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ABSTRACT

Given the heterogeneity of the data one can find on the
Linked Data cloud, being able to trace back the provenance
of query results is rapidly becoming a must-have feature
of RDF systems. While provenance models have been ex-
tensively discussed in recent years, little attention has been
given to the efficient implementation of provenance-enabled
queries inside data stores. This paper introduces TripleProv:
a new system extending a native RDF store to efficiently
handle such queries. TripleProv implements two different
storage models to physically co-locate lineage and instance
data, and for each of them implements algorithms for trac-
ing provenance at two granularity levels. In the following,
we present the overall architecture of our system, its dif-
ferent lineage storage models, and the various query exe-
cution strategies we have implemented to efficiently answer
provenance-enabled queries. In addition, we present the re-
sults of a comprehensive empirical evaluation of our system
over two different datasets and workloads.
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1. INTRODUCTION

With the rapid expansion of the Linked Open Data (LOD)
cloud, developers are able to query and integrate large collec-
tions of disparate online data. As the LOD cloud is rapidly
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growing, so is its heterogeneity. The heterogeneity of the
data combined with the ability to easily integrate it—using
standards such as RDF and SPARQL—mean that tracing
back the provenance (or lineage) of query results becomes
essential, e.g., to understand which sources were instrumen-
tal in providing results, how data sources were combined, to
validate or invalidate results, and to delve deeper into data
related to the results retrieved.

Within the Web community, there have been several
efforts in developing models and syntaxes to interchange
provenance, which resulted in the recent W3C PROV
recommendation [11]. However, less attention has
been given to the efficient handling of provenance data
within RDF database systems. While some systems
store quadruples or named graphs, to the best of our
knowledge, no current high-performance triple store is able
to automatically derive provenance data for the results it
produces.

We aim to fill this gap. In the following, we present
TripleProv, a new database system supporting the transpar-
ent and automatic derivation of detailed provenance infor-
mation for arbitrary queries. TripleProv is based on a native
RDF store, which we have extended with two different phys-
ical models to store provenance data on disk in a compact
fashion. In addition, TripleProv supports several new query
execution strategies to derive provenance information at two
different levels of granularity. More specifically, we make the
following contributions:

e We enable the provenance of query results to be ex-
pressed at two different granularity levels by leveraging
the concept of provenance polynomials.

e We propose two new storage models to represent prove-
nance data in a native RDF data store compactly,
along with query execution strategies to derive the
aforementioned provenance polynomials while execut-
ing the queries.

e Finally, we present a new system, TripleProv, imple-
menting our approach and analyze its performance
through a series of empirical experiments using two
different Web-centric datasets and workloads.

The rest of this paper is structured as follows: We start
below by reviewing related work and providing some use
cases for provenance polynomials in Sections 2 and 3. We
then give an overview or our system in Section 4. Our notion



of provenance polynomials is introduced in Section 5. This is
followed by a discussion of two provenance storage models in
Section 6, and our new query execution strategies to derive
provenance polynomials in Section 7. Finally, we give the
results of a detailed performance evaluation of in Section 8
before concluding.

2. RELATED WORK

Data provenance has been widely studied within the
database, distributed systems, and Web communities. For a
comprehensive review of the provenance literature, we refer
readers to [19]. Likewise, Cheney et al. provide a detailed
review of provenance within the database community [2].
Broadly, one can categorize the work into three areas [10]:
content, management, and use. Work in the content area
has focused on representations and models of provenance.
In management, the work has focused on collecting
provenance in software ranging from scientific databases [3]
to operating systems or large scale workflow systems as
well as mechanisms for querying it. Finally, provenance
is used for a variety of applications including debugging
systems, calculating trust and checking compliance. Here,
we briefly review the work on provenance with respect to
the Web of Data. We also review recent results applying
theoretical database results with respect to SPARQL.

Within the Web of Data community, one focus of work has
been on designing models (i.e., ontologies) for provenance in-
formation [13]. The W3C Incubator Group on provenance
mapped nine different models of provenance [24] to the Open
Provenance Model [20]. Given the overlap in the concepts
defined by these models, a W3C standardization activity
was created that has led to the development of the W3C
PROV recommendations for interchanging provenance [11].
This recommendation is being increasingly adopted by both
applications and data set providers - there are over 60 im-
plementations of PROV [17].

In practice, provenance is attached to RDF data using
either reification [15] or named graphs [1]. Widely used
datasets such as YAGO [16] reify their entire structures to
facilitate provenance annotations. Indeed, provenance is one
reason for the inclusion of named graphs in the next version
of RDF [29]. Both named graphs and reification lend to
complex query structures especially as provenance becomes
increasingly fined grained. Indeed, formally, it may be diffi-
cult to track provenance using named graphs under updates
and RDFS reasoning [23].

To address these issues, a number of authors have adopted
the notion of annotated RDF [26, 7]. This approach as-
signs annotations to each of the triples within a dataset and
then tracks these annotations as they propagate through
either the reasoning or query processing pipelines. For-
mally, these annotated relations can be represented by the
algebraic structure of communicative semirings, which can
take the form of polynomials with integer coefficients [9].
These polynomials represent how source tuples are combined
through different relational algebra operators (e.g., UNION,
JOINS). These relational approaches are now being applied
to SPARQL [25].*

Note, in terms of formalization, SPARQL poses difficulties
because of the OPTIONAL operator, which implies nega-
tion.

As [4] has noted, many of the annotated RDF approaches
do not expose how-provenance (i.e., how a query result was
constructed). The most comprehensive implementations of
these approaches are [30, 26]. However, they have only been
applied to small datasets (around 10 million triples) and are
not aimed at reporting provenance polynomials for SPARQL
query results. Annotated approaches have also been used for
propagating trust values [14]. Other recent work, e.g., [8, 4],
has looked at expanding the theoretical aspects of applying
such a semiring based approach to capturing SPARQL. Our
work instead focuses on the implementation aspects of using
annotations to track provenance within the query processing
pipeline. In particular, we scale to over a 100 million triples
using real-world Web datasets and look at the implications
of storage models on performance.

3. USE CASES FOR PROVENANCE POLY-
NOMIALS

There are many scenarios provenance polynomials can be
applied to. [18] describes a number of use cases where
storage and querying of provenance data generated by a
database system could be useful. We revisit some of these
here. Polynomials express the exact way through which
the results were derived. As such, they can hence be used
to calculate scores or probabilities for particular query re-
sults (e.g., for post-processing tasks such as results ranking
or faceted search). Likewise, one can use polynomials to
compute a trust or information quality score based on the
sources used in the result.

One can also use the provenance to modify query execu-
tion strategies on the fly. For instance, one could restrict
the results to certain subsets of sources or use provenance
for access control such that only certain sources will appear
in a query result. Identifying results (i.e., particular triples)
with overlapping provenance is also another prospective use
case. Finally, one could detect whether a particular result
would still be valid when removing a source dataset.

4. SYSTEM OVERVIEW

In the following, we give a high-level overview of
TripleProv, a native RDF store supporting the efficient
generation of provenance polynomials during query
execution. TripleProv is based on dipLODocus[RDF] [28], a
recent and native RDF database management system, and
is available as an open-source package on our Web page?.

Figure 1 gives an overview of the architecture of our sys-
tem, composed of a series of subcomponents:

a query executor responsible for parsing the incoming
query, rewriting the query plans, collecting and finally
returning the results along with the provenance
polynomials to the client;

a key index in charge of encoding URIs and literals into
compact system identifiers and of translating them
back;

a type index clustering all keys based on their types;

a series of RDF molecules storing RDF data as very
compact subgraphs;

“http://exascale.info/tripleprov



a molecule index storing for each key the list of molecules
where the key can be found.

We give below an overview of the three most important sub-
components of our system in a provenance context, i.e., the
key index, the molecules, and the molecule index.

The key index is responsible for encoding all URIs and lit-
erals appearing in the triples into a unique system id (key),
and back. We use a tailored lexicographic tree to parse URIs
and literals and assign them a unique numeric ID. The lex-
icographic tree we use is essentially a prefix tree splitting
the URISs or literals based on their common prefixes (since
many URIs share the same prefixes), such that each sub-
string prefix is stored once and only once in the tree. A
key ID is stored at every leaf, which is composed of a type
prefix (encoding the type of the element, e.g., Student or
zsd : date) and of an auto-incremented instance identifier.
This prefix tree allows us to completely avoid potential colli-
sions (caused for instance when applying hash functions on
very large datasets), and also lets us compactly co-locate
both type and instance ids into one compact key. A second
structure translates the keys back into their original form.
It is composed of a set of inverted indices (one per type),
each relating an instance ID to its corresponding URI / lit-
eral in the lexicographic tree in order to enable efficient key
look-ups.

In their simplest form, RDF molecules [6] are similar to
property tables [27] and store, for each subject, the list or
properties and objects related to that subject. Molecule
clusters are used in two ways: to logically group sets of
relates URIs and literals (thus, pre-computing joins), and
to physically co-locate information related to a given ob-
ject on disk and in main-memory to reduce disk and CPU
cache latency. TripleProv stores such lists of molecules very
compactly on disk or in main memory, thus making query
resolution fast in many contexts.

In addition to the molecules themselves, the system also
maintains a molecule index storing for each key the list of
local molecules storing that key (e.g., “key 15123 [Coursel2]
is stored in molecules 23521 [root:Student543] and 23522
[root:Student544]”). This index is particularly useful to an-
swer triple-pattern queries as we explain below in Section 7.

TripleProv extends dipLODocus[RDF] and its native
molecule storage in two important ways: i) it introduces
new storage structures to store lineage data directly
co-located to the instance data and ii) it supports the
efficient generation of provenance polynomials during query
execution. Figure 1 gives an overview of our system in
action, taking as input a SPARQL query (and optionally a
provenance granularity level), and returning as output the
results of the query along with the provenance polynomials
derived during query execution.

5.  PROVENANCE POLYNOMIALS

The first question we tackle is how to represent prove-
nance information that we want to return to the user in ad-
dition to the results themselves. Beyond listing the various
sources involved in the query, we want to be able to char-
acterize the specific ways in which each source contributed
to the query results. As summarized in Section 2, there has
been quite a bit of work on provenance models and languages
recently. Here, we leverage the notion of provenance poly-
nomials. However, in contrast to the many recent pieces of

work in this space, which tackled more theoretical issues, we
focus on the practical realization of this model within a high
performance triple store to answer queries seen as useful in
practice. Specifically, we focus on two key requirements:

1. the capability to pinpoint, for each query result, the
exact source from which the result was selected;

2. the capability to trace back, for each query result, the
complete list of sources and how they were combined
to deliver a result.

Hence, we support two different provenance operators at
the physical level, one called pProjection, meeting the first
requirement and pinpointing to the exact sources from which
the result was drawn, and a second one called pConstraint,
tracing back the full lineage of the results.

At the logical level, we use two basic operators to express
the provenance polynomials. The first one (@) to represent
unions of sources, and the second (®) to represent joins be-
tween sources.

Unions are used in two cases when generating the polyno-
mials. First, they are used when a constraint or a projection
can be satisfied with triples coming from multiple sources
(meaning that there are more than one instance of a par-
ticular triple which is used for a particular operation). The
following polynomial:

1ol2@13

for instance, encodes the fact that a given result can orig-
inate from three different sources (i1, 2, or I3, see below
Section 5.1 for a more formal definition of the sources). Sec-
ond, unions are also used when multiple entities satisfy a
set of constraints or projections (like the collection ’prove-
nanceGlobal’ in 7.1).

As for the join operator, it can also be used in two ways:
to express the fact that sources were joined to handle a con-
straint or a projection, or to handle object-subject or object-
object joins between a few sets of constraints. The following
polynomial:

(1®12)® (13 14)

for example, encodes the fact that sources [1 or [2 were
joined with sources (3 or l4 to produce results.

5.1 Provenance Granularity Levels

One can model RDF data provenance at different gran-
ularity levels. Current approaches (see Section 2), typi-
cally, return a list of named graphs from which the answer
was computed. Our system, besides generating polynomials
summarizing the complete provenance of results, also sup-
ports two levels of granularity. First, a lineage I; (i.e., an ele-
ment appearing in a polynomial) can represent the source of
a triple, (e.g., the fourth element in a quadruple). We call
this granularity level source-level. Alternatively, a lineage
can represent a quadruple (i.e., a triple plus its correspond-
ing source). This second type of lineage produces polynomi-
als consisting of all the pieces of data (i.e., quadruples) that
were used to answer the query, including all intermediate
results. We call this level of granularity triple-level.

In addition to those two provenance granularity levels,
TripleProv also supports two levels of aggregation to output
the results. The default level aggregates the polynomials
for all results, i.e., it gives an overview of all triples/sources
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Figure 1: The architecture of TripleProv; the system takes as input queries (and optionally a provenance granularity level),
and produces as output query results along with their corresponding provenance polynomials.

used during query execution. The second level provides full
provenance details, explaining—for each single result—the
way (polynomial) through which this particular result was
constructed. Both aggregation levels typically perform sim-
ilarly (since one is basically derived from the other), hence,
we mainly focus on aggregated polynomial results in the fol-
lowing.

6. STORAGE MODELS

We now discuss the RDF storage model of TripleProv,
based on our previous contribution [28], and extended with
new physical storage structures to store provenance.

6.1 Native Storage Model

RDF Templates When ingesting new triples, TripleProv
first identifies RDF subgraphs. It analyzes the incoming
data and builds what are termed molecule templates. These
templates act as data prototypes to create RDF molecules.
Figures 2 i) gives a template example that co-locates infor-
mation relating to Student instances. Once the templates
have been defined, the system starts creating molecule iden-
tifiers based on the molecule roots (i.e., central molecule
nodes) that it identifies in the incoming data.

While creating molecule templates and molecule identi-
fiers, the system takes care of two additional data gathering
and analysis tasks. First, it inspects both the schema and
instance data to determine all subsumption (subclass) rela-
tions between the classes, and maintains this information in
a compact type hierarchy. In case two unrelated types are
assigned to a given instance, the system creates a new vir-
tual type composed of the two types and assigns it to the
instance.

RDF Molecules TripleProv stores the primary copy of the
RDF data as RDF molecules, which can be seen as hybrid
data structures borrowing both from property tables and
from RDF subgraphs. They store, for every template de-

fined by the template manager, a compact list of objects
connected to the root of the molecule. Figure 2 (ii) gives
an example of a molecule. Molecules co-locate data and
are template-based, hence can store data extremely com-
pactly. The molecule depicted in Figures 2 (ii), for instance,
contains 15 triples (including type information), and would
hence require 45 URIs/literals to be encoded using a stan-
dard triple-based serialization. Our molecule, on the other
hand, only requires the storage 10 keys to be correctly de-
fined, yielding a compression ratio of 1 : 4.5.

Data (or workload) inspection algorithms can be
exploited in order to materialize frequent joins though
molecules. In addition to materializing the joins between
an entity and its corresponding values (e.g., between a
student and his/her firstname), one can hence materialize
the joins between two semantically related entities (e.g.,
between a student and his/her advisor) that are frequently
co-accessed by co-locating them in the same molecule.

6.2 Storage Model Variants for Provenance

We now turn to the problem of extending the physical
data structures of TripleProv to support provenance queries.
There are a number of ways one could implement this in our
system. A first way of storing provenance data would be to
simply annotate every object in the database with its cor-
responding source. This produces quadruple physical data
structures (SPOL, where S is the subject of the quadruple,
P its predicate, O its object, and L its source), as illustrated
in Figure 3, SPOL). The main advantage of this variant is
its ease of implementation (e.g., one simply has to extend
the data structure storing the object to also store the source
data). Its main disadvantage, however, is memory consump-
tion since the source data has to be repeated for each triple.

One can try to physically co-locate the source and the
triples differently, which results in a different memory con-
sumption profile. One extreme option would be to regroup
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Figure 2: A molecule template (i) along with one of its RDF molecules (ii).

molecules in clusters based on their source (LSPO cluster-
ing). This, however, has the negative effect of splitting our
original molecules into several structures (one new structure
per new source using a given subject), thus braking pre-
computed joins and defeating the whole purpose of storing
RDF as molecules in the first place. The situation would
be even worse for deeper molecules (i.e., molecules storing
data at a wider scope, or considering large RDF subgraphs).
On the other hand, such structures would be quite appropri-
ate to resolve vertical provenance queries, i.e., queries that
explicitly specify which sources to consider during query ex-
ecution (however, our goal is not to optimize for such prove-
nance queries in the present work).

The last two options for co-locating source data and triples
are SLPO and SPLO. SLPO co-locates the source data
with the predicates, making it technically speaking com-
pelling, since it avoids the duplication of the same source
inside a molecule, while at the same time still co-locating
all data about a given subject in one structure. SPLO, fi-
nally, co-locates the source data with the predicates in the
molecules. In practice, this last physical structure is very
similar to SPOL in terms of storage requirements, since it
rarely happens that a given source uses the same predicates
with many values. Compared to SPOL, it also has the
disadvantage of considering a relatively complex structure
(PO) in the middle of the physical storage structure (e.g.,
as the key of a hash-table mapping to the objects).

These different ways of co-locating data naturally result in
different memory overheads. The exact overhead, however,
is highly dependent on the dataset considered, its structure,
and the homogeneity / heterogeneity of the sources involved
for the different subjects. Whenever the data related to a
given subject comes from many different sources (e.g., when
the objects related to a given predicate come from a wide
variety of sources), the overhead caused by repeating the
predicate in the SLPO might not be compensated by the
advantage of co-location. In such cases, models like SPLO
or SPOL might be more appropriate. If, on the other hand,
a large portion of the different objects attached to the pred-
icates come from the same sources, then the SPLO model
might pay off (see also Section 8 for a discussion on those
points). From this analysis, it is evident that no single prove-
nance storage model is overall best—since the performance
of such models is somewhat dependent on the queries, of

course, but also on the homogeneity / heterogeneity of the
datasets considered.

For the reasons described above, we focus below on
two very different storage variants in our implementation:
SLPO, which we refer to as data grouped by source in
the following (since the data is regrouped by source
inside each molecule), and SPOL, which we refer to as
annotated provenance since the source data is placed like
an annotation next to the last part of the triple (object).
We note that implementing such variants at the physical
layer of the database system is a significant effort, since
all higher-level calls (i.e., all operators) directly depend on
how the data is laid-out on disk and in memory.

7. QUERY EXECUTION

We now turn to the way we take advantage of the source
information stored in the molecules to produce provenance
polynomials. We have implemented specific query execu-
tion strategies in TripleProv that allow to return a complete
record of how the results were produced (including detailed
information of key operations like unions and joins) in addi-
tion to the results themselves. The provenance polynomials
our system produce can be generated at source-level or at
triple-level, and both for detailed provenance records and
for aggregated provenance records.

7.1 General Query Answering Algorithm

Algorithm 1 gives a simplified view on how simple star-like
queries are answered in TripleProv. Given a SPARQL query,
our system first analyzes the query to produce a physical
query plan, i.e., a tree of operators that are then called iter-
atively to retrieve molecules susceptible of containing data
relevant to the query. The molecules are retrieved by tak-
ing advantage of the lexicographic tree to translate any un-
bound variables in the query into keys, and then by using
the molecule index to locate all molecules containing those
keys (see [28] for details).

In parallel to the classical query execution process,
TripleProv keeps track of the various triples and sources
that have been instrumental in producing results for the
query. For each molecule inspected, our system keeps
track of the provenance of any triple matching the current
pattern being handled (checkIfTripleEzists). In a similar
fashion, it keeps track of the provenance of all entities being
retrieved in the projections (getEntity). In case multiple
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Figure 3: The four different physical storage models identified for co-locating source information (L) with the triples (SPO)

inside RDF molecules.

molecules are used to construct the final results, the system
keeps track of the local provenance of the molecules by
performing a union of the local provenance data using a
global provenance structure (provenanceGlobal.union). To
illustrate such operations and their results, we describe
below the execution of two sample queries.

7.2 Example Queries

The first example query we consider is a simple star query,
i.e., a query defining a series of triple patterns, all joined on
an entity that has to be identified:

select 7lat ?long
where {

7a [] ‘‘Eiffel Tower’’ .
?a inCountry FR .
7a lat 7lat

?7a long ?7long

}

To build the corresponding provenance polynomial,
TripleProv first identifies the constraints and projections
from the query (see the annotated listing above). The query
executor chooses the most selective pattern to start looking
up molecules (in this case the first pattern), translates the
bound variable (“Eiffel Tower”) into a key, and retrieves
all molecules containing that key. Each molecule is then
inspected in turn to determine whenever both i) the
various constraints can be met (checkIfTripleEzists in
the algorithm) and ii) the projections can be correctly
processed (getEntity in the algorithm). Our system keeps
track of the provenance of each result, by joining the local
provenance information of each triple used during query
execution to identify the result.

Finally, a provenance polynomial such as the following is
issued:

(MeR2el3) e (4a15) (16 17) ® (18 ® 19)].

This particular polynomial indicates that the first constraint
has been satisfied with lineage [1, I2 or 3, while the second
has been satisfied with 14 or I5. It also indicates that the

(<— 1st constraint)
(<— 2nd constraint)

(<— 1st projection)

(<= 2nd projection)

Algorithm 1 Simplified algorithm for provenance polyno-
mials generation

Require: SPARQL query q

results <— NULL
provenanceGlobal <~ NULL
getMolecules <— q.getPhysicalPlan
constraints < q.getConstraints
projections < q.getProjections

@

for all getMolecules do
7:  provenanceLocal < NULL

8:  for all constrains do

9: if checkIfTripleExists then
10: provenanceLocal.join

11: else

12: nextMolecule

13: end if

14: end for

15:  for all projections do

16: entity = getEntity(for particular projection)

17: if entity is NOT EMPTY then

18: results.add(entity)

19: provenanceLocal.join

20: else

21: nextMolecule

22: end if

23:  end for

24:  if allConstrainsSatisfied AND allProjectionsAvailable
then

25: provenanceGlobal.union

26: end if

27: end for




first projection was processed with elements having a lin-
eage of 16 or [7, while the second one was processed with
elements from (8 or 19. The triples involved were joined on
variable ?a, which is expressed by the join operation (®) in
the polynomial. Such a polynomial can contain lineage el-
ements either at the source level or at the triple level, and
can be returned both in an aggregate or detailed form.

The second example we examine is slightly more involved,
as it contains two sets of constraints and projections with
an upper-level join to bind them:

select 71 ?long 7lat
where {
(— first set)
?7p name ‘‘Krebs, Emil’’
?7p deathPlace 71

(—— second set)
¢ [] 71

?7c featureClass P
?7c inCountry DE .
?7c long 7long

7c lat 7lat

The query execution starts similarly as for the first sample
query. After resolving the first two patterns, the second
set of patterns is processed by replacing variable 7l with
the results derived from the first set, and by joining the
corresponding lineage elements.

Processing the query in TripleProv automatically gener-
ates provenance polynomials such as the following:

(MMeiR2eld)o (4@15)] ®
(16 ©17) @ (I8) ® (19 & 110) ® (111 & 112) ® (113)]

where an upper-level join () is performed across the
lineage elements resulting from both sets. More complex
queries are solved similarly, by starting with the most
selective patterns and iteratively joining the results and the
provenance information across molecules.

8. PERFORMANCE EVALUATION

To empirically evaluate our approach, we implemented
the storage models and query execution strategies described
above. Specifically, we implemented two different storage
models: SPOL and SLOP. For each model, we support two
different levels of provenance granularity: source granularity
and triple granularity. Our system does not parse SPARQL
queries at this stage (adapting a SPARQL parser is currently
in progress), but offers a similar, high-level and declarative
API to encode queries using triple patterns. Each query is
then encoded into a logical physical plan (a tree of opera-
tors), which is then optimized into a physical query plan as
for any standard database system. In that sense, we follow
the algorithms described above in Section 7.

In the following, we experimentally compare the vanilla
version of TripleProv, i.e., the bare-metal system without
provenance storage and provenance polynomials generation,
to both SPOL and SLOP on two different datasets and work-
loads. For each provenance storage model, we report results
both for generating polynomials at the source and at the
triple granularity levels. We also compare our system to

4store®, where we take advantage of 4store’s quadruple stor-
age to encode provenance data as named graphs and manu-
ally rewrite queries to return some provenance information
to the user (as discussed below, such an approach cannot
produce valid polynomials, but is interesting anyhow to il-
lustrate the fundamental differences between TripleProv and
standard RDF stores when it comes to provenance).

We note that the RDF storage system that TripleProv
extends (i.e., the vanilla version of TripleProv) has already
been compared to a number of other well-known database
systems, including Postgres, AllegroGraph, BigOWLIM,
Jena, Virtuoso, and RDF 3X (see [28] and [5]). The system
is on average 30 times faster than the fastest RDF data
management system we have considered (RDF-3X) for
LUBM queries, and on average 350 times faster than the
fastest system we have considered (Virtuoso) on more
complex analytics.

8.1 Hardware Platform

All experiments were run on a HP ProLiant DL385 G7
server with an AMD Opteron Processor 6180 SE (24 cores,
2 chips, 12 cores/chip), 64GB of DDR3 RAM and run-
ning Ubuntu 12.04.3 LTS (Precise Pangolin). All data were
stored on a recent 3 TB Serial ATA disk.

8.2 Datasets

We used two different sources for our data: the Billion
Triples Challenge (BTC)* and the Web Data Commons
(WDC) [21].5 Both datasets are collections of RDF
data gathered from the Web. They represent two very
different kinds of RDF data. The Billion Triple Challenge
dataset was crawled based on datasets provided by
Falcon-S, Sindice, Swoogle, SWSE, and Watson using the
MultiCrawler/SWSE framework. The Web Data Commons
project extracts all Microformat, Microdata and RDFa
data from the Common Crawl Web corpus, the largest and
most up-to-data Web corpus that is currently available to
the public, and provides the extracted data for download in
the form of RDF-quads and also in the form of CSV-tables
for common entity types (e.g., products, organizations,
locations, etc.).

Both datasets represent typical collections of data
gathered from multiple sources, thus tracking provenance
for them seems to precisely address the problem we focus
on. We consider around 115 million triples for each dataset
(around 25GB). To sample the data, we first pre-selected
quadruples satisfying the set of considered queries. Then,
we randomly sampled additional data up to 25GB. Both
datasets are available for download on our website®.

8.3 Workloads

We consider two different workloads. For BTC, we use
eight existing queries originally proposed in [22]. In addi-
tion, we added two queries with UNION and OPTIONAL
clauses, which we thought were missing in the original set
of queries. Based on the queries used for the BTC dataset,
we wrote 7 new queries for the WDC dataset, encompassing
different kinds of typical query patterns for RDF, including
star-queries of different sizes and up to 5 joins, object-object

3http://4store.org/
‘http://km.aifb.kit.edu/projects/btc-2009/
*http://webdatacommons.org/
Shttp://exascale.info/tripleprov



joins, object-subject joins, and triangular joins. In addi-
tion, we included two queries with UNION and OPTIONAL
clauses. As for the data, the workloads we consdiered are
available on our website.

8.4 Experimental Methodology

As is typical for benchmarking database systems (e.g., for
tpc-x7), we include a warm-up phase before measuring the
execution time of the queries in order to measure query ex-
ecution times in a steady-state mode. We first run all the
queries in sequence once to warm-up the systems, and then
repeat the process ten times (i.e., we run for each system
we benchmark a total of 11 batches, each containing all the
queries we consider in sequence). We report the mean val-
ues for each query. In addition, we avoided the artifacts of
connecting from the client to the server, of initializing the
database from files, and of printing results; We measured in-
stead the query execution times inside the database system
only.

8.5 Variants Considered

As stated above, we implemented two storage models
(grouped/co-located and annotated) in TripleProv and
for each model we considered two granularity levels for
tracking provenance (source and triple). This gives us four
different variants to compare against the vanilla version
of our system. Our goal is in that sense to understand
the various trade-offs of the approaches and to assess the
performance penalty caused by enabling provenance. We
use the following abbreviations to refer to the different
variants in the following:

V: the vanilla version of our system (i.e., the version where
provenance is neither stored nor looked up during
query execution);

SG: source-level granularity, provenance data grouped by
source;

SA: source-level granularity, annotated provenance data;

TG: triple-level granularity, provenance data grouped by
source;

TA: triple-level granularity, annotated provenance data.

8.6 Comparison to 4Store

First, we start by an informal comparison with 4Store
to highlight the fundamental differences between our
provenance-enabled system and a quad-store supporting
named graphs.

While 4Store storage takes into account quads (and thus,
source data can be explicitly stored), the system does not
support the generation of detailed provenance polynomials
tracing back the lineage of the results. Typically, 4Store sim-
ply returns standard query results as any other RDF store.
However, one can try to simulate some basic provenance ca-
pabilities by leveraging the graph construct in SPARQL and
extensively rewriting the queries by inserting this construct
for each query pattern.

As an example, rewriting the first sample query we con-
sider above in Section 7.1 would result in the following:

Thttp:/ /www.tpc.org/

select ?lat ?long 7gl 7g2 7g3 7g4
where {
graph ?7gl {7a [] "Eiffel Tower” . }
graph ?g2 {?a inCountry FR . }
graph ?g3 {?a lat ?lat . }
graph ?g4 {7a long ?long }

}

However, such a query processed in 4store would obviously
not produce full-fledged provenance polynomials. Rather,
a simple list of concatenated sources would be returned,
whether or not they were in the end instrumental to derive
the final results of the query, as follows:

lat long 11 12 14 14, lat long 11 12 14 15,
lat long 11 12 15 14, lat long 11 12 15 15,
lat long 11 13 14 14, lat long 11 13 14 15,
lat long 11 13 15 14, lat long 11 13 15 15,

lat long 12 12 14 14, lat long 12 12 14 15,
lat long 12 12 15 14, lat long 12 12 15 15,
lat long 12 13 14 14, lat long 12 13 14 15,
lat long 12 13 15 14, lat long 12 13 15 15,

lat long 13 12 14 14, lat long 13 12 14 15,
lat long 13 12 15 14, lat long 13 12 15 15,
lat long 13 13 14 14, lat long 13 13 14 15,
lat long 13 13 15 14, lat long 13 13 15 15.

The listing above consists of all permutations of values
bound to variables referring to data used to answer the orig-
inal query (?lat, ?long). Additionally, all named graphs used
to resolve the triple patterns from the query (relating to vari-
ables 7g1, 7¢2, 7¢3, and 7g4) are also integrated. Obviously,
this type of outcome is insufficient for correctly tracing back
the provenance of the results.

Whereas in TripleProv the answer to the original query
(without the graph clauses) would be as follows:

lat long

with, in addition, the following compact provenance polyno-
mial:

(le2el3) e (2613)® (4@ 15) @ (46 I5)].

8.7 Query Execution Times

Figures 4 and 5 give the query execution times for the
BTC dataset, while Figures 6 and 7 present similar results
for WDC. We also explicitly give the overhead generated by
our various approaches compared to the non-provenance-
enabled (vanilla) version, in Figures 8 and 10 for BTC, and
in Figures 9 and 11 for WDC, respectively.

query # \4 SG SA TG TA
01 0.62 1.47 1.06 1.20 1.03
02 25.78 44.04 43.87 44.87 43.14]
03 1.06 1.78 1.82 1.81 1.79
04 111.11 200.28 183.34 201.99 180.04
05 258.41 464.09 423.46 467.12 416.14
06 35.80 109.60 77.09 160.29 78.07
07 1347.44 2258.41 2327.51 2344.10 2281.88|
08 4.03 5.60 4.98 5.54 4.94
09 0.0004 0.0006 0.0004 0.0006 0.0005
10 10.93 14.98 17.18 16.69 16.94

Figure 4: Query execution times (in seconds) for the BTC
dataset
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Figure 5: Query execution times (in seconds) for the BTC
dataset (logarithmic scale)

i I|| dl ‘I ‘l rm |
01 02 03 04 05 06 07 08 09 10

query #

query # Vv SG SA TG TA
01 0.0007 0.0017 0.0014 0.0024 0.0015
02 0.0006 0.0010 0.0006 0.0009 0.0006
03 0.0015 0.0034 0.0034 0.0048 0.0034
04 4.6637 8.6492 6.9617 8.8299 7.1642
05 0.1053 0.2395 0.2604 0.3320 0.3128
06 0.0187 0.0469 0.0532 0.0749 0.0733
07 0.0021 0.0039 0.0041 0.0051 0.0040
Figure 6: Query execution times (in seconds) for the WDC
dataset
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Figure 7: Query execution times (in seconds) for the WDC
dataset (logarithmic scale)

BN BE i dl ‘I ‘l " 1 |
01 02 03 04 05 06 07

query #

query # SG SA TG TA
01 136.79% 70.29% 92.72% 66.69%
02 70.84% 70.18% 74.03% 67.32%
03 69.09% 72.68% 72.01% 69.65%
04 80.26% 65.01% 81.79% 62.04%
05 79.60% 63.87% 80.77% 61.04%
06 206.11% 115.31% 347.68% 118.05%
07 67.61% 72.74% 73.97% 69.35%
08 38.98% 23.58% 37.68% 22.69%
09 70.70% 21.36% 63.80% 24.64%
10 37.00% 57.10% 52.62% 54.88%

Figure 8: Overhead of tracking provenance compared to the
vanilla version of the system for the BTC dataset

query # SG SA TG TA
01 139.98% 98.63% 238.70% 103.93%
02 74.69% 5.70% 66.35% 2.64%
03 121.07% 121.27% 206.97% 118.01%
04 85.46% 49.27% 89.33% 53.61%
05 127.40% 147.20% 215.18% 196.99%
06 150.51% 184.59% 300.12% 291.72%
07 90.77% 96.91% 146.81% 93.85%

Figure 9: Overhead of tracking provenance compared to the
vanilla version of the system for the WDC dataset
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Figure 10: Overhead of tracking provenance compared to

the vanilla version of the
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Figure 11: Overhead of tracking provenance compared to
the vanilla version of the system for the WDC dataset



Overall, the performance penalty created by tracking
provenance in TripleProv ranges from a few percents
to almost 350%. Clearly, we observe a significant
difference between the two main provenance storage models
implemented (SG vs SA and TG vs TA). Retrieving data
from co-located structures takes about 10%-20% more time
than from simply annotated graph nodes. We experimented
with various physical structures for SG and TG, but
could not significantly reduce this overhead, caused by the
additional look-ups and loops that have to be considered
when reading from extra physical data containers.

We also notice considerable difference between the two
granularity levels (SG vs TG and SA vs TA). Clearly, the
more detailed triple-level provenance granularity requires
more time for query execution than the simpler source-level,
because of the more complete physical structures that need
to be created and updated while collecting the intermediate
results sets.

Also, we observe some important differences between the
query execution times from the two datasets we used, even
for very similar queries (01-05 map directly from one dataset
onto the other; 09BTC maps to 06WDC and 10BTC maps
to 07WDC). Clearly, the efficiency of our provenance poly-
nomial generation on a given query depends upon underly-
ing data characteristics. One important dimension in that
context is the heterogeneity—in terms of number of sources
providing the data—of the dataset. The more heterogeneous
the data, the better the annotated storage model performs,
since this model makes no attempt at co-locating data w.r.t.
the sources and hence avoids additional look-ups when many
sources are involved. On the other hand, the more struc-
tured the data, the better the co-located models perform.

Finally, we briefly discuss two peculiar results appearing
in Figure 10 fore queries 01 and 06. For query 01, the rea-
son behind the large disparity in performance has to do with
the very short execution times (at the level of 102 second),
which cannot be measured more precisely and thus intro-
duces some noise. The performance overheard for query 06
is caused by a very large provenance record on one hand, and
a high heterogeneity in terms of sources for the elements that
are used to answer the query.

8.8 Loading Times & Memory Consumption

Finally, we discuss the loading times and memory con-
sumption for the various approaches. Figure 12 reports re-
sults for the BTC dataset, while Figure 13 provides similar
figures for the WDC dataset.

Referring to loading times, the more complex co-located
storage model requires more computations to load the
data than the simpler annotation model, which obviously
increases the time needed to load data. In terms of memory
consumption, the experimental results confirm our analysis
from Section 6; The datasets used for our experiments are
crawled from the Web, and hence consider data collated
from a wide variety of sources, which results in a high
diversification of the sources for each subject. As we
explained in Section 6, storage structures such as SPLO or
SPOL are more appropriate in such a case.

9. CONCLUSIONS

In this paper, we described TripleProv, an open-source
and efficient system for managing RDF data while also
tracking provenance. To the best of our knowledge, this

\Y G A
Loading Time (min) 23.32 27.9 26.8
Memory Consumprion (GB) 36.26 53.62 39.54

Figure 12: Loading times and memory consumption for the
BTC dataset

\% G A
Loading Time (min) 27.46 67.78 30.56
Memory Consumprion (GB) 42.53 66.22 50.29

Figure 13: Loading times and memory consumption for the
WDC dataset

is the first work that translates theoretical insights from
the database provenance literature into a high-performance
triple store. TripleProv not only implements simple tracing
of sources for query answers, but also considers fine-grained
multilevel provenance. In this paper, we implemented two
possible storage models for supporting provenance in RDF
data management systems. Our experimental evaluation
shows that the overhead of provenance, even though
considerable, is acceptable for the resulting provision
of a detailed provenance trace. We note that both our
query algorithms and storage models can be reused by
other databases (e.g., considering property tables or
subgraph storage structures) with only small modifications.
As we integrate a myriad of datasets from the Web,
provenance becomes a critical aspect in ascertaining trust
and establishing transparency [12]. TripleProv provides
the infrastructure needed for exposing and working with
fine-grained provenance in RDF-based environments.

We plan to continue developing TripleProv in several di-
rections. First, we plan to extend provenance support to
the distributed version of our database system. Also, we
plan to extend TripleProv with a dynamic storage model to
enable further optimization between memory consumption
and query execution times. We also hope to bring down
the overall cost of tracing provenance within the system. In
terms of provenance, we plan to extend TripleProv to output
PROV, which would open the door to queries over the prove-
nance of the query results and the data itself - merging both
internal and external provenance. Such an approach would
facilitate trust computations over provenance that take into
account the history of the original data as well as how it was
processed within the database. In addition, we aim to allow
for adaptive query execution strategies based on provenance.
For example, executing a query that would only consider a
set of particularly trusted data sources.
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