java source code of testNGram
is available in the Appendix A.

Cassandra executes the query using its inverted n-gram based index and returns the results to
the Java program for display.

Chapter	
 3	
 	
 Experimentation	
 and	
 Comparison	
 of	
 Search	
 Query	
 Performance	

49

For illustration purposes, Figure 3.29 lists two queries out of 250. In the first query, the search
string is Oscar winner selection, delimited by <title> and </title>. In the
second query, the search string is women clergy.

Figure 3.28
Java code to form the queries

3.2	
 Experimentation	
 on	
 Cassandra	
 multi-­‐node	
 cluster	

50

3.2.4 Experimentation	
 plan	

28 experiments will be carried out. The experimentation plan can be seen through the
worksheets in Table 3.3,Table 3.4, and Table 3.5.

Each experiment is assigned a predefined number of scientific papers. For example,
Experiment no.1 has 1'000 scientific papers, Experiment no.2 has 2'000 scientific papers,
Experiment no.10 has 10'000 scientific papers.

Each experiment will process 250 predefined search queries. Each query runs:

- 25 times with Unigram & AND operator,
- 25 times with Bigram & AND operator,
- 25 times with Trigram & AND operator,
- 25 times with Unigram & OR operator,

Figure 3.29
Listing of two queries, delimited by <top> and </top>

Chapter	
 3	
 	
 Experimentation	
 and	
 Comparison	
 of	
 Search	
 Query	
 Performance	

51

- 25 times with Bigram & OR operator, and
- 25 times with Trigram & OR operator.

Observed execution times are reported into the shaded areas of the following tables.

Table 3.3
Plan of Experiment no.1

Table 3.4
Plan of Experiment no.2

3.2	
 Experimentation	
 on	
 Cassandra	
 multi-­‐node	
 cluster	

52

Since the index contains unigram, bigram and trigram entries, each query can return several
query results. With 10'000 scientific papers and 250 queries, the query results set is quite huge
and could be a representative sample for performance study.

Our study consists to compare the performance of Cassandra between unigram-based search,
bigram-based search and trigram-based search. To this end, after executing 250 queries
according to the experiment plan, those queries are divided into three groups based on the
obtained results set, as explained below and represented by Table 3.6:

- Query group 1: This group includes those queries which return the DOCNOs of scientific
papers containing found unigram tokens only. There are 112 such queries. As shown in row 1
of Table 3.6, 48.21% out of 10'000 scientific papers are found to contain unigram tokens only
using search with AND operator, and 97.32% with OR operator.

- Query group 2: This group includes those queries which return the DOCNOs of scientific
papers containing found unigram and bigram tokens only. There are 115 such queries. As
shown in row 2 of Table 3.6, 66.09% out of 10'000 scientific papers are found to contain
unigram tokens using search with AND operation, and 100% with OR operator. For bigram
tokens found, the percentages are 18.26% and 100%, respectively.

- Query group 3: This group includes those queries which return the DOCNOs of scientific
papers containing found unigram, bigram and trigram tokens. There are 23 such queries. As
shown in row 3 of Table 3.6, 86.96% out of 10'000 scientific papers are found to contain
unigram tokens using search with AND operation, and 100% with OR operator. For bigram
tokens found, the percentages are 69.57% and 100%, respectively. For trigram tokens found,
the percentages are 69.57% and 100%, respectively.

We notice two particularities from Table 3.6, which might be useful for defining search
engine's strategy:

- First, the search with OR operator gives higher percentage of hits than with AND operator.
This could explain why Google search strategy uses OR operator.

Table 3.5
Plan of Experiment no.10

Chapter	
 3	
 	
 Experimentation	
 and	
 Comparison	
 of	
 Search	
 Query	
 Performance	

53

- Second, as shown in rows 2 and 3, the search based on unigram tokens give higher
percentage of hits than that based on bigram and trigram tokens. Nevertheless, query results
are evidently more relevant with search based on bigram and trigram.

During the experiments, execution times of search queries are collected. Since within an
experiment, each query execution is repeated 25 times for a given operator, the average
execution time, and the standard deviation will be computed based on 25 observations.

In our study of queries' performance, we consider three selected queries, one from each group,
and analyze their corresponding execution times.

- Query group 1: The 249th query is selected, which has "term limits" as search string.

- Query group 2: The 145th query is selected, which has "women clergy" as search string.

- Query group 3: The 247th query is selected, which has "air traffic controller"
as search string.

3.2.5 The	
 performance	
 of	
 search	
 query	

a.	
 Query	
 group	
 1:	
 249th	
 query	
 with	
 search	
 string	
 "term	
 limits"	

Before examining the observed performance of this query's execution, let's recall how the
average execution time and the standard deviation are obtained from the experiments.

Cassandra has two caches: the key cache, and the row cache. In order to observe the effect of
caching on query execution time, both caches were emptied before the first run only. Let's
consider, for example, the execution of the 249th query in Experiment no.10. Table 3.7 shows
the execution times of unigram-based search with AND (column 3) and OR operator (column
4).

Table 3.6
Percentage of hits by query groups

3.2	
 Experimentation	
 on	
 Cassandra	
 multi-­‐node	
 cluster	

54

For all 28 experiments of the 249th query, Table 3.8 presents the computed average execution
times (columns AVG) and standard deviations (columns STD) of unigram-based search with
AND and OR operators.

Let's examine the two AVG columns. In both cases, the AVG value increases as the number of
records in the experiment augments. The STD columns will be discussed later in connection
with query groups 2 and 3 in the next sub-section e.

Table 3.7
Experiment no.10: 249th query

Table 3.8
All experiments for the 249th query

Chapter	
 3	
 	
 Experimentation	
 and	
 Comparison	
 of	
 Search	
 Query	
 Performance	

55

Figure 3.30 shows graphically the average execution times of unigram-based search with
operators AND (blue diamond markers) and OR (red square markers). We observe that both
curves follow the same behavior. More precisely, Figure 3.30 suggests that there might be a
linear relationship between the number of records and the average execution time.

For the case of Unigram with AND operator, the computed coefficient of determination
R2 = 0.8202 shows that there is a strong linear relationship between those two variables. Using
the classical linear regression model y = ax + b, we obtain the following results:

a = 0.0033, b = 30.217
average execution time = 0.0033 * number of records + 30.217

For the case of Unigram with OR operator, the computed coefficient of determination
R2 = 0.6847 shows that there is a strong linear relationship between those two variables. Using
the classical linear regression model y = ax + b, we obtain the following results:

a = 0.0035, b = 26.629
average execution time = 0.0035 * number of records + 26.629

b.	
 Query	
 group	
 2:	
 145th	
 query	
 with	
 search	
 string	
 "women	
 clergy"	

For all 28 experiments of the 145th query, Table 3.9 presents the computed average execution
times (columns AVG) and standard deviations (columns STD) of unigram-based search with
AND and OR operators and bigram-based search with AND and OR operators.

We begin by looking at the average execution times. The STD columns will be discussed later
in connection with query groups 1 and 3 in section 2.4.4.

Figure 3.30
All experiments for the 249th query: Average execution times

3.2	
 Experimentation	
 on	
 Cassandra	
 multi-­‐node	
 cluster	

56

The values in the AVG columns are graphically represented in Figure 3.31 with the following
conventional colored shapes of markers:

- blue diamond: unigram, AND operator
- red square: unigram, OR operator
- olive green triangle: bigram, AND operator
- X: bigram, OR operator.

In Figure 3.31, for 'unigram, AND operator' and 'unigram, OR operator', we observe a common
behavior with three characteristics:

Table 3.9
All experiments for the 145th query

Figure 3.31
All experiments for the 145th query: Average execution times

Chapter	
 3	
 	
 Experimentation	
 and	
 Comparison	
 of	
 Search	
 Query	
 Performance	

57

- there is an upward trend in average execution times as the number of records in the
experiment increases;

- nevertheless, the fluctuation of the averages around the upward trend is more important
than in the case of query group 1;

- the figure also suggests that there is a linear relationship between the average execution
time and the number of records in experiment.

For 'bigram, AND operator' and 'bigram, OR operator', the behavior is different with the
following characteristics:

- there is an horizontal trend in average execution times as the number of records in the
experiment increases; in other words, there is very little correlation between the average
execution time and the number of records in experiment.

- the average execution times fluctuate slightly around the horizontal trend;

The above characteristics are reflected through the statistical results in Table 3.10, by using the
ordinary least squares regression method. As shown in Figure 3.31, the explanatory variable
(x) is the number of records in experiments, and the explained variable (y) is the average
execution time.

- The coefficients of determination R2 are very low for 'bigram, AND operator' and 'bigram,
OR operator'. Consequently, it is irrelevant to compute the regression coefficients.

- For 'unigram, AND operator' and 'unigram, OR operator', the small values of the regression
coefficient (a), 0.00099 and 0.00080, mean that an increase in the number of records from one
experiment to the next results in a very small increase in the average execution times.

c.	
 Query	
 group	
 3:	
 247th	
 query	
 with	
 search	
 string	
 "air	
 traffic	
 controller"	

For all 28 experiments of the 247th query, Table 3.11 presents the computed average execution
times (columns AVG) and standard deviations (columns STD) of n-gram-based search with
AND and OR operators: unigram, bigram, and trigram.

Table 3.10
All experiments for the 145th query: Linear regression analysis

3.2	
 Experimentation	
 on	
 Cassandra	
 multi-­‐node	
 cluster	

58

Let's begin by analyzing the average execution times which are visualized in Figure 3.32 with
the following conventional colored shapes of markers:

- blue diamond: unigram, AND operator
- red square: unigram, OR operator
- olive green triangle: bigram, AND operator
- X: bigram, OR operator
- light blue asterisk: trigram, AND operator
- orange circle: trigram, OR operator.

In Figure 3.32, for 'unigram, AND operator', 'unigram, OR operator', 'bigram, AND operator',
and 'trigram, AND operator', we observe a common behavior with two characteristics:

Table 3.11
All experiments for the 247th query

Figure 3.32
All experiments for the 247th query: Average execution times

Chapter	
 3	
 	
 Experimentation	
 and	
 Comparison	
 of	
 Search	
 Query	
 Performance	

59

- there is an upward trend in average execution times as the number of records in the
experiment increases;

- the figure also suggests a linear relationship between the average execution time and the
number of records in experiment.

For 'bigram, OR operator', and 'trigram, OR operator', the behavior is different with the
following characteristics:

- there is an horizontal trend in average execution times as the number of records in the
experiment increases; in other words, there is very little correlation between the average
execution time and the number of records in experiment;

- the average execution times fluctuate slightly around the horizontal trend.

The above characteristics are reflected through the statistical results in Table 3.12, computed
by the ordinary least squares regression method. As shown in Figure 3.32, the explanatory
variable (x) is the number of records in experiments, and the explained variable (y) is the
average execution time.

§ The coefficients of determination R2 are very low for 'bigram, OR operator', and 'trigram,
OR operator'. Consequently, it is irrelevant to compute the regression coefficients.

§ For 'unigram, AND operator', 'unigram, OR operator', 'bigram, AND operator', and 'trigram,
AND operator', the small values of the regression coefficient (a), 0.00244, 0.00314,
0.00027, and 0.00013, mean that an increase in the number of records from one
experiment to the next results in a very small increase in the average execution times.

§ Another thing we notice is that the regression coefficient (a) for 'unigram, AND operator'
(0.00244), and 'unigram, OR operator' (0.00314) are higher than that for bigram, AND
operator' (0.00027), and 'trigram, AND operator' (0.00013). That difference could be
explained by taking a close look at the way the search query is executed in each case:

- For 'unigram, AND operator' and 'unigram, OR operator', the execution starts with
three individual searches: 'air', 'traffic', and 'controller'. Then, the search results are
combined by the operators AND, OR, giving 0.00244 and 0.00314, respectively.

- For bigram, AND operator', the execution starts with two individual searches
'air:traffic', and 'traffic:controller'. That means a smaller average execution time,
0.00027.

- For 'trigram, AND operator', the execution starts with a single search
'air:traffic:controller'. That means a smaller average execution time, 0.00013.

3.2	
 Experimentation	
 on	
 Cassandra	
 multi-­‐node	
 cluster	

60

d.	
 Examining	
 the	
 standard	
 deviations	
 of	
 query	
 execution	
 times	

So far we did not yet discussed the standard deviations reported in previous Table 3.8, Table
3.9, and Table 3.11.

According to the experimentation plan in section a (Table 3.8, Table 3.9, and Table 3.11), a
standard deviation of execution times is computed after every 25 runs of each query in a given
experiment. For the purpose of our discussion in this section, Table 3.13 displays the standard
deviations computed from experiments nos 9 and 10.

Table 3.13 can be analyzed horizontally from left to right, and vertically from top to bottom.

Horizontal analysis of standard deviation

Let's look at query no.1 in experiment no.9 in Table 3.13. Its search string is
'International Organized Crime'.

a) First, the search query module processes 'unigram, AND operator'. The very first run out of
25 is the most time consuming. Indeed, since the cache is initially empty, Cassandra has to
access the index to search the column families containing the documents' IDs associated with
unigrams 'International', 'Organized', and 'Crime', and progressively fills the cache
with the column families found. At the same time, Cassandra returns these column families to
the 'unigram, AND operator' routine of the search query module which then generates the
search results by ANDing the three unigrams.

The remaining 24 runs are much less time consuming, since the column families can be
readily found in the cache. Hence, the search query module will generate the results more
rapidly.

Consequently, the sample of 25 execution times is characterized by a large value of the first
observed execution time, and 24 much smaller remaining values. Hence, the standard
deviation is big (37.4415) for 'unigram, AND operator' of query no.1.

b) Second, the search query module processes 'bigram, AND operator'. At this moment, the
cache contains only unigram column families. Therefore, Cassandra still has to access the
index to search the column families containing the documents' IDs associated with bigrams
'International:Organized', and 'Organized:Crime'., and progressively fills the
cache with the column families found. At the same time, Cassandra returns these column

Table 3.12
All experiments for the 247th query: Linear regression analysis

Chapter	
 3	
 	
 Experimentation	
 and	
 Comparison	
 of	
 Search	
 Query	
 Performance	

61

families to the 'bigram, AND operator' routine of the search query module which then
generates the search results by ANDing the two bigrams.

In our particular set of 10'000 documents' data, there is no such result for all 25 runs; hence,
the symbol n/a for 'bigram, AND operator' in Table 3.13. Although it takes time to access the
index, and fill the cache, the average and the standard deviation are not computed, since the
result is empty

c) Third, the search query module processes 'trigram, AND operator'. Analogously,
Cassandra progressively fills the cache with the trigram
'International:Organized:Crime' column family. The result of ANDing the trigram
with itself is empty; hence, the symbol n/a for 'trigram, AND operator' in Table 3.13.

d) Fourth, the search query module processes 'unigram, OR operator'. Since the cache is
already filled in step a), Cassandra doesn't need to access the index. Instead, only the cache
will be searched by Cassandra which returns the found column families to the 'unigram, OR
operator' routine of the search query module. The routine then generates the search results by
ORing the three unigrams.

Thanks to the cache, there is no big difference between the execution time of the first run and
those of the 24 remaining runs. Hence, the standard deviation (8.1628) for 'unigram, OR
operator' is much less than that for 'unigram, AND operator' (37.4415) in step a).

e) Fifth, similary, for 'bigram, OR operator', the standard deviation of execution times
(1.9908) is also much less than that for 'unigram, AND operator' (37.4415) in step a).

f) Sixth, the symbol n/a appears for 'trigram, OR operator', since there is no result found for
'trigram, OR operator'.

Vertical analysis of standard deviation

Now, let's look at the column 'unigram, AND operator' in Table 3.13. The standard deviation of
execution time (37.4415) is large for query no.1, as explained in step a), section a.

For subsequent queries no.2 thru 250, Cassandra needs to access the index only if the search
terms do not exist in the cache yet. That is why the standard deviations of execution time for
all queries but the first are relatively lower than that of the first query.

3.2	
 Experimentation	
 on	
 Cassandra	
 multi-­‐node	
 cluster	

62

e.	
 Search	
 performance	
 comparison	
 between	
 multi	
 and	
 single	
 node	
 cluster	

The results in Table 3.2 show that it takes more time to write on multi-node cluster than on
single node cluster. According to the theory on read operation presented in section 1.4.5, it
also takes more time to read on multi-node cluster.

The results of experiments with unigrams, bigrams, and trigrams confirm the above
theoretical conclusion. The graphical representation in Figure 3.33 illustrates the case of
unigram in the 249th search query “term limits” with the following conventional colored
shapes of markers:

- blue diamond: Unigram AND operator on 4-node cluster
- olive green triangle: Unigram OR operator on 4-node cluster
- red square: Unigram AND operator on single node cluster
- purple X: Unigram OR operator on single node cluster.

The blue and olive green curves corresponding to the 4-node cluster are above the red and
purple curves of the single node cluster.

Table 3.13
Experiments nos 9 and 10: Standard deviations of query execution times

Chapter	
 3	
 	
 Experimentation	
 and	
 Comparison	
 of	
 Search	
 Query	
 Performance	

63

Figure 3.33
All experiments for the 249th query

We observe that four curves follow the same behavior. More precisely, Figure 3.30 suggests
that there might be a linear relationship between the number of records and the average
execution time. The computed coefficient of determinations R2 show that there is a strong
linear relationship between those two variables. Using the classical linear regression model y
= ax + b, we obtain the following results:

- Unigram AND operator on 4-node cluster:

average execution time = 0.0059 * number of records + 16.467

- Unigram OR operator on 4-node cluster:

average execution time = 0.0078 * number of records + 16.121

- Unigram AND operator on sing node cluster:

average execution time = 0.0009 * number of records + 7.1333

- Unigram OR operator on sing node cluster:

average execution time = 0.0027 * number of records + 2.6008

Furthermore, read performance on single node cluster is always faster than on multi-node
cluster. Indeed, the regression coefficient (a) for '4-node, unigram AND' (0.0059), and '4-
node, unigram OR' (0.0078) are higher than that for '1-node, unigram AND' (0.0009), and '1-

3.3	
 Experimentation	
 on	
 Solr	
 single	
 node	
 cluster	

64

node, unigram OR' (0.0027). Those numbers show also that an increase in the number of
records from one experiment to the next has little effect on the average execution times.

3.3 Experimentation	
 on	
 Solr	
 single	
 node	
 cluster	

3.3.1 Understanding	
 the	
 search	
 query	
 module	
 in	
 Java	

The search strings used in queries are stored in an XML file as 250 XML title elements,
one for each query. They are identical to those already used in the previous experimentation
with Cassandra.

Figure 3.34 shows the Java code that forms the queries based on the title element, as
explained below:

- line 9: The 250 queries are stored in the local file queries.xml.

- line 16: The for statement specifies that the loop will be executed 250 times
(el.length), one for each query.

- line 18: A searchString corresponding to the ith query is extracted from
queries.xml.

- line 23: The testQuery module is invoked to process the ith query with
searchString as input argument.

This module is now explained in detail and illustrated by Figure 3.35.

Figure 3.34
Solr: Java code to form the queries

Chapter	
 3	
 	
 Experimentation	
 and	
 Comparison	
 of	
 Search	
 Query	
 Performance	

65

There are two ways to connect to a Solr server:

- The simplest and safest way is to connect to a Solr server by using HTTP;

- The second method is to connect to Solr core by using the concept of 'Embedded Solr'.
This is not recommended in production environment, because it is "less flexible, harder to
support, not as well tested, and should be reserved for special circumstances" [apache wiki].

The first connection method was selected in our application.

Figure 3.35 shows the Java testQuery module that executes a query with searchString
as search argument:

- line 2: Connect to Solr using standard HTTP interfaces.

- line 4: The for statement specifies that a given query will be executed 25 times.

- line 8: Run the query.

- line 9: Get statistical information, such as: query execution time.

3.3.2 Experimentation	
 plan	

In order to compare the performance of Cassandra to Solr, the experimentation plan designed
for Cassandra will be applied to Solr.

Let's recall that each experiment is assigned a predefined number of scientific papers. For
example, Experiment no.1 has 1'000 scientific papers, Experiment no.2 has 2'000 scientific
papers, Experiment no.10 has 10'000 scientific papers.

10 experiments will be carried out. As illustrated by the worksheets in Table 3.14, Table 3.15,
and Table 3.16, for Experiments nos 1, 2, and 10, respectively; each experiment will process
sequentially 250 predefined queries. Each query will be run

- 25 times with AND operator,
- 25 times with OR operator,

Observed execution times are reported into the shaded areas of the tables.

Figure 3.35
testQuery module: Java code to execute a search query

3.3	
 Experimentation	
 on	
 Solr	
 single	
 node	
 cluster	

66

Table 3.14
Plan of Experiment no.1

Table 3.15
Plan of Experiment no.2

Chapter	
 3	
 	
 Experimentation	
 and	
 Comparison	
 of	
 Search	
 Query	
 Performance	

67

3.4 Performance	
 comparison	
 between	
 Cassandra	
 and	
 Solr	

on	
 single	
 node	
 cluster	

Looking back at the worksheets in Table 3.14, Table 3.15, and Table 3.16, we notice that in Solr
the n-gram feature is present, but without unigram, bigram, and trigram separately
implemented. Therefore, in order to make comparable the observed performance (query
execution times) under Cassandra and Solr, the execution times for unigram, bigram and
trigram in Cassandra must be aggregated for AND, and OR operators, respectively, as
illustrated by the two rounded rectangles in Table 3.17 for Query no.1 in Experiment no.1.

In Section 1.5 of Chapter 1, we emphasized the importance of two files in Solr:
schema.xml and solrconfig.xml. A look at the <filter> elements in
schema.xml (Figure 3.36) suggests that Solr performs the same steps as Cassandra:

Table 3.16
Plan of Experiment no.10

Table 3.17
Aggregation of execution times for AND, OR operators

3.4	
 Performance	
 comparison	
 between	
 Cassandra	
 and	
 Solr	
 on	
 single	
 node	
 cluster	

68

removing blank spaces, removing html code, stemming, removing a particular character and
replacing it with another one.

Our comparative study is based on the performance of queries nos. 249th, 145th, and 247th
selected from the query groups 1, 2, and 3, respectively, even though Solr is not concerned
about unigram, bigram, and trigram.

3.4.1 Query	
 group	
 1:	
 249th	
 query	
 with	
 search	
 string	
 "term	
 limits"	

For all 10 experiments of the 249th query, Table 3.18 presents the average execution times
(columns AVG) and standard deviations (columns STD) for AND and OR operators on Solr
and Cassandra.

Figure 3.36
Excerpt of schema.xml

Chapter	
 3	
 	
 Experimentation	
 and	
 Comparison	
 of	
 Search	
 Query	
 Performance	

69

We begin by looking at the average execution times.

The values in the AVG columns are graphically represented in Figure 3.37 with the following
conventional colored shapes of markers:

- blue diamond: Solr, AND operator
- red square: Solr, OR operator
- olive green triangle: Cassandra, AND operator
- X: Cassandra, OR operator.

Table 3.18
All experiments for the 249th query

3.4	
 Performance	
 comparison	
 between	
 Cassandra	
 and	
 Solr	
 on	
 single	
 node	
 cluster	

70

Overall, the performance obtained with Cassandra is lower than that with Solr regardless of
the operators AND, and OR.

For ‘Cassandra, AND operator’, and ‘Cassandra, OR operator’, we observe a common
behavior with two characteristics:

- there is an upward trend in average execution times as the number of records in the
experiment increases;

- the figure also suggests a linear relationship between the average execution times and the
number of records in experiments.

‘Solr, AND operator’, and ‘Solr, OR operator’ show another common behavior with three
characteristics:

- there is an horizontal trend in average execution times as the number of records in the
experiment increases; in other words, there is very little correlation between the average
execution time and the number of records in experiment;

- the fluctuation of average execution times around the horizontal trend looks insignificant;

- for the first experiment (1'000 records) (Figure 3.37), the average execution time of the
249th query with OR operator in Solr takes on value that could be considered as outliers
(20.560 millisecs).

The two different behaviors of Cassandra and Solr described above are formalized through
the statistical results in Table 3.19, by using the ordinary least squares regression method. The
explanatory variable (x) is the number of records in experiments, and the explained variable
(y) is the average execution time.

Figure 3.37
All experiments for the 249th query: Average execution times

Chapter	
 3	
 	
 Experimentation	
 and	
 Comparison	
 of	
 Search	
 Query	
 Performance	

71

- As expected, the coefficients of determination R2 are very low for ‘Solr, AND operator’,
and ‘Solr, OR operator’. Consequently, it is irrelevant to compute the regression coefficients.

- For ‘Cassandra, AND operator’, and ‘Cassandra, OR operator’, the small positive values of
the regression coefficient (a), 0.00147 and 0.00134, mean that an increase in the number of
records from one experiment to the next has little effect on the increase of the average
execution times.

3.4.2 Query	
 group	
 2:	
 145th	
 query	
 with	
 search	
 string	
 "women	
 clergy"	

For all 10 experiments of the 145th query, Table 3.20 presents the average execution times
(columns AVG) and standard deviations (columns STD) for AND and OR operators on Solr
and Cassandra.

We begin by looking at the average execution times. The values in the AVG columns are
graphically represented in Figure 3.38 with the following conventional colored shapes of
markers:

- blue diamond: Solr, AND operator
- red square: Solr, OR operator
- olive green triangle: Cassandra, AND operator
- X: Cassandra, OR operator.

Table 3.19
All experiments for the 249th query: Linear regression analysis

Table 3.20
All experiments for the 145th query

3.4	
 Performance	
 comparison	
 between	
 Cassandra	
 and	
 Solr	
 on	
 single	
 node	
 cluster	

72

Overall, the performance obtained with Cassandra is again lower than that with Solr
regardless of the operators AND, and OR. In other words, it takes more time on average to run
the queries on Cassandra than that on Solr.

For ‘Cassandra, AND operator’, and ‘Cassandra, OR operator’, we observe a common
behavior with two characteristics:

- there is an upward trend in average execution times as the number of records in the
experiment increases;

- nevertheless, the fluctuation of the averages around the trend is more important than in the
case of query group 1. Consequently, the linear relationship between the two variables is less
obvious than in query group 1.

‘Solr, AND operator’, and ‘Solr, OR operator’ show another common behavior with two
characteristics:

- there is an horizontal trend in average execution times as the number of records in the
experiment increases; in other words, there is very little correlation between these two
variables.

- the average execution times fluctuate slightly around the horizontal trend;

Figure 3.38
All experiments for the 145th query: Average execution times

Chapter	
 3	
 	
 Experimentation	
 and	
 Comparison	
 of	
 Search	
 Query	
 Performance	

73

3.4.3 Query	
 group	
 3:	
 247th	
 query	
 with	
 search	
 string	
 "air	
 traffic	

controller"	

For all 10 experiments of the 145th query, Table 3.21 presents the average execution times
(columns AVG) and standard deviations (columns STD) for AND and OR operators on Solr
and Cassandra.

We begin by looking at the average execution times.

The values in the AVG columns are graphically represented in Figure 3.39 with the following
conventional colored shapes of markers:

- blue diamond: Solr, AND operator
- red square: Solr, OR operator
- olive green triangle: Cassandra, AND operator
- X: Cassandra, OR operator.

Table 3.21
All experiments for the 247th query

3.4	
 Performance	
 comparison	
 between	
 Cassandra	
 and	
 Solr	
 on	
 single	
 node	
 cluster	

74

Overall, the performance obtained with Cassandra is lower than that with Solr, regardless of
the operators AND, and OR.

For ‘Cassandra, AND operator’, and ‘Cassandra, OR operator’, we observe a common
behavior with two characteristics:

- there is an obvious upward trend in average execution times as the number of records in
the experiment increases;

- the figure also suggests a linear relationship between the two variables.

‘Solr, AND operator’, and ‘Solr, OR operator’ show a different common behavior with two
characteristics:

- there is an horizontal trend in average execution times as the number of records in the
experiment increases; in other words, there is very little correlation between the two variables;

- the fluctuation of average execution times around the horizontal trend looks insignificant;

The two different behaviors of Cassandra and Solr described above are formalized through
the statistical results in Table 3.22, by using the ordinary least squares regression method. The
explanatory variable (x) is the number of records in experiments, and the explained variable
(y) is the average execution time.

- As expected, the coefficients of determination R2 are very low for ‘Solr, AND operator’,
and ‘Solr, OR operator’. Consequently, it is irrelevant to compute the regression coefficients.

- For ‘Cassandra, AND operator’, and ‘Cassandra, OR operator’, the small positive values of
the regression coefficient (a), 0.00049 and 0.00096, mean that an increase in the number of

Figure 3.39
All experiments for the 247th query: Average execution times

Chapter	
 3	
 	
 Experimentation	
 and	
 Comparison	
 of	
 Search	
 Query	
 Performance	

75

records from one experiment to the next has little effect on the increase of the average
execution times.

3.5 Conclusion	

3.5.1 The	
 findings	

Given the specific properties of the two environments set up for Cassandra and Solr in this
research, and under the experimentation plans designed for both systems, our main findings
about their performance are summarized in this section.

In the Cassandra environment which is the focus of this research, the analysis of experimental
performance data shows the following results:

- Unigram AND, Unigram OR: strong linear relationship between the number of scientific
papers in experiment (explanatory variable) and the average query execution time (explained
variable); upward linear trend between these two variables;

- Bigram AND, and Trigram AND: weak linear relationship; weak upward trend;

- Bigram OR, and Trigram OR: no linear relationship;

- Either with unigram, bigram or trigram, write and read performance on a multi-node
cluster are slightly lower than the performance on a single node cluster.

An interesting finding is that there is no linear relationship between the number of scientific
papers and the average query execution time when the experimentation uses 10'000 scientific
papers. In constrast, if this number is increased to 28’000, there exists a linear relationship
between these explained and explanatory variables for Bigram AND.

The comparative performance study of Cassandra and Solr on single node cluster results in
the following findings:

- Overall, the performance obtained with Cassandra is lower than that with Solr, for both
operators AND, and OR.

- In contrast to Cassandra, quey execution time in Solr always shows practically no linear
relationship with the number of scientific papers in the experiments.

Table 3.22
All experiments for the 249th query: Linear regression analysis

3.5	
 Conclusion	

76

3.5.2 Next	
 step	

Searching is an operation requiring high performance. Therefore, the next step could consist
in exploring solutions to optimize the search mechanism with Cassandra, in particular,
through the use of Cassandra’s built-in key and row caches?

Source	
 Code	

Listing 0.1 Module testQueries

private static void testQueries() throws JDOMException, IOException,
SolrServerException {
 String searchString;

 //Read queries
 String queryFile = "queries.xml";
 SAXBuilder builder = new SAXBuilder();

 Document firstDocument = builder.build(queryFile);
 Element firstRoot = firstDocument.getRootElement();
 List<Element> sourceListPost = firstRoot.getChildren("title");

 Object[] el = sourceListPost.toArray();
 for(int i = 0; i < el.length; i ++){
 Element e = (Element)el[i];

 searchString = e.getText();
 System.out.println("---");
 System.out.println("Search string: "+searchString);

 System.out.println("---");
 //Run test
 testQuery(searchString);

 }
}

Listing 0.2 Module testQuery

private static void testQuery(String searchString) throws
SolrServerException {
 SolrServer embeddedServer = new HttpSolrServer(url);

 int n = 25; //repeat 25 times
 for (int i = 0; i < n ; i ++){
 SolrQuery query = new SolrQuery();

 query = new SolrQuery();
 query.setQuery(searchString);
 QueryResponse rsp2 = embeddedServer.query(query);

 System.out.println(rsp2.getQTime());
 }
}

Listing 0.3 Module endElement

public void endElement(String uri, String localName, String qName) throws
SAXException {

 if(qName.equalsIgnoreCase("DOC")) {
 //add it to the list

	

78

 myDocuments.add(tempDoc);

 }else if (qName.equalsIgnoreCase("DOCNO")) {
 tempDoc.setDocNo(tempVal);
 }else if (qName.equalsIgnoreCase("FILEID")) {

 tempDoc.setFileID(tempVal);
 }else if (qName.equalsIgnoreCase("FIRST")) {
 tempDoc.setFirst(tempVal);

 }else if (qName.equalsIgnoreCase("SECOND")) {
 tempDoc.setSecond(tempVal);
 }else if (qName.equalsIgnoreCase("HEAD")) {

 tempDoc.setHead(tempVal);
 }else if (qName.equalsIgnoreCase("DATELINE")) {
 tempDoc.setDateline(tempVal);

 }else if (qName.equalsIgnoreCase("TEXT")) {
 try {
 TreeMap<String, Integer> Text = new TreeMap<String, Integer>();

 String accumulatorString =
removeStopWordsAndStem(accumulator.toString());
 Scanner scanner = new Scanner(accumulatorString);

 scanner.useDelimiter("[^\\p{Alpha}\\p{Digit}]+");
 String word1, word2, word3;
 if(scanner.hasNext()){

 word3 = scanner.next().toLowerCase();
 if(Text.containsKey((String)(word3))){
 Integer freq = Text.get((String)(word3));

 Text.put(((String)(word3)), freq + 1);
 }
 if (!Text.containsKey((String)(word3))){

 Text.put(((String)(word3)), 1);
 }
 if(scanner.hasNext()){

 word2 = word3;
 word3 = scanner.next().toLowerCase();
 if(Text.containsKey((String)(word3))){

 Integer freq = Text.get((String)(word3));
 Text.put(((String)(word3)), freq + 1);
 }

 if(Text.containsKey((String)(word2+":"+word3))){
 Integer freq = Text.get((String)(word2+":"+word3));
 Text.put(((String)(word2+":"+word3)), freq + 1);

 }
 if (!Text.containsKey((String)(word3))){
 Text.put(((String)(word3)), 1);

 }
 if (!Text.containsKey((String)(word2+":"+word3))){
 Text.put(((String)(word2+":"+word3)), 1);

 }
 while(scanner.hasNext()){
 word1 = word2;

 word2 = word3;

	

79

 word3 = scanner.next().toLowerCase();
 if(Text.containsKey((String)(word3))){
 Integer freq = Text.get((String)(word3));

 Text.put(((String)(word3)), freq + 1);
 }
 if(Text.containsKey((String)(word2+":"+word3))){

 Integer freq =
Text.get((String)(word2+":"+word3));
 Text.put(((String)(word2+":"+word3)), freq +

1);
 }

if(Text.containsKey((String)(word1+":"+word2+":"+word3))){
 Integer freq =
Text.get((String)(word1+":"+word2+":"+word3));

 Text.put(((String)(word1+":"+word2+":"+word3)),
freq + 1);
 }

 if (!Text.containsKey((String)(word3))){
 Text.put(((String)(word3)), 1);
 }

 if (!Text.containsKey((String)(word2+":"+word3))){
 Text.put(((String)(word2+":"+word3)), 1);
 }

 if
(!Text.containsKey((String)(word1+":"+word2+":"+word3))){
 Text.put(((String)(word1+":"+word2+":"+word3)),

1);
 }
 }

 }
 }
 tempDoc.setText(Text);

 } catch (IOException ex) {

Logger.getLogger(SAXParserNGram.class.getName()).log(Level.SEVERE, null,

ex);
 }
 }

Listing 0.4 Module testANDUnigram

public static void testANDUnigram(String searchString,String fileName)
throws FileNotFoundException, TTransportException, TException,

InvalidRequestException, IOException, UnavailableException,
TimedOutException{
 connector = new Connector();

 client = connector.connect();
 Long clockStart;
 Long clockFinish;

	

80

 Set<String> postingList;

 SAXParserNGram ngram = new SAXParserNGram();
 searchString = ngram.removeStopWordsAndStem(searchString);

 //Run 25 times
 int i, n = 25;
 List<ByteBuffer> setUnigram = new ArrayList<>();

 System.out.println("*************************");
 System.out.println("** intersection unigram**");
 System.out.println("*************************");

 setUnigram = splitPhraseUnigram(searchString,fileName);
 for (i = 0; i < n; i++)
 {

 clockStart = System.nanoTime();
 postingList = intersection(setUnigram, Constants.CFamily);
 clockFinish = System.nanoTime();

 if (postingList.size()==0)
 System.out.println("n/a");
 else

 System.out.println((double)((clockFinish-clockStart) /
1000000.0) + " millisecs");
 }

 connector.close();
}

Listing 0.5 Module removeStopWordsAndStem

public static String removeStopWordsAndStem(String input) throws
IOException {
 TokenStream tokenStream = new StandardTokenizer(

 Version.LUCENE_30, new StringReader(input));
 tokenStream = new StopFilter(true, tokenStream, stopwords);
 tokenStream = new PorterStemFilter(tokenStream);

 StringBuilder sb = new StringBuilder();
 TermAttribute termAttr = tokenStream.getAttribute(TermAttribute.class);
 while (tokenStream.incrementToken()) {

 if (sb.length() > 0) {
 sb.append(" ");
 }

 sb.append(termAttr.term());
 }
 return sb.toString();

}

Listing 0.6 Module parseDocument

public void parseDocument(File doc) throws ParserConfigurationException,

SAXException, IOException {
 //get a factory
 SAXParserFactory spf = SAXParserFactory.newInstance();

	

81

 //get a new instance of parser
 SAXParser sp = spf.newSAXParser();
 //parse the file and also register this class for call backs

 sp.parse(doc, this);
 connector.close();
}

Listing 0.7 Module splitPhraseBigram

public static List<ByteBuffer> splitPhraseBigram(String searchString,String
fileName) throws FileNotFoundException, IOException {

 List<ByteBuffer> results = new ArrayList<>();
 stopwords = readStopWordSet(fileName);
 String[] s = searchString.toLowerCase().split(sDelimiter);

 s = removeStopWordsAndStem(s);
 for (int i = 0; i < s.length - 1; i++) {
 results.add(ByteBuffer.wrap((s[i] + ":" + s[i + 1]).getBytes()));

 }
 return results;
}

Listing 0.8 Module splitPhraseTrigram

public static List<ByteBuffer> splitPhraseTrigram(String
searchString,String fileName) throws FileNotFoundException, IOException {

 List<ByteBuffer> results = new ArrayList<>();
 stopwords = readStopWordSet(fileName);
 String[] s = searchString.toLowerCase().split(sDelimiter);

 s = removeStopWordsAndStem(s);
 if (s.length >= 3) {
 for (int i = 0; i < s.length - 2; i++) {

 results.add(ByteBuffer.wrap((s[i] + ":" + s[i + 1] + ":" + s[i
+ 2]).getBytes()));
 }

 }
 return results;
}

Listing 0.9 Module splitPhraseUnigram

public static List<ByteBuffer> splitPhraseUnigram(String
searchString,String fileName) throws FileNotFoundException, IOException {

 List<ByteBuffer> results = new ArrayList<>();
 stopwords = readStopWordSet(fileName);
 String[] s = searchString.toLowerCase().split(sDelimiter);

 s = removeStopWordsAndStem(s);
 for (int i = 0; i < s.length; i++) {
 results.add(ByteBuffer.wrap(s[i].getBytes()));

 }
 return results;}

	

82

	

References	

[HEWITT, 2011]

Eben HEWITT, Cassandra: The Definitive Guide, O’Reilly Media, Inc., 2011

[KIM, 2008]

Min-Soo KIM, Kyu-Young WHANG, Jae-Gil LEE, Min-Jae LEE, Structural optimization
of a full-text n-gram index using relational normalization, The VLDB Journal (2008)
17:1485–1507

[Lucid, 2009]

Lucid Imagination, What Lucene and Solr Open Source Search can do for Enterprise
Search, April 2009

[MAHMOUD, 2011]

Rammal MAHMOUD, Sanan MAJED, Improving Arabic Information Retrieval System
using n-gram method, WSEAS Transactions on Computers, Volume 10 Issue 4, April
2011, Pages 125-133

[SADALAGE, 2013]

Pramod J. SADALAGE, Martin FOWLER, NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence. Addison-Wesley, 2013

[WILSON, 2008]

Theresa WILSON, Stephan RAAIJMAKERS, Comparing word, character, and phoneme n-
grams for subjective utterance recognition, ISCA, 2008

[YAMAMOTO, 2003]

Hiroshi YAMAMOTO, Seishiro OHMI, Hiroshi TSUJI, Incremental Indexing and Its
Evaluation for Full Text Search, Idea Group Inc., 2003

[ZICARI, 2012]

Roberto V. ZICARI, Integrating Enterprise Search with Analytics. Interview with
Jonathan Ellis, 16.04.2012

Web	
 Resources	

[1] Adam Pullen, Final concept,
http://www.finalconcept.com.au/article/view/apache-solr-hints-
and-tips (last visited on 10.10.2012)

[2] Cassandra Wiki, GettingStarted,
http://wiki.apache.org/cassandra/GettingStarted (last visited on
13.05.2013)

[3] chco (alias), Replica Placement Strategies When Using Cassandra, O'REILLY Answers,
22 Jan 2011, http://answers.oreilly.com/topic/2408-replica-
placement-strategies-when-using-cassandra/ (last visited on 13.05.2013)

[4] Chrisumbel, Solr/Lucene for SQL server,
http://www.chrisumbel.com/article/lucene_solr_sql_server (last
visited on 10.10.2012)

[5] Community Help Wiki, Packaging webapps for deployment in Tomcat 6.0 in Debian and
Ubuntu, https://help.ubuntu.com/community/Tomcat/PackagingWebapps
(last visited on 15.10.2012)

[6] Datastax, About Data Partitioning in Cassandra, Apache Cassandra 1.0 Documentation,
http://www.datastax.com/docs/1.0/cluster_architecture/partitio
ning (last visited on 14.05.2013)

[7] Datastax, Initializing a multiple node cluster, Apache Cassandra 1.2 Documentation,
http://www.datastax.com/docs/1.2/initialize/cluster_init#clust
er-init-multiple (last visited on 13.05.2013)

[8] Diversions, Introduction to Cassandra, 5th October 2012,
http://dafreels.wordpress.com/ (last visited on 14.05.2013)

[9] Edlich S., NoSQL, http://nosql-database.org/ (last visited on 08.08.2013)

[10] Featherston D., Cassandra: Principles and Application, in the author's graduate work at
the University of Illinois at Urbana-Champaign, 03 Aug 2010,
http://d2fn.com/2010/08/03/cassandra-paper.html (last visited
18.05.2013)

	

85

[11] Feipeng L. (alias roman10), Apache Cassandra Understand Replication, August 24,
2012, http://www.roman10.net/apache-cassandra-understand-
replication/ (last visited 18.05.2013)

[12] Gaucherin, B., solr configuration,
http://bengaucherin.wordpress.com/2011/09/17/one-more-solr-
step-by-step-setup-tutorial-%E2%80%93-part-ii-of-ii/ (last visited on
03.10.2012)

[13] Hulen, Cassandra Performance Testing on EC2, Sept 2010,
http://www.hulen.com/post/22803493165/cassandra-performance-
testing-on-ec2 (last visited on 03.07.2013)

[14] Lucidimagination, What Is Indexing?,
http://lucidworks.lucidimagination.com/pages/viewpage.action?p
ageId=9241300 (last visited on 10.10.2012)

[15] McGee M., Facebook: 3.2 Billion Likes & Comments Every Day, Marketing Land, 27
Aug. 2012, http://marketingland.com/facebook-3-2-billion-likes-
comments-every-day-19978, (last visited on 10.07.2013)

[16] Putnam C., Faster, Simpler Photo Uploads, Le blog Facebook, 5 février 2010,
http://www.facebook.com/blog/blog.php?post=206178097130, (last
visited on 10.07.2013)

[17] Querna P., Cassandra Token Selection,
http://journal.paul.querna.org/articles/2010/09/24/cassandra-
token-selection/ (last visited on 01.05.2013)

[18] Reagan D., Installing Cassandra on Ubuntu Linux,
http://dustyreagan.com/installing-cassandra-on-ubuntu-linux/
(last visited on 09.10.2012)

[19] Stack Overflow, Cassandra - Understanding Rack Concept on PropertyFileSnitch
example, http://stackoverflow.com/questions/13882313/cassandra-
understanding-rack-concept-on-propertyfilesnitch-example (last
visited on 13.05.2013)

[20] The Apache Software Foundation, Apache Solr,
http://lucene.apache.org/solr/ (last visited on 08.08.2013)

[21] The Apache Software Foundation, Tomcat Web Application Deployment,
http://tomcat.apache.org/tomcat-6.0-doc/deployer-howto.html (last
visited on 15.10.2012)

