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ABSTRACT
The proliferation of heterogeneous Linked Data on the Web
poses new challenges to database systems. In particular,
because of this heterogeneity, the capacity to store, track,
and query provenance data is becoming a pivotal feature
of modern triple stores. In this paper, we tackle the prob-
lem of efficiently executing provenance-enabled queries over
RDF data. We propose, implement and empirically evalu-
ate five different query execution strategies for RDF queries
that incorporate knowledge of provenance. The evaluation
is conducted on Web Data obtained from two different Web
crawls (The Billion Triple Challenge, and the Web Data
Commons). Our evaluation shows that using an adaptive
query materialization execution strategy performs best in
our context. Interestingly, we find that because provenance
is prevalent within Web Data and is highly selective, it can
be used to improve query processing performance. This is
a counterintuitive result as provenance is often associated
with additional overhead.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Data Management—
Database Applications

General Terms
Algorithms, Design, Experimentation

Keywords
Provenance Queries; RDF; Linked Data; RDF Data Man-
agement; Web Data; Provenance

1. INTRODUCTION
A central use-case for Resource Description Framework

(RDF) data management systems is data integration [20].
Data is acquired from multiple sources either as RDF or
converted to RDF; schemas are mapped; record linkage or
entity resolution is performed; and, finally, integrated data is
exposed. There are a variety of systems such as Karma [23]
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and the Linked Data Integration Framework [31] that imple-
ment this integration process. To establish trust and trans-
parency, the support of provenance within these systems is a
key feature [31]. For example, users may want to tailor their
queries based on the source of information; e.g., find me all
the information about Paris, but exclude all data sourced
from commercial websites.

To support these use-cases, the most common mechanism
used within RDF data management is named graphs [5].
This mechanism was recently standardized in RDF 1.1. [29].
Named graphs associate a set of triples with a URI. Using
this URI, metadata including provenance can be associated
with the graph. While named graphs are often used for
provenance, they are also used for other purposes, for exam-
ple, to track access control information. Thus, while RDF
databases (i.e., triple stores) support named graphs, there
has only been a relatively small amount of works specif-
ically focused on provenance within the triple store itself
and much of it has been focused on theoretical aspects of
the problem [9, 13].

Given the prevalence of provenance in Web Data (3̃6% of
data sets) [30] and the use of named graphs1, the aim of this
paper is to investigate how RDF databases can effectively
support queries that include provenance conditions (i.e.,
provenance-enabled queries). Specifically, we pose the
following research question: What is the most effective
query execution strategy for provenance-enabled
queries?

To answer this question, we define 5 provenance-aware
query execution strategies. These are then tested on
a state-of-the-art triple store (TripleProv [33]) that
implements specific provenance-aware storage models and
collocation strategies. Experiments are performed on
Web data taken from the Billion Triple Challenge and
the Web Data Commons datasets. We also perform a
dataset analysis and develop a cost model that provide
insight into why particular strategies are effective for
Web Data. Unexpectedly, we find that, because of the
selectivity properties of provenance within Web Data, the
speed of query execution can be increased significantly by
incorporating knowledge of provenance.

Concretely, the contributions of this paper are four-fold:
1. A characterization of provenance-enabled queries with

respect to Named Graphs (Section 3);
2. Five provenance-oriented query execution strategies

(Section 4);

1See analysis at http://gromgull.net/blog/2012/07/
some-basic-btc2012-stats/
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3. An implementation of these strategies within a state-
of-the art triple store (Section 5);

4. An experimental evaluation of our query execution
strategies and an extensive analysis of the datasets
used for the experimental evaluation in the context of
provenance data (Section 6).

2. RELATED WORK
There are two areas of related work that we build upon:

provenance query systems and dynamic query execution.
Provenance Query Systems: Miles defined the con-

cept of provenance query [24] in order to only select a rele-
vant subset of all possible results when looking up the prove-
nance of an entity.

A number of authors have presented systems for specifi-
cally handling such provenance queries. Biton et al. showed
how user views can be used to reduce the amount of infor-
mation returned by provenance queries in a workflow sys-
tem [4]. The RDFProv [6] system focused on managing and
enabling querying over provenance that results from scien-
tific workflows. Similarly, the ProQL approach [22] defined a
query language and proposed relational indexing techniques
for speeding up provenance queries involving path traversals.
Glavic and Alonso [14] presented the Perm provenance sys-
tem, which was able of computing, storing and querying re-
lational provenance data. Provenance was computed by us-
ing standard relational query rewriting techniques.Recently,
Glavic and his team have built on this work to show the
effectiveness of query rewriting for tracking provenance in
database that support audit logs and time travel [1]. The
approaches proposed in [4, 22] assume a strict relational
schema whereas RDF data is by definition schema free. Our
approach is different in the way that we tailor the proposed
techniques for Semantic Web data, thus we do not take ad-
vantage of a predefined schema. Our approach also looks
at the execution of provenance queries in conjunction with
standard queries within an RDF database.

In that respect, our work is related to the work on
annotated RDF [32, 35], which developed SPARQL query
extensions for querying over annotation metadata (e.g.,
provenance). Halpin and Cheney have shown how to use
SPARQL Update to track provenance within a triple store
without modifications [18]. The theoretical foundations of
using named graphs for provenance within the Semantic
Web were established by Flouris et al. [12]. Here, our
focus is different since we propose and empirically evaluate
different execution strategies for running queries that take
advantage of provenance metadata.

Our focus on provenance is motivated by the increasing
availability of provenance using common models for prove-
nance such as W3C PROV [16].

Dynamic Query Execution: Dynamic query
execution has been studied in different contexts by
database researchers. Graefe and Ward [15] focused on
determining when re-optimizing a given query that is
issued repeatedly is necessary. Subsequently, Colde and
Graefe [8] proposed a new query optimization model
which constructs dynamic plans at compile-time and
delays some of the query optimization until run-time.
Kabra and DeWitt [21] proposed an approach collecting
statistics during the execution of complex queries in order
to dynamically correct suboptimal query execution plans.
Ng et al [28] studied how to re-optimize suboptimal query

plans on-the-fly for very long-running queries in database
systems. Avnur and Hellerstein proposed Eddies [2], a
query processing mechanism that continuously reorders
operators in a query plan as it runs, and that merges the
optimization and execution phases of query processing in
order to allow each tuple to have a flexible ordering of the
query operators. Our work is different in the sense that we
dynamically examine or drop data structures during query
execution depending on provenance information.

Our approach builds on TripleProv [33], our previous work
on storing and tracking provenance information within triple
stores. TripleProv, however, does not support provenance-
enabled queries, which is the focus of this work.

3. PROVENANCE-ENABLED QUERIES
“Provenance is information about entities, activities, and

people involved in producing a piece of data or thing, which
can be used to form assessments about its quality, reliability
or trustworthiness” [16]. The W3C PROV Family of Doc-
uments2 defines a model, corresponding serializations and
other supporting definitions to enable the interoperable in-
terchange of provenance information in heterogeneous envi-
ronments such as the Web. In the paper, we adopt the view
proposed in those specifications. We also adopt the termi-
nology of Cyganiak’s original NQuads specification3, where
the context value refers to the provenance or source of the
triple4. We note that context values often are used to re-
fer to the named graph to which a triple belongs. Based
on this background, we introduce the following terminology
used within this paper:

Definition 1. A Workload Query is a query producing
results a user is interested in. These results are referred to
as workload query results.

Definition 2. A Provenance Query is a query that se-
lects a set of data from which the workload query results
should originate. Specifically, a Provenance Query returns
a set of context values whose triples will be considered dur-
ing the execution of a Workload Query.

Definition 3. A Provenance-Enabled Query is a pair
consisting of a Workload Query and a Provenance Query,
producing results a user is interested in (as specified by
the Workload Query) and originating only from data pre-
selected by the Provenance Query.

As mentioned above, provenance data can be taken into
account during query execution through the use of named
graphs. Those solutions are however not optimized for
provenance, and require rewriting all workload queries
with respect to a provenance query. Our approach
aims to keep workload queries unchanged and introduce
provenance-driven optimization on the database system
level.

We assume a strict separation of the workload query on
one hand and the provenance query on the other (as illus-
trated in Figure 1)5. Provenance and workload results are

2http://www.w3.org/TR/prov-overview/
3http://sw.deri.org/2008/07/n-quads/
4The W3C standard defines N-quads statements as a se-
quence of RDF terms representing the subject, predicate,
object and graph label of an RDF Triple and the graph it is
part of in a dataset.
5We note that including the provenance predicates directly
in the query itself is also possible, and that the execution
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Figure 1: Executing provenance-enabled queries; both a workload
and a provenance query are given as input to a triplestore, which
produces results for both queries and then combine them to obtain
the final results.

joined to produce a final result. A consequence of our design
is that workload queries can remain unchanged, while the
whole process of applying provenance filtering takes place
during query execution. Both provenance and workload
queries are to be delivered in the same way, preferably using
the SPARQL language or a high-level API that offers simi-
lar functionality. The body of the provenance query specifies
the set of context values that identify which triples will be
used when executing the workload queries.

To further illustrate our approach, we present a few
provenance-enabled queries that are simplified versions of
use cases found in the literature. In the examples below,
context values are denoted as ?ctx.

Provenance-enabled queries can be used in various ways.
A common case is to ensure that the data used to pro-
duce the answer comes from a set of trusted sources [25].
Given a workload query that retrieves titles of articles about
“Obama”:

SELECT ? t WHERE {
?a <type> <a r t i c l e > .
?a <tag> <Obama> .
?a <t i t l e > ? t . }

One may want to ensure that the articles retrieved come
from sources attributed to the government:

SELECT ? ctx WHERE {
? ctx prov : wasAttributedTo <government> . }

As per the W3C definition, provenance is not only about
the source of data but is also about the manner in which the
data was produced. Thus, one may want to ensure that the
articles in question were edited by somebody who is a “Se-
niorEditor” and that articles where checked by a “Manager”.
Thus, we could apply the following provenance query while
keeping the same “Obama” workload query:

SELECT ? ctx WHERE {
? ctx prov : wasGeneratedBy <a r t i c l eProd >.
<a r t i c l eProd> prov : wasAssociatedWith ?ed .
?ed rd f : type <SeniorEdior> .
<a r t i c l eProd> prov : wasAssociatedWith ?m .
?m rd f : type <Manager> . }

A similar example, albeit for a curated protein database, is
described in detail in [7]. Another way to apply provenance-
enabled queries is for scenarios in which data is integrated
from multiple sources. For example, we may want to ag-
gregate the chemical properties of a drug (e.g., its potency)
provided by one database with information on whether it
has regulatory approval provided by another:

SELECT ? potency ? approval WHERE {
? drug <name> ’ ’ So ra f en ib ’ ’ .
? drug ? l i n k ?chem .

strategies and models we develop in the rest of this paper
would work similarly in that case.

Provenance 
Query

Workload
Queries

Execute 
Provenance

Query

Materialize OR
Co-locate 

Tuples Query Results
Execute
Query

Rewrite 
Query

Figure 2: Generic provenance-enabled query execution pipeline,
where both the workload queries and the provenance query get
executed in order to produce the final results

?chem <potency> ? potency .
? drug <approvalStatus> ? approval }

Here, we may like to select not only the particular sources
that the workload query should be answered over but also
the software or approach used in establishing the links be-
tween those sources. For instance, we may want to use links
generated manually or for a broader scope than those gen-
erated through the use of any type of string similarity. Such
a use-case is described in detail in [3]. Below is an example
of how such a provenance query could be written:

SELECT ? ctx WHERE {
{ ? ctx prov : wasGeneratedBy ? l i n k i n g A c t i v i t y .

? l i n k i n g A c t i v i t y rd f : type <S t r i n g S i m i l a r i t y > }
UNION { ? ctx prov : wasDerivedFrom <ChemDB>}
UNION { ? ctx prov : wasDerivedFrom <DrugDB>} }

In the following, we discuss approaches to processing these
types of queries.

4. PROVENANCE & QUERY EXECUTION
There are several ways to execute provenance-enabled

queries in a triple store. The simplest way is to execute the
RDF query and the provenance query independently, and
to join both result sets based on context values. One also
has the option of pre-materializing some of the data based
on the provenance specification. Another way is through
dynamic query rewriting; in that case, the workload
query is rewritten using the provenance query (or some
of its results) and only then to execute the query. The
query execution strategies presented in this section can be
implemented in practically any triple store—provided that
it offers some support for storing and handling context
values. We discuss our own implementation based on
TripleProv in Section 5.

4.1 Query Execution Pipeline
Figure 2 gives a high-level perspective on the query

execution process. The provenance and workload queries
are provided as input; the query execution process can
vary depending on the exact strategy chosen, but typically
starts by executing the provenance query and optionally
pre-materializing or co-locating data; the workload queries
are then optionally rewritten—by taking into account some
results of the provenance query—and finally get executed.
The process returns as output the workload query results,
restricted to those which are following the specification
expressed in the provenance query. We give more detail on
this execution process below.

4.2 Generic Query Execution Algorithm
Algorithm 1 gives a simplified, generic version of the

provenance-enabled query execution algorithm. We start
by executing the provenance query, which is processed
like an ordinary query (ExecuteQuery) but always returns
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Algorithm 1 Generic executing algorithm for provenance-
enabled queries

1: ctxSet = ExecuteQuery(ProvenanceQuery)
2: materializedTuples = MaterializeTuples (ctxSet) OP-

TIONAL
3: collocatedTuples = fromProvIdx(ctxSet) OPTIONAL
4: for all workload queries do
5: ExecuteQuery(queryN, ctxSet)
6: end for

sets of context values as an output. Subsequently, the
system optionally materializes or adaptively co-locates
selected tuples6 containing data related to the provenance
query. We then execute workload queries taking into
account the context values returned from the previous
step. The execution starts as a standard query execution,
but optionally includes a dynamic query rewriting step to
dynamically prune early in the query plan those tuples that
cannot produce valid results given their provenance.

4.3 Query Execution Strategies
From the generic algorithm presented above, we now in-

troduce five different strategies for executing provenance-
enabled queries and describe how they could be implemented
in different triplestores.

Post-Filtering: this is the baseline strategy, which exe-
cutes both the workload and the provenance query in-
dependently. The provenance and workload queries
can be executed in any order (or concurrently) in this
case. When both the provenance query and the work-
load query have been executed, the results from the
provenance query (i.e., a set of context values) are used
to filter a posteriori the results of the workload query
based on their provenance (see Algorithm 2). In ad-
dition to retrieving the results, the database system
needs in this case to track the lineage of all results
produced by the workload query. More specifically,
the system needs to keep track of the context values
of all triples that were involved in producing a valid
result. We discussed how to come up and how to com-
pactly represent such lineage using provenance poly-
nomials in our previous work [33]. Tracking lineage
during query execution is however non-trivial for the
systems which, unlike TripleProv, are not provenance-
aware. For quadstores, for instance, it involves exten-
sively rewriting the queries, leading to more complex
query processing and to an explosion of the number of
results retrieved, as we discussed in detail in Section
8.6 of [33].

Query Rewriting: the second strategy we introduce exe-
cutes the provenance query upfront; then, it uses the
set of context values returned by the provenance query
to filter out all tuples that do not conform to the
provenance results. This can be carried out logically
by rewriting the query plans of the workload queries
to add provenance constraints (see Algorithm 3, is
present in ctxSet). This solution is efficient from the
provenance query execution side, though it can be sub-
optimal from the workload query execution side (see

6We use tuples in a generic way here to remain system-
agnostic; tuples can take the form of atomic pieces of data,
triples, quads, small sub-graphs, n-ary lists/sets or RDF
molecules [33, 34] depending on the database system used.

Section 6). It can be implemented in two ways by the
triplestores, either by modifying the query execution
process, or by rewriting the workload queries in or-
der to include constraints on the named graphs. We
note that the query rewriting is very different from
the case discussed above (for post-filtering, the queries
may have to be rewritten to keep track of the lineage
of the results; in this case, we know what context val-
ues we should filter on during query execution, which
makes the rewriting much simpler.)

Full Materialization: this is a two-step strategy where
the provenance query is first executed on the entire
database (or any relevant subset of it), and then
materializes all tuples whose context values satisfy
the provenance query. The workload queries are
then simply executed on the resulting materialized
view, which only contains tuples that are compatible
with the provenance specification. This strategy will
outperform all other strategies when executing the
workload queries, since they are executed as is on the
relevant subset of the data. However, materializing
all potential tuples based on the provenance query
can be prohibitively expensive, both in terms of
storage space and latency. Implementing this strategy
requires either to manually materialize the relevant
tuples and modify the workload queries accordingly,
or to use a triplestore supporting materialized views.

Pre-Filtering: this strategy takes advantages of a dedi-
cated provenance index collocating, for each context
values, the ids (or hashes) of all tuples belonging to
this context. This index should typically be created
upfront when the data is loaded. After the provenance
query is executed, the provenance index can be looked
up to retrieve the lists of tuple ids that are compati-
ble with the provenance specification. Those lists can
then be used to filter out early the intermediate and
final results of the workload queries (see Algorithm 4).
This strategy requires to create a new index structure
in the system (see Section 5 for more detail on this),
and to modify both the loading and the query execu-
tion processes.

Adaptive Partial Materialization: this strategy
introduces a tradeoff between the performance of
the provenance query and that of the workload
queries. The provenance query is executed first.
While executing the provenance query, the system
also builds a temporary structure (e.g., a hash-table)
maintaining the ids of all tuples belonging to the
context values returned by the provenance query.
When executing the workload query, the system can
then dynamically (and efficiently) look-up all tuples
appearing as intermediate or final results, and can
filter them out early in case they do not appear
in the temporary structure. Further processing is
similar to the Query Rewriting strategy, that is, we
include individual checks of context values inside
the tuples. However those checks, joins, and further
query processing operations can then be executed
faster on a reduced number of elements. This
strategy can achieve performance close to the Full
Materialization strategy while avoiding to replicate
the data, at the expense of creating and maintaining
temporary data structures. The implementation
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Algorithm 2 Algorithm for the Post-Filtering strategy.

Require: WorkloadQuery
Require: ProvenanceQuery
1: (ctxSet) = ExecuteQuery(ProvenanceQuery)
2: (results, polynomial) = ExecuteQuery(WorkloadQuery) {in-

dependent execution of ProvenanceQuery and Workload-
Query}

3: for all results do
4: if ( polynomial[result].ContextValues 6⊆ ctxSet ) then
5: remove result
6: else
7: keep result
8: end if
9: end for

Algorithm 3 Algorithm for the Rewriting strategy.

Require: query: workload query
Require: ctxSet: context values; results of provenance query
1: tuples =q.getPhysicalPlan (FROM materializedTuples for

materializes scenario)
2: for all tuples do
3: for all entities do
4: if ( entity.ContextValues 6⊆ ctxSet) then
5: nextEntity
6: else
7: inspect entity
8: end if
9: end for

10: end for

Algorithm 4 Algorithm for the Pre-Filtering strategy.

Require: query: workload query
Require: ctxSet: context values; results of provenance query
1: tuples =q.getPhysicalPlan
2: for all tuples do
3: for all ctxSet do
4: ctxTuples = getTuplesFromProvIdx(ctx)
5: if ( tuple 6⊆ ctxTuples) then
6: nextTuple
7: end if
8: end for
9: for all entities do

10: if ( entity.ContextValues 6⊆ ctxSet) then
11: nextEntity
12: else
13: inspect entity
14: end if
15: end for
16: end for

of this strategy requires the introduction of an
additional data structure at the core of the system,
and the adjustment of the query execution process in
order to use it.

5. STORAGE MODEL & INDEXING
We implemented all the provenance-enabled query

execution strategies introduced in Section 4 in TripleProv,
our own triplestore supporting different storage models
to handle provenance data. Both TripleProv7 and the
extensions implemented for this paper8 are available online.
In the following, we briefly present the implementation of
the provenance-oriented data structures and indices we
used to evaluate the query execution strategies described
above. We note that it would be possible to implement our

7http://exascale.info/tripleprov
8http://exascale.info/provqueries

Algorithm 5 Algorithm for the Partial Materialization
strategy.

Require: query: workload query
Require: ctxSet: context values; results of provenance query
Require: collocatedTuples: collection of hash values of tuples

related to the result of the provenance query (ctxSet)
1: tuples =q.getPhysicalPlan
2: for all tuples do
3: if ( tuple 6⊆ collocatedTuples) then
4: nextTuple
5: end if
6: for all entities do
7: if ( entity.ContextValues 6⊆ ctxSet) then
8: nextEntity
9: else

10: inspect entity
11: end if
12: end for
13: end for

strategies in other systems, using the same techniques. The
effort to do so, however, is beyond the scope of the paper.

5.1 Provenance Storage Model
We use the most basic storage structure of

Diplodocus[RDF] [34] and TripleProv [33] in the following:
1-scope RDF molecules [34], which collocate objects related
to a given subject and which are equivalent to property
tables. In that sense, any tuple we consider is composed of
a subject, and a series of predicate and object related to
that subject.

TripleProv supports different models to store provenance
information. We compared those models in [33]. For this
work, we consider the “SLPO” storage model [33], which
collocates the context values with the predicate-object pairs,
and which offers good overall performance in practice. This
avoids the duplication of the same context value, while at
the same time collocating all data about a given subject in
one structure. The resulting storage model is illustrated in
Figure 3. In the rest of this section, we briefly introduce the
secondary storage structures we implemented to support the
query execution strategies of Section 4.

S1

ctx1

ctx2

O1

O2

O3

O4

O2

O5

P1 P2

P3

P4

P2
P5

Figure 3: Our storage model for collocating context values (ctx)
with predicates and objects (PO) inside an RDF molecule.

5.2 Provenance Index
Our base system supports a number of vertical and hor-

izontal data collocation structures. Here, we propose one
more way to collocate molecules, based on the context val-
ues. This gives us the possibility to prune molecules dur-
ing query execution as explained above. Figure 4 illustrates
this index, which boils down, in our implementation, to lists
of collocated molecule identifiers, indexed by a hash-table
whose keys are the context values the triples stored in the
molecules belong to. We note that a given molecule can
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appear multiple times in this index. This index is updated
upfront, e.g., at loading time.

ctx1

ctx2

ctx3

ctxN

m1 m3 m7 m11

m2 m5 m7

m3 m4 m6 m10

m

m21 m16

Figure 4: Provenance-driven indexing schema

5.3 Provenance-Driven Full Materialization
To support the provenance-driven materialization scheme

introduced in Section 4.3, we implemented some basic view
mechanisms in TripleProv. These mechanisms allow us to
project, materialize and utilize as a secondary structure the
portions of the molecules that are following the provenance
specification (see Figure 5 for a simple illustration.)

S1

ctx1

O1

O2

O3

P1 P2

P3

Figure 5: The molecule after materialization, driven by a prove-
nance query returning only one context value (ctx1).

5.4 Adaptive Partial Materialization
Finally, we implement a new, dedicated structure for the

adaptive materialization strategy. In that case, we collocate
all molecule identifiers that are following the provenance
specification (i.e., that contain at least one context value
compatible with the provenance query). We explored sev-
eral options for this structure and in the end implemented it
through a hashset, which yields constant time performance
to insert molecules when executing the provenance query
and to query for molecules when executing workload queries.

m1 m3 m7 m11 m21 m16

Figure 6: Set of molecules which contain at least some data re-
lated to a provenance query.

6. EXPERIMENTS
To empirically evaluate the query execution strategies dis-

cussed above in Section 4.3, we implemented them all in
TripleProv. In the following, we experimentally compare a
baseline version of our system that does not support prove-
nance queries to our five strategies executing provenance-
enabled queries. We perform the evaluation on two different
datasets and workloads.

Within TripleProv, queries are specified as triple patterns
using a high-level declarative API that offers similar func-
tionality to SPARQL.9 The queries are then encoded into a
logical plan (a tree of operators), which is then optimized
into a physical query plan as in any standard database sys-
tem. The system supports all basic SPARQL operations, in-

9We note that our current system does not parse full
SPARQL queries at this stage. Adapting a SPARQL parser
is currently in progress.

cluding “UNION” and “OPTIONAL”; at this point, it does
not support “FILTER”, however.

6.1 Implementations Considered
Our goal is to understand the various tradeoffs of the

query execution strategies we proposed in Section 4.3 and
to assess the performance penalty (or eventual speed-up)
caused by provenance queries. We use the following abbrevi-
ations to refer to the different implementations we compare:
TripleProv: the vanilla version of [33], without provenance

queries; this version stores provenance data, tracks the
lineage of the results, and generates provenance poly-
nomials, but does not support provenance queries;

Post-Filtering: implements our post-filtering approach;
after a workload query gets executed, its results are
filtered based on the results from the provenance
query;

Rewriting: our query execution strategy based on query
rewriting; it rewrites the workload query by adding
provenance constraints in order to filter out the results;

Full Materialization: creates a materialized view based
on the provenance query, and executes the workload
queries over that view;

Pre-Filtering: uses a dedicated provenance index to pre-
filter tuples during query execution;

Adaptive Materialization: implements a provenance-
driven data co-location scheme to collocate molecule
ids that are relevant given the provenance query.

6.2 Experimental Environment
Hardware Platform: All experiments were run on a HP

ProLiant DL385 G7 server with an AMD Opteron Processor
6180 SE (24 cores, 2 chips, 12 cores/chip), 64GB of DDR3
RAM, running Ubuntu 12.04.3 LTS (Precise Pangolin). All
data were stored on a recent 3 TB Serial ATA disk.

Datasets: We used two different datasets for our experi-
ments: the Billion Triples Challenge (BTC)10 and the Web
Data Commons (WDC)11 [26]. Both datasets are collec-
tions of RDF data gathered from the Web. They represent
two very different kinds of RDF data. The Billion Triple
Challenge dataset was created based on datasets provided
by Falcon-S, Sindice, Swoogle, SWSE, and Watson using
the MultiCrawler/SWSE framework. The Web Data Com-
mons project extracts all Microformat, Microdata and RDFa
data from the Common Crawl Web corpus and provides the
extracted data for download in the form of RDF-quads or
CSV-tables for common entity types (e.g., products, organi-
zations, locations, etc.).

Both datasets represent typical collections of data gath-
ered from multiple and heterogeneous online sources, hence
applying some provenance query on them seems to precisely
address the problem we focus on. We consider around 40
million triples for each dataset (around 10GB). To sample
the data, we first pre-selected quadruples satisfying the set
of considered workload and provenance queries. Then, we
randomly sampled additional data up to 10GB.

For both datasets, we added provenance specific triples
(184 for WDC and 360 for BTC) so that the provenance
queries we use for all experiments do not modify the result
sets of the workload queries, i.e., the workload query re-
sults are always the same. We decided to implement this

10http://km.aifb.kit.edu/projects/btc-2009/
11http://webdatacommons.org/
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to remove a potential bias when comparing the strategies
and the vanilla version of the system (in this way, in all
cases all queries have exactly the same input and output).
We note that this scenario represents in fact a worst-case
scenario for our provenance-enabled approaches, since the
provenance query gets executed but does not filter out any
result. Therefore, we also performed experiments on the
original data (see Section 6.3.4), where we use the dataset
as is and where the provenance query modifies the output
of the workload queries.

Workloads: We consider two different workloads. For
BTC, we use eight existing queries originally proposed in
[27]. In addition, we added two queries with UNION and
OPTIONAL clauses, which we thought were missing in the
original set of queries. Based on the queries used for the
BTC dataset, we wrote 7 new queries for the WDC dataset,
encompassing different kinds of typical query patterns for
RDF, including star-queries of different sizes and up to 5
joins, object-object joins, object-subject joins, and triangu-
lar joins. We also included two queries with UNION and
OPTIONAL clauses. In addition, for each workload we pre-
pared a complex provenance query, which is conceptually
similar to those presented in Section 3.

The datasets, query workloads and provenance-queries
presented above are all are available online12.

Experimental Methodology: As is typical for
benchmarking database systems (e.g., for tpc-x13 or our
own OLTP-Benchmark [11]), we include a warm-up phase
before measuring the execution time of the queries in order
to measure query execution times in a steady-state mode.
We first run all the queries in sequence once to warm-up
the system, and then repeat the process ten times (i.e.,
we run 11 query batches for each variant we benchmark,
each containing all the queries we consider in sequence).
We report the average execution time of the last 10 runs
for each query. In addition, we avoided the artifacts of
connecting from the client to the server, of initializing the
database from files, and of printing results; we measured
instead the query execution times inside the database
system only.

6.3 Results
In this section, we present the results of the empirical

evaluation. We note that our original RDF back-end
Diplodocus (the system TripleProv extends) has already
been compared to a number of other well-known triple
stores(see [34] and [10]). We refer the reader to those pre-
vious papers for a comparison to non-provenance-enabled
triple stores. We have also performed an evaluation
of TripleProv and different physical models for storing
provenance information in [33]. In this paper, we focus on
a different topic and discuss results for Provenance-Enabled
Queries. Figure 7 reports the query execution times for the
BTC dataset, while Figure 8 shows similar results for the
WDC dataset. We analyze those results below.

6.3.1 Datasets Analysis
To better understand the influence of provenance queries

on performance, we start by taking a look at the dataset,
provenance distribution, workload, cardinality of interme-
diate results, number of molecules inspected, and number

12http://exascale.info/provqueries
13http://www.tpc.org/
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Figure 7: Query execution times for the BTC dataset (logarithmic
scale)
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Figure 8: Query execution times for the WDC dataset (logarith-
mic scale).

of basic operations for all query execution strategies. The
analysis detailed below was done for the BTC dataset and
workload.

First, we analyze the distribution of context values among
triples. There are 6’819’826 unique context values in the
dataset. Figure 9 shows the distribution of the number of
triples given the context values (i.e., how many context val-
ues refer to how many triples). We observe that there are
only a handful of context values that are widespread (left-
hand side of the figure) and that the vast majority of the
context values are highly selective. On average, each con-
text value is related to about 5.8 triples. Collocating data
inside molecules further increases the selectivity of the con-
text values, we have on average 2.3 molecules per context
value then. We leverage those properties during query ex-
ecution, as some of our strategies prune molecules early in
the query plan based on their context values.

6.3.2 Discussion
Our implementations supporting provenance-enabled

queries overall outperform the vanilla TripleProv. This
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Figure 9: Distribution of number of triples for number of context
values for the BTC dataset.

is unsurprising, since as we showed before the selectivity
of provenance data in the datasets allows us to avoid
unnecessary operations on tuples which do not add to the
result.

The Full Materialization strategy, where we pre-
materialize all relevant subsets of the molecules, makes
the query execution on average 44 times faster than the
vanilla version for the BTC dataset. The speedup ranges
from a few percents to more than 200x (queries 2 and
5 of BTC) over the vanilla version. The price for the
performance improvement is the time we have to spend to
materialize molecules, in our experiments for the BTC it
was 95 seconds (the time increases with data size), which
can however be amortized by executing enough workload
queries (see Section 6.4). This strategy consumed about
2% more memory for handling the materialized data.

The Pre-Filtering strategy performs on average 23 times
faster than the vanilla version for the BTC dataset, while
the Adaptive Partial Materialization strategy performs on
average 35 times faster for the BTC dataset. The advantage
over the Full Materialization strategy is that for Adaptive
Partial Materialization, the time to execute a provenance
query and materialize data is 475 times lower and takes only
0.2 second.

The Query Rewriting strategy performs significantly
slower than the strategies mentioned above for the BTC
dataset, since here we have to perform additional checking
over provenance data for each query. However, even in this
case, for some queries we can observe some performance
improvement over the vanilla version of the system; when
the provenance query significantly limits the number of
tuples inspected during query execution (see Section 4),
we can compensate the time taken by additional checks to
improve the overall query execution time—see queries 2
and 5 for BTC. Those queries can be executed up to 95%
faster than the vanilla version as they require the highest
number of tuple inspections, which can significantly limit
other strategies (see Section 6.3.3).

We note that the Post-Filtering strategy performs in all
cases slightly worse than TripleProv (on average 12%), which
is expected since there is no early pruning of tuples; queries
are executed in the same way as in TripleProv, and in addi-
tion the post-processing phase takes place to filter the results
set.

For the WDC dataset we have significantly higher cardi-
nality of context values set (10 times more elements), which

results in significantly worse performance for Pre-Filtering,
since this strategy performs a loop over the set of context
values. The provenance overhead here is not compensated
on workload query execution since they are already quite
fast (below 10−2 second for most cases) for this dataset. For
this scenario the time consumed for Full Materialization was
60 seconds while it took only 2ms for Adaptive Partial Ma-
terialization. The Adaptive Partial Materialization strategy
outperforms other strategies even more clearly on the WDC
dataset.

The WDC workload shows an even higher predominance
of the Adaptive Partial Materialization strategy over other
strategies.

6.3.3 Query Performance Analysis
We now examine the reasons behind the performance dif-

ferences for the different strategies, focusing on the BTC
dataset. Thanks to materialization and collocation, we limit
the number of molecule look-ups we require to answer the
workload queries. The tables below explain the reasons be-
hind the difference in performance. We analyze the number
of inspected molecules, the number of molecules after filter-
ing by provenance, the cardinality of intermediate results,
and the number of context values used to answer the query:
#r - number of results
#m - total number of molecules used to answer the query,

before checking against context values
#mf - total number of molecules after pruning with prove-

nance data
#prov - total number of provenance context values used to

answer the query (to generate a polynomial)
#im - intermediate number of molecules used to answer the

query, before checking against context values
#imf - intermediate number of molecules after pruning

with provenance data
#i - number of intermediate results, used to perform joins
#ec - number of basic operation executed on statements

containing only constraints in a query
#er - number of basic operation executed on statements

containing projections in a query
The total number of executed basic operations (#bos)

equals #ec + #er.
We prepared the provenance query to ensure that the re-

sults for all variants are constant, therefore we avoid the bias
of having different result sets.

query # #r #m #mf #prov #im #imf #i #ec #er

1 2 4 4 2 0 0 0 84039 470
2 9 203 203 4 0 0 0 3698911 8392
3 13 32 32 7 0 0 0 18537 5580
4 5 1335 1335 5 1 1 1 44941143 4048
5 5 3054 3053 8 3052 3052 3 79050305 37040
6 2 137 133 6 136 132 374 22110 8365
7 2 20 6 5 2 2 18 438 7239
8 237 267 251 287 0 0 0 752 0
9 17 32 32 8 0 0 0 18537 101420

Table 1: Query execution analysis for TripleProv and the Post-
Filtering strategy.

Table 1 shows the baseline statistics for the vanilla version,
TripleProv.

Table 2 give statistics for the Rewriting. We observe at
this level already that we inspect data from on average 50x
fewer molecules, which results on average in a 30% boost
in performance. However, executing the provenance query
also has its price, which balances this gain in performance
for simpler queries (e.g., 7-9).
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query # #r #m #mf #prov #im #imf #i #ec #er

1 2 4 2 2 0 0 0 5438 470
2 9 203 1 4 0 0 0 832980 6176
3 13 32 32 6 0 0 0 9715 3990
4 5 1335 22 5 1 1 1 1666409 3304
5 5 3054 18 8 3052 17 3 2163812 8008
6 2 137 98 6 136 97 6 13434 5506
7 2 20 2 5 2 1 18 399 7211
8 237 267 237 287 0 0 0 580 0
9 17 32 32 7 0 0 0 9715 52220

Table 2: Query execution analysis for the Rewriting strategy.

query # #r #m #mf #prov #im #imf #i #ec #er

1 2 1 1 2 0 0 0 4660 466
2 9 1 1 4 0 0 0 832426 4144
3 13 31 31 6 0 0 0 2801 2826
4 5 8 8 5 1 1 1 87716 2386
5 5 16 15 8 14 14 3 1865699 4662
6 2 102 98 6 101 97 6 10279 4513
7 2 15 2 5 1 1 14 284 7102
8 237 237 237 287 0 0 0 435 0
9 17 31 31 7 0 0 0 2801 5114

Table 3: Query execution analysis for the Full Materialization
strategy.

Table 3 gives statistics for our second variant (Full Materi-
alization). The total number of molecules initially available
is in this case reduced by 22x. Thanks to this, the total num-
ber of molecules used to answer the query (‘#m’) decreases
on average 63x; we also reduce the number of molecules in-
spected after pruning with provenance data (‘#mf’) by 33%
compared to the baseline version. This results in a perfor-
mance improvement of 29x on average. For some queries (3,
7 and 9), the number of inspected molecules remains almost
unchanged, since the workload query itself is very selective
and since there is no room for further pruning molecules be-
fore inspecting them. Those queries perform similarly as for
the baseline version. For queries 2, 4, and 5, we observe that
the reduction in terms of the number of molecules used is
200x, 166x, and 190x, respectively, which significantly im-
pacts the final performance. The price to pay for these im-
pressive speedups is the time spent on the upfront material-
ization, which was 95 seconds for the dataset considered.

query # #r #m #mf #prov #im #imf #i #ec #er

1 2 2 2 2 0 0 0 5436 470
2 9 1 1 4 0 0 0 832680 6176
3 13 32 32 6 0 0 0 9715 3990
4 5 22 22 5 1 1 1 1663384 3304
5 5 19 18 8 17 17 3 2159510 8008
6 2 102 98 6 101 97 6 13353 5506
7 2 15 2 5 1 1 18 393 7211
8 237 237 237 287 0 0 0 537 0
9 17 32 32 7 0 0 0 9715 52220

Table 4: Query execution analysis for the Pre-Filtering and Adap-
tive Partial Materialization strategies.

Table 4 gives statistics for our last two implementations
using Pre-Filtering and Adaptive Partial Materialization.
The statistics are similar for both cases (though the
structures used to answer the queries and the query
execution strategies vary, as explained in Sections 4 and 5).
Here the cardinality of the molecule sets remains unchanged
with respect to the vanilla version, and the total number of
molecules used to answer the query is identical to molecules
after provenance filtering for the naive version, but all
molecules we inspect contain data related to the provenance
query (‘#m’ and ‘#mf’ are equal for each query). In
fact, we inspect a number of molecules similar to Full
Materialization, which yields performance of a similar level,
on average 14x (Pre-Filtering) and 22x (Adaptive Partial
Materialization) faster than the Rewriting strategy. The
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Figure 10: Query execution times for the BTC dataset (logarith-
mic scale), Representative Scenario.

cost of materialization for Adaptive Partial Materialization
is much lower than for Full Materialization, however, as
the strategy only requires 0.2 extra second in order to
dynamically co-locate molecules containing data relevant
for the provenance query.

6.3.4 Representative Scenario
As we mentioned above, our experiments so far aimed at

comparing the execution times for different strategies fairly,
thus we prepared an experimental scenario where the final
output remains unchanged for all implementations (includ-
ing vanilla TripleProv). In this section, we present a mi-
crobenchmark depicting a representative scenario run on the
original BTC dataset (without any triples added), where the
output changes due to constraints imposed on the workload
by the provenance query. This dataset is also available on-
line on the project web page.

Table 5 shows the corresponding query execution analysis.
The number of results is in this case smaller for many queries
as results are filtered out based on their context values.

query # #r #m #mf #prov #im #imf #i #ec #er

1 2 1 1 1 0 0 0 2166 222
2 8 1 1 2 0 0 0 604489 5064
3 10 4 4 4 0 0 0 2002 2970
4 5 8 8 3 1 1 1 82609 2768
5 3 5 5 4 4 4 1 1381357 6364
6 1 4 4 4 3 3 1 5601 2523
7 1 15 2 3 1 1 18 297 4079
8 5 5 5 4 0 0 0 5 0
9 10 4 4 4 0 0 0 2002 2970

Table 5: Query execution analysis for the Pre-Filtering and Par-
tial Materialization strategies for the Representative Scenario.

Figure 10 shows query performance results for the original
BTC dataset.

As shown on Figure 10, the performance gains for all
provenance-enabled strategies are higher in this more realis-
tic scenario where we did not modify the original data. The
speedup is caused by the smaller number of basic operations
(#ec+#er) executed, which results from fewer intermediate
results. For queries for which the results remain the same
(2 and 4), the improvement is directly related to the smaller
number of basic operations performed caused by the lim-
ited number of context values resulting from the provenance
query.
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Figure 11: Cumulative query execution time including time of
materialization for 2’000 repetitions of query 1 for BTC.

6.4 End-to-End Workload Optimization
Having devise several query execution strategies, it is in-

teresting to understand which ones perform better under
what circumstances. Specifically, when it pays off to use
a strategy which has a higher cost for executing the prove-
nance query and when this is not beneficial. Ideally, the time
consumed on the execution of the provenance query (includ-
ing some potential pre-materialization) should be compen-
sated when executing the workload queries. Let i and j
denote two different query execution strategies and P and
W denote the time taken to execute the provenance and the
workload queries, respectively. If: Pi + Wi < Pj + Wj , then
strategy i should be chosen since it yields an overall lower
cost for running the entire provenance-enabled workload.

As an illustration, Figure 11 shows the cumulative query
execution time for query 1 of BTC including the time over-
head for the provenance query execution and data material-
ization. We observe that the Partial Materialization strat-
egy compensates the overhead of running the provenance
query and of materialization after a few repetitions of the
query already, compared with the Pre-Filtering, which has
a lower cost from a provenance query execution perspective,
but which executes workload queries slower. For the case of
Full Materialization, which has a significantly higher materi-
alization overhead, it takes about 900 workload query repe-
titions to amortize the cost of running the provenance query
and pre-materializing data in order to beat the Pre-Filtering
strategy. The Full Materialization strategy outperforms the
Partial Materialization strategy only after more than 1’500
repetitions of the query.

In the end, the optimal strategy depends on the data, on
the exact mixture of (provenance and workload) queries, and
of their frequencies. Given those three parameters, one can
pick the optimal execution strategy using several techniques.
If the provenance and the workload queries are known in
advance or do not vary much, one can run a sample of the
queries using different strategies (similarly to what we did
above) and pick the best-performing one. If the queries vary
a lot, then one has to resort to an approximate model of
query execution in order to pick the best strategy, as it is
customary in traditional query optimization. Different mod-
els can by used in this context, like the very detailed main-
memory model we proposed in [17], or the system-agnostic
model recently proposed in [19].

As observed above, however, the performance of our var-
ious strategies are strongly correlated (with a correlation
coefficient of 95%) to the number of basic operations (e.g.,
molecule look-ups) performed—at least as run in our system.
Hence, we propose a simple though effective model in our
context based on this observation. We fit a model based on
experimental data giving the time to execute a varying num-
ber of basic operations. In our setting, the best model turns
out to be e(a∗ln bos+b) (the logarithm comes from the cost of
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Figure 12: Query execution time vs. number of basic operations
from experimental results and for our model, where the model
parameters a and b were fit to 0.85 and -9.85, respectively.

preparing a query, such as translating strings into identifiers
and building the query plan, which gets amortized with a
higher number of subsequent basic operations). Figure 12
shows the performance of this model in practice. Using this
model and statistics about the predicates in the queries, we
can successfully predict the winning strategy, i.e., Partial
Materialization for the scenarios discussed above.

7. CONCLUSIONS
In this paper, we considered the following research ques-

tion: “What is the most effective query execution strategy
for provenance-enabled queries”? In order to answer the re-
search question above, this paper made the following contri-
butions: a characterization of provenance-enabled queries,
a description of five different query execution strategies, an
implementation of these strategies in TripleProv, as well as
a detailed performance evaluation.

The ultimate answer to this question depends on the ex-
act data and queries used, though based on our experimental
analysis above, we believe that an adaptive materialization
strategy provides the best trade-off for running provenance-
enabled queries over Web Data in general. Our empirical
results show that this strategy performs best when taking
into account the costs of materialization, both on Web Data
Commons and on Billion Triple Challenge data. A key rea-
son for this result is the selectivity of provenance on the Web
of Data. Hence, by leveraging knowledge of provenance, one
can execute many types of queries roughly 30x faster than
a baseline store.

Building on the results of this work, we see a number of av-
enues of future work. The investigation of how provenance
can be used to improve performance within data manage-
ment systems. The development of an analytics environment
which allows users to adjust provenance without changing
the workload queries. Finally, the diffusion of these results
to further settings and systems.
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