
84

RDF Data Storage and Query Processing Schemes: A Survey

MARCIN WYLOT and MANFRED HAUSWIRTH, TU Berlin / Fraunhofer FOKUS, Germany

PHILIPPE CUDRÉ-MAUROUX, University of Fribourg, Switzerland

SHERIF SAKR, University of Tartu, Estonia King Saud bin Abdulaziz University for Health Sciences,

Saudi Arabia

The Resource Description Framework (RDF) represents a main ingredient and data representation format
for Linked Data and the Semantic Web. It supports a generic graph-based data model and data representa-
tion format for describing things, including their relationships with other things. As the size of RDF datasets
is growing fast, RDF data management systems must be able to cope with growing amounts of data. Even
though physically handling RDF data using a relational table is possible, querying a giant triple table becomes
very expensive because of the multiple nested joins required for answering graph queries. In addition, the
heterogeneity of RDF Data poses entirely new challenges to database systems. This article provides a com-
prehensive study of the state of the art in handling and querying RDF data. In particular, we focus on data
storage techniques, indexing strategies, and query execution mechanisms. Moreover, we provide a classifica-
tion of existing systems and approaches. We also provide an overview of the various benchmarking efforts
in this context and discuss some of the open problems in this domain.

CCS Concepts: • Information systems → Data management systems; Database design and models; Graph-

based database models; Data model extensions; Semi-structured data; Query languages;

Additional Key Words and Phrases: RDF, SPARQL, semi-structured data

ACM Reference format:

Marcin Wylot, Manfred Hauswirth, Philippe Cudré-Mauroux, and Sherif Sakr. 2018. RDF Data Storage and
Query Processing Schemes: A Survey. ACM Comput. Surv. 51, 4, Article 84 (September 2018), 36 pages.
https://doi.org/10.1145/3177850

1 INTRODUCTION

The nature of the World Wide Web has evolved from a web of linked documents to a web that
also includes Linked Data (Bizer et al. 2009). Traditionally, we were able to publish documents on
the Web and create links between them. Those links, however, only allow the document space to
be traversed without understanding the relationships between the documents and without link-
ing to particular pieces of information. Linked Data provides the ability to create meaningful links
between pieces of data on the Web (Berners-Lee et al. 2001). The adoption of Linked Data technolo-
gies has shifted the Web from a space of connecting documents to a global space where pieces of

The work of Sherif Sakr has been supported by Estonian Research Council Grant No. MOBTT75.

Authors’ addresses: M. Wylot and M. Hauswirth, TU Berlin / Fraunhofer FOKUS, Germany; emails: {m.wylot, manfred.

hauswirth}@tu-berlin.de; P. Cudré-Mauroux, University of Fribourg, Switzerland; email: phil@exascale.info; S. Sakr, Uni-

versity of Tartu, Estonia and King Saud Bin Abdulaziz University for Health Science, Saudi Arabia; email: sherif.sakr@ut.ee.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 0360-0300/2018/09-ART84 $15.00

https://doi.org/10.1145/3177850

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

https://doi.org/10.1145/3177850
mailto:permissions@acm.org
https://doi.org/10.1145/3177850

84:2 M. Wylot et al.

data from different domains are semantically linked and integrated to create a global Web of Data.
Linked Data enables operations to deliver integrated results as new data is added to the global
space. This opens up new opportunities for applications such as search engines, data browsers,
and various domain-specific systems. The Web of Linked Data allows applications to operate on
an unbounded and machine-processable space of semi-structured data, thus enabling them to re-
turn comprehensive results as new data appears on the Web (Bizer et al. 2009). Moreover, this
allows applications to join data from multiple independent and distributed data collections.

RDF1 represents an emerging data model that provides the means to describe resources in a
semi-structured manner for these applications. In practice, RDF is gaining widespread momen-
tum and usage in different domains, such as the Semantic Web, Linked Data, Open Data, social
networks, digital libraries, bioinformatics, or business intelligence. As an example of this trend, a
growing number of ontologies and knowledge bases storing millions to billions of facts, such as
DBpedia,2 Probase,3 and Wikidata,4 are now publicly available. In addition, key search engines like
Google and Bing are providing better support for RDF. In principle, RDF is designed to flexibly
model schema-free information that represents data objects as triples in the form (S , P , O), where
S represents a subject, P represents a predicate, and O represents an object. A triple indicates a
relationship between S andO captured by P . Consequently, a collection of triples can be modelled
as a directed graph where the graph vertices denote subjects and objects while graph edges are
used to denote predicates.

The wide adoption of the RDF data model has called for efficient and scalable RDF infrastruc-
tures. As a response to this call, many centralized and distributed RDF systems have been presented
to tackle these challenges. This article provides a comprehensive survey of the various approaches
and design strategies for implementing RDF data storage and querying systems. The remainder
of this article is organized as follows. We start by providing some background information in
Section 2. We introduce our taxonomy and classification of the various systems according to sev-
eral design dimensions in Section 3. A detailed description of centralized RDF systems is presented
in Section 4, while distributed RDF systems are covered in Section 5. We discuss some of the bench-
marking efforts in this domain in Section 7 before we conclude the article and discuss a number
of open challenges in Section 8.

2 BACKGROUND INFORMATION

RDF is a graph-based format that allows us to define named links between resources in the form
of triples Subject, Predicate, Object, also called statements. A statement expresses a relationship
(defined by a predicate) between resources (subject and object). The relationship is always from
subject to object (it is directional). The same resource can be used in multiple triples playing the
same or different roles; e.g., it can be used as a subject in one triple as well as a predicate or an
object in another one. This ability enables definition of multiple connections between the triples,
hence creation of a connected graph of data. Such graph can be represented as nodes that stands
for the resources and edges capturing the relationships between the nodes. Figures 1 and 2 depict
simple exemplary visualization of RDF graphs.

The basic triple representation of pieces of data that are combined together results in larger RDF
graphs. Such large amounts of data are made available as Linked Data where datasets are inter-
linked and published on the Web. Elements appearing in the triples (subjects, predicates, objects)
can be of one of the following types:

1https://www.w3.org/RDF/.
2http://wiki.dbpedia.org/.
3https://www.microsoft.com/en-us/research/project/probase/.
4https://www.wikidata.org/.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

https://www.w3.org/RDF/
http://wiki.dbpedia.org/
https://www.microsoft.com/en-us/research/project/probase/
https://www.wikidata.org/

RDF Data Storage and Query Processing Schemes: A Survey 84:3

Fig. 1. An example of a graph of triples. Consortium (2014b).

Fig. 2. An example of an RDF subgraph using the subject, predicate, and object relations given by the sample
data.

— IRI (International Resource Identifier): identifies a resource. It provides a global identifier for
a resource without implying its location or a way to retrieve it. The identifier can be re-used
by others to identify the same resource. IRIs are a generalization of URIs (Uniform Resource
Identifiers) that allow non-ASCII characters to be used. IRIs can appear at all three positions
in a triple (subject, predicate, or object).

—Literal: is a basic string value that is not an IRI. It can be associated with a datatype, thus
can be parsed and correctly interpreted. It is allowed only as an object of a triple.

—Blank node: is used to denote a resource without assigning a global identifier with an IRI; it
is a local, unique identifier used within a specific RDF dataset. It is allowed as a subject and
an object in a triple.

RDF provides means to co-locate triples in a subset and to associate such subsets with an IRI
(Consortium 2014a). A subset of triples constitutes an independent graph of data. In practice, it
provides data managers with a mechanism to create a collection of triples. A dataset can consist of
multiple named graphs and no more than one unnamed (default) graph.5 In practice, the SPARQL6

query language has been recommended by the W3C as the standard language for querying RDF
data. A SPARQL query Q specifies a graph pattern P , which is matched against an RDF graph G.
The query matching process is performed via matching the variables in P with the elements of G
such that the returned graph is contained inG (pattern matching). In practice, most RDF stores can

5https://www.w3.org/TR/rdf11-concepts/#section-dataset.
6https://www.w3.org/TR/sparql11-overview/.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

https://www.w3.org/TR/rdf11-concepts/#section-dataset
https://www.w3.org/TR/sparql11-overview/

84:4 M. Wylot et al.

Fig. 3. Shapes of SPARQL BGP Queries.

be searched using queries that are composed of triple patterns. A triple pattern is much like a triple,
except that S , P , andO can be replaced by variables. Similar to triples, triple patterns are modeled as
directed graphs. In general, a set of triple patterns is called a basic graph pattern (BGP) and SPARQL
queries that only include such type of patterns are called BGP queries. In practice, SPARQL BGP
queries can have different shapes (Figure 3). (1) Star query: only consists of subject-subject joins
where a join variable is the subject of all the triple patterns involved in the query. (2) Chain query:
consists of subject-object joins where the triple patterns are consecutively connected like a chain.
(3) Tree query: consists of subject-subject joins and subject-object joins. (4) Cycle query: contains
subject-subject joins, subject-object joins and object-object joins. (5) Complex query: consist of a
combination of different shapes. Therefore, answering a SPARQL BGP query is usually framed
as a sub-graph pattern-matching problem (Huang et al. 2011). The main focus of this article is
on the techniques and approaches that have been designed for the evaluation of conjunctive BGP
queries on RDF databases. We do not focus on other RDF querying features such as the OPTIONAL

operation (i.e., a triple pattern is matched optionally), FILTER expressions and string functions with
regular expressions.

3 TAXONOMY AND CLASSIFICATION

The wide adoption of the RDF data model has called for efficient and scalable RDF schemes. As a
response to this call, a number of systems have been designed to tackle this challenge. In general,
these systems can be broadly classified into two main categories:

—Centralized systems: where the storage and query processing of RDF data is managed on a
single node. Examples of this type of systems include (McBride 2002; Harris and Gibbins
2003; Wilkinson and Wilkinson 2006; Ma et al. 2004; Chong et al. 2005; Abadi et al. 2007;
Weiss et al. 2008; Bornea et al. 2013; Neumann and Weikum 2010; Yuan et al. 2013). A main
property of such systems is that they do not incur any communication overhead (i.e., they
process all data locally). However, they remain limited by the computational power and
memory capacities of a single machine.

—Distributed systems: where the storage and query processing of RDF data is managed on
multiple nodes. Examples of this type of systems include (Khadilkar et al. 2012; Punnoose
et al. 2015; Papailiou et al. 2012; Schätzle et al. 2013; Badam and Pai 2011; Kyrola et al. 2012;
Schätzle et al. 2015; Hammoud et al. 2015). As opposed to centralized systems, distributed
RDF systems are characterized by larger aggregate memory sizes and higher process-
ing capacity. On the flip side, they might incur significant intermediate data shuffling
when answering (complex) SPARQL queries, especially when queries span multiple disjoint
partitions.

In general, with increasing sizes of RDF datasets, tens or hundreds of gigabytes of main mem-
ory and a high-degree of parallelism is required to rapidly satisfy the demands of complex SPARQL
queries (i.e., queries with large numbers of triple patterns and joins)—something that is currently

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

RDF Data Storage and Query Processing Schemes: A Survey 84:5

Fig. 4. Taxonomy and classification of the surveyed RDF Management Systems.

available only to high-end servers with steep prices. As a result, executing complex queries on
a single node might be impractical especially when the node’s main memory is dwarfed by the
volume of the dataset. Distributed RDF systems can tackle this challenge by typically partitioning
the RDF data among a set of clustered machines. In general however, in distributed systems, com-
munication is very expensive. Therefore, intermediate data shuffling can greatly degrade query
performance. Hence, reducing intermediate data shuffling is becoming one of the major challenges
for distributed RDF systems.

A survey article by Özsu (2016) provided an overview of centralized RDF systems while another
survey article (Kaoudi and Manolescu 2015) has mainly focused on cloud-based RDF systems. Fig-
ure 4 depicts our proposed comprehensive taxonomy as well as the classification of the various
types of RDF systems. The first level of the taxonomy divides the systems based on their main
design decision into two main categories: centralized and distributed. Within the centralized sys-
tems, we distinguish various storage models, i.e., the way triples are physically organized within
the system (e.g., statement table, property table, graph-based store) while for the distributed sys-
tems, we classify them into categories based on the architectures or design paradigms they leverage
(e.g., NoSQL, Hadoop/Spark, Main Memory). The lower level of our taxonomy list representative
systems for each defined class of our taxonomy. A detailed description of the various classes of cen-

tralized RDF systems is presented in Section 4 while the various classes of distributed RDF systems
are covered in Section 5.

4 CENTRALIZED RDF SYSTEMS

4.1 Statement Tables

One straightforward way to maintain RDF triples is to store triple statements in a tablelike struc-
ture. In particular, in this approach, the input RDF data is maintained as a linearized list of triples,
storing them as ternary tuples. In Alexaki et al. (2001), this approach is called the “generic” ap-
proach. The RDF specification states that the objects in the graphs can be either URIs, literals, or
blank nodes. Properties (predicates) are always URI references. Subject nodes can only be URIs or
blank nodes. This enables to specify the underlying data types for storing subject and predicate

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

84:6 M. Wylot et al.

Fig. 5. A simple RDF storage scheme using a linearized triple representation. The illustration uses schema
elements from the Berlin SPARQL Benchmark (Bizer and Schultz 2009).

Fig. 6. Logical database design of the triple table and ER diagram showing table relationships in 3store
(Harris and Gibbins 2003).

values. A common way is to store the object values using a common string representation and
perform some type conversion whenever necessary. An example table showing the same data set
as in Figure 2 is shown in Figure 5.

An example of Statement Table approach is Jena1 (McBride 2002). Jena1 uses relational data-
bases to stores data as a statement table. URIs and Strings are encoded as IDs and two separate
dictionaries are maintained for literals and resources/URIs. To distinguish literals from URI
in the statement table there are two columns. In Jena2 (Wilkinson et al. 2003) the schema is
denormalized and URIs and simple literals are maintained in the statement table. The dictionary
tables are used only to store strings whose lengths exceed a threshold. This enables filtering
operation to be performed directly on the statement table; however, it also causes higher storage
consumption, since string values are stored multiple times. 3store (Harris and Gibbins 2003) is
another system that stores the RDF triples into a single relational table. Such a table consists of
six columns: model, which is an equivalent to RDF Graphs; hash value for subject, predicate, and
object; a Boolean value indicating that the object is a literal value or an URI; and a Boolean value
indicating that the triple was inferred by 3store.7 To map the hash values to strings, i.e., URIs,
models, or literals, 3store maintains three separate dictionary tables.

73store supports simple inferences based on RDF entailment rules; however, the inference goes beyond the scope if this

survey.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

RDF Data Storage and Query Processing Schemes: A Survey 84:7

In general, the semantic information from the complete RDF graph can be exploited so that
additional data can be annotated per triple and stored as a fourth element for each input triple.
Harris et al. (2009) proposed another system, called 4store, where RDF triples are maintained as
quads of (model, subject, predicate, object), which is highly similar to RDF Graphs/Databases. In
4store, triples assigned to the default graph are maintained in a specific model, that is, they are
used in query evaluation over the default graph. 4store stores each of the quads in three indexes;
in addition, it stores literal values separately. It maintains a hash table of graphs where each entry
points to lists of triples in the graph. Literals are indexed through a separate hash table and they
are represented as (SPO). 4store also considers two predicate-based indexes. For each predicate,
two radix tries are maintained where the key is either a subject or object, and respectively object
or subject and graph are stored as entries. These indices are used to filter all quads satisfying
a given predicate and their subject/object. They are considered as traditional predicate indices
(P → OS and P → SO).

Chong et al. (2005) present an SQL-based table function RDFMATCH, which is designed to
query the statement table of RDF data. A main advantage of this approach is that the answers of
the RDFMATCH table function can be seamlessly integrated with queries on standard relational
tables and also consequently processed by the various SQL’s querying constructs. The main
implementation of the RDFMATCH function is complied to a set of self-join operations on
the underlying triple-based RDF table store. The compiled query is evaluated efficiently using
B-tree indexes in addition to a set of materialized join views for specialized subject-property.
Subject-Property Matrix materialized join views are utilized to reduce the query evaluation
overheads that are inherent in the canonical triple-based representation of RDF. A special module
is implemented to analyze the triple-based RDF table and estimate the size of the different
materialized views, based on which a user can define a subset of materialized views.

Virtuoso (Erling and Mikhailov 2008) maintains data as RDF quads that consist of a graph
element id, subject, predicate, and object where all the quads are maintained in a single table.
Each of the attributes can be indexed in different ways. From a high-level perspective, Virtuoso
is comparable to a traditional relational database with enhanced RDF support. Virtuoso adds
specific types (URIs, language, and type-tagged strings) and indexes optimized for RDF. Virtuoso
supports two main types of indexes. The default index corresponds to GSPO (graph, subject,
predicate, object). In addition, it provides an auxiliary bitmap index (OPGS). The indexes are
stored in compressed form. As strings are the most common values in the database, for example,
in URIs, Virtuoso compresses these strings by eliminating common prefixes. The system does not
precalculate optimization statistics. Instead, it samples data at query execution time. It also does
not compute the exact statistics but just gets rough numbers of elements and estimates query cost
to pick an optimal execution plan.

4.2 Index Permutations

The approach of index-permuted RDF storage exploits and optimizes traditional indexing tech-
niques for storing RDF data. As most of the identifiers in RDF are URI strings, one optimization
is to replace these strings of arbitrary lengths with unique integers. As the data is sparse and
many URIs are repetitive, this technique allows us to save memory. To increase the resulting per-
formance, the indexes are built based on shorter encoded values rather than the uncompressed
values. In practice, Several systems (e.g., Weiss et al. (2008) and Neumann and Weikum (2010))
showed that it is possible to use a storage model that applies exhaustive indexing. The foundation
for this approach is that any query on the stored data can be answered by a set of indices on the
subject, predicates, and objects in different orders, namely, all their permutations (Figure 7), so
that it allows fast access to all parts of the triples by sorted lists and fast merge-joins.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

84:8 M. Wylot et al.

Fig. 7. Exhaustive Indexing.

Hexastore (Weiss et al. 2008) has mainly focused on generality and scalability in the design of
its data storage and query processing mechanisms. Hexastore relies on maintaining the RDF data
using a multiple indexing scheme (Harth and Decker 2005). It does not differentiate against any
component of the RDF triples and equally treats the subject, predicate and object components. In
particular, each RDF component has its special index structure. In addition, all possible combina-
tions of the three components are indexed and materialized. Each index structure in a Hexastore
is built around one RDF element (subject, predicate, or object) and determines a prioritization be-
tween the other two elements. The first level of the index is a sorted list of all subjects where each
subject is associated to a list of sorted predicates. Each predicate links to a list of sorted objects.
Many of the queries that may require many joins and unions in other storage systems can be an-
swered by only using the index information. In the case where the query requests a list of subjects
that are related to two particular objects through any property, the answer can be computed by
merging the subject lists of the osp index. Since the subject list of this osp index is sorted, this
can be done in linear time. In practice, the architectural drawback of this approach is the increase
in memory consumption. Since the different combinations of possible query patterns is indexed,
additional space is required due to the duplication of data. As the authors of Weiss et al. (2008)
point out, less than a sixfold increase in memory consumption is required; the approach yields a
worst-case fivefold increase, since for the set of spo, sop, osp, ops, pso, pos indexes, one part can
always be re-used: the initial sorted list of subjects, objects, and predicates. Due to the replication
of the data into the different index structures, updating and inserting into the index can become a
second bottleneck.

RDF Triple eXpress (RDF-3x) (Neumann and Weikum 2010) relies on the same processing
scheme of exhaustive indexing but further optimizes the data structures. In RDF-3X, the index data
is stored in clustered B+ trees in lexicographic order. Moreover, indexes over count-aggregated
variants for all three two-dimensional and all three one-dimensional projections are created
(Neumann and Weikum 2010). The values inside the B+ tree are delta encoded (computed
difference/delta between the ID attributed to the slot in the tree and the ID attributed to the pre-
vious slot) to further reduce the required amount of main memory to persist the data. Each triple
(in one of the previously defined orders of spo,sop,...) is stored as a block with the maximum of
13 bytes. Since the triples are sorted lexicographically, the expected delta between two values is
low, i.e., only a few bytes are consumed. Now the header of the value block contains two pieces of
information: First, a flag that identifies if value1 and value2 are unchanged and the delta of value3

is small enough to fit in the header block; second, if this flag is not set, it then identifies a case num-
ber of how many bytes are needed to decode the delta to the previous block. Figure 8 illustrates
an example of the RDF-3X compression scheme where the upper part of the illustration shows
the general block structure and the lower half the explicit case. Here, the flag is set to 0 meaning
more than value3 has changed. Case 7 identifies that for value1, value2, and value3 exactly one
byte is changed. Using this information, the deltas can be extracted and the actual value of the
triple can be decoded. The query processor follows the RISC-style design philosophy (Chaudhuri
and Weikum 2000) by exploiting the comprehensive set of indices on the RDF triples so that it can
mostly apply merge join operations over the ordered index lists. The query optimizer uses its cost

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

RDF Data Storage and Query Processing Schemes: A Survey 84:9

Fig. 8. RDF-3X compression example (Neumann and Weikum 2008).

model to find the most efficient query execution plan and mostly focuses reordering the join opera-
tions. In practice, selectivity estimation has a significant impact on plan generation. While this is a
traditional problem in database systems, the schema-free nature of RDF data makes this issue more
challenging. RDF-3X relies on a cost model to perform dynamic programming for plan enumer-
ation. To achieve this goal, it uses two types of statistical information: (1) specialized histograms
that are generic and can handle any kind of triple patterns and joins; (2) frequent join paths in the
data that give more accurate estimation. During query optimization, the query optimizer uses the
join-path selectivity information when available and otherwise assume independence and use the
histograms information.

IBM DB2 (Bornea et al. 2013) implements only two permutations (SPO and OPS) and it stores
RDF triples in four relations. The first relation (Direct Primary) stores triples indexed by subject,
however this relation cannot fit multi-valued predicates. The second relation (Direct Secondary)
stores data that shares the same subject and predicate. The Direct Primary relation contains a
special ID for multi-valued predicates, which is used in the Direct Secondary to store values for
predicates. Similarly IBM DB2 stores data indexed by objects in two relations called Reverse Pri-
mary and Reverse Secondary.

4.3 Property Tables

Since RDF does not describe any specific schema for the graph, there is no easy way to determine
a set of partitioning or clustering criteria to derive a set of tables to store the information. In
addition, there is no definite notion of schema stability, meaning that at any time the data schema
might change, for example, when adding a new subject-object edge to the overall graph. In general,
storing RDF triples in a single large statement table presents a number of disadvantages when it
comes to query evaluation. In most cases, for each set of triple patterns that is evaluated in the
query, a set of self-joins is necessary to evaluate the graph traversal. Since the single statement
table can become very large, this can have a negative effect on query execution. Wilkinson et al.
(2003) and Broekstra et al. (2002) proposed different ways to alleviate this problem by introducing
the concept of property tables. In particular, instead of building one large table for all occurrences
of all properties, the paper proposed two different strategies that can be distinguished into two
different concepts: clustered and normalized property tables.

In principle, the main aim of clustered property tables is to group commonly accessed nodes
in the graph in a single table with the goal of avoiding the high cost of many self-join operations
on the large statement table encoding the RDF data. In particular, the property tables approach
attempts to improve the performance of evaluating RDF queries by decreasing the cost of the
join operation by reducing the number of required join operations and the size of the encoding
tables of the RDF data that are involved in evaluating the RDF query. In Wilkinson and Wilkinson
(2006), the use of clustered property tables is proposed for data that is stored using the Dublin Core

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

84:10 M. Wylot et al.

Fig. 9. Example illustrating clustered property tables. Frequently co-accessed attributes are stored together.

schema.8 In the example shown in Figure 9, one property table for all products and a statement
table for all other triples are considered. To improve the performance, a product record and all
associated triples can only appear in the property table. Property tables were also implemented
in Jena2 (Wilkinson et al. 2003) together with a statement table. In that context, multiple-values
properties are clustered in a separate table. The system also allows to specify the type of the column
in the underlying database system for the property value. This can be further leveraged for range
queries and filtering. For example, the property age can be implemented as an integer, which can
then be efficiently filtered.

DB2RDF (Bornea et al. 2013) introduced a relational encoding scheme for the RDF model that
attempts to ideally encode all the predicates for each subject on a single row while efficiently
maintaining the inherent variability of the different subjects. DB2RDF uses a Direct Primary Hash

(DPH) wide relation where each record maintains a subject s in the entry column, with all its as-
sociated k predicates and objects stored in the predi and vali columns where 0 ≤ i ≤ k . If subject
s has more than k predicates, then a new tuple is used to store the additional attributes and the
process continues untill covering and storing all the predicates for s . Since multi-valued predicates
need special treatment, DB2RDF uses a second relation, Direct Secondary Hash (DS). Although the
encoding scheme of DB2RDF allows one column to store multiple predicates, its hashing mech-
anism assure that each predicate is always assigned to the same column for the same subjects.
In principle, storing all the instances of a predicate in the same column provides all the index-
ing advantages of traditional relational representations. In addition, storing different predicates in
the same column leads to significant space savings where a relatively smaller number of database
columns can be used to maintain datasets with a much bigger number of predicates (since oth-
erwise the number of columns will be equal to the number of predicates). In principle, the DPH

and DS relations primarily maintain the outgoing edges of an entity. DB2RDF also encodes the in-
coming edges of an entity using two additional reverse relations: the Reverse Primary Hash (RPH)
and the Reverse Secondary Hash (RS). A main advantage of the DB2RDF encoding scheme is that it
reduces the number of join operations for star queries (i.e., queries that ask for multiple predicates
for the same subject or object).

Ontology (Fensel 2003) is a formal method for defining the types, properties, and interrelation-
ships of the entities in a particular domain. Common components of ontology definition include
Classes that describe collections of objects, Attributes that describe the properties of objects, Indi-

viduals that represent the instances or ground level of objects, and Relations that describe the ways
in which classes and individuals can be related to one another. In practice, Ontology is usually
presented as a taxonomy with a hierarchy of concepts where the relation between the concepts
is parent/child or subClass/superClass. RStar (Ma et al. 2004) is a system that is designed to use
the schema specification of the ontology definition to store ontology information and instance

8http://dublincore.org/.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

http://dublincore.org/

RDF Data Storage and Query Processing Schemes: A Survey 84:11

Fig. 10. Example illustrating vertical partitioning. For each existing predicate one subject-object table is
created.

data in various relational tables. In particular, ontology information is encoded using tables Class,
SubClass, Property, SubProperty, and Property-Class. In addition, a InstanceOfClass table is used to
maintain the instances of all classes and establish the link between ontology and instance data. In
RStar, each literal and each resource are assigned a unique ID and maintained in separate tables
to accelerate the data retrieval and reduce the storage cost.

In general, one of the consequences of the property tables approach is that some information
about the schema of the RDF data should be defined in advance. If the properties for a material-
ized type are changed during runtime, then this requires table alternations that are costly and often
require explicit table-level locking. Furthermore, multi-valued attributes cannot be easily modelled
using a clustered property table. If multi-valued attributes must be considered, then the defined
model has to choose either to not materialize the path of the attribute or, if the sequence of the at-
tribute is bounded, to include all possible occurrences in the materialized clustered property table.

4.4 Vertical Partitioning

SW-Store (Abadi et al. 2007) is an RDF management system that maintains RDF databases by
applying a fully decomposed storage model (DSM) (Copeland and Khoshafian 1985). This approach
rewrites the triple table into m tables where m is the number of unique properties in the dataset
(Figure 10). Each of them table consists of two columns. The first column stores the subjects that
are described by that property, while the second column stores the object values. The subjects that
are not described by a particular property are simply omitted from the table for that property.
Each of the m tables is indexed by subject so that particular subjects can be retrieved quickly.
In addition, fast merge join operations are exploited to reconstruct information about multiple
properties for subsets of subjects. For the case of a multi-valued attribute, each distinct value is
listed in a successive row in the table for that property. In practice, a main advantage of this
technique is that the algorithm for creating the encoding tables is straightforward and agnostic
towards the structure of the RDF dataset. SW-Store used a column-oriented database system, C-
store (Stonebraker et al. 2005), to maintain the encoding tables as groups of columns instead of
maintaining them as group of rows.

4.5 Graph-Based Storage

RDF naturally forms graph structures, hence one way to store and process it is through graph-
driven data structures and algorithms. Therefore, some approaches have applied ideas from the
graph processing world to efficiently handle RDF data. For example, gStore (Zou et al. 2014) is a
graph-based RDF storage system that models RDF data as a labeled, directed multi-edge graph. In
this graph, each vertex encodes a subject or an object and each triple is encoded using a directed
edge from a subject to its associated object. Given a subject and an object, there may exist more
than one property between them, which are represented by multiple-edges between two vertices.
In gStore, the RDF graph is stored as a disk-based adjacency list table. For each class vertex in the
RDF graph, gStore assigns a bitstring as its vertex signature. Therefore, the RDF graph is mapped
to a data signature graph. In gStore, SPARQL queries are mapped to a subgraph matching query

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

84:12 M. Wylot et al.

over the RDF graph. During query processing, the vertices of the SPARQL query are encoded into
vertex signatures and then the query is encoded into its corresponding query signature graph.
Answering the SPARQL query is done by matching the vertex signature of the query graph over
vertex signature of the RDF graph. In particular, gStore builds an S-tree (Deppisch 1986) for all
vertices in the adjacency list tables to minimize the search space. The tree leafs correspond to
vertices from the initial graph (G*), and each intermediate (parent) node is formed by performing
bitwise “OR” operations on all children signatures. However, S-trees cannot support multi-way join
processing; to solve this issue, the authors propose a VS-tree extension. Given an S-tree, leafs are
linked according to the initial graph, and new edges are introduced depending on whether certain
leafs are connected in G*. Bitwise “OR” operations over connecting edge labels of the children are
performed to assign labels to such super-edges. Given a SPARQL queryQ , gStore first encodes the
input query and generates a query signature graph Q∗, then it finds matches of Q∗ over G∗ using
the using the VS∗-tree by employing a top-down search strategy. Finally, gStore verifies if each
match of Q∗ over G∗ is also a match of Q over G.

TurboHOM++ (Kim et al. 2015) is another graph-based approach that transforms RDF graphs
into labeled graphs and applies subgraph homomorphism methods to RDF query processing. To
improve its query evaluation performance, it applies type-aware transformation and tailored op-
timization techniques. For the type-aware transformation, it embeds the types of an entity (i.e., a
subject or object) into the vertex label set so that it can eliminate corresponding query vertices/
edges from the query graph. Using this appraoch, the query graph size decreases, its topology
becomes simpler than the original query, and thus, this transformation improves performance
accordingly by reducing the amount of graph exploration. To speed up query performance fur-
ther, TurboHOM++ applies a series of performance optimizations as well as Non-Uniform Memory
Access (NUMA)-aware parallelism for fast RDF query processing.

Attributed Multigraph-Based Engine for RDF querying (AMbER) (Ingalalli et al. 2016) is a graph-
based RDF engine that represents the RDF data into multigraph where subjects/objects constitute
vertices and multiple edges (predicates) can appear between the same pair of vertices. During
query evaluation, SPARQL queries are also represented as multigraphs and the query answering
task is transformed to the problem of subgraph homomorphism. In addition, AMbER employs
an approach that exploits structural properties of the multigraph query to efficiently access RDF
multigraph information and return the results.

4.6 Binary Storage

BitMat (Atre et al. 2008) is a three-dimensional (subject, predicate, object) bit matrix that is flat-
tened in two dimensions for representing RDF triples. In this matrix, each element of the matrix
is a bit encoding the absence or presence of that triple. Therefore, very large RDF triple-sets can
be represented compactly in memory as BitMats. Figure 11 shows some sample RDF data and a
corresponding bit matrix. The data is then compressed using D-gap compression9 on each row
level. Bitwise AND/OR operators are used to process join queries expressed as conjunctive triple
patterns. In particular, BitMat creates three auxiliary tables to maintain mappings of distinct sub-
jects, predicates, and objects to the sequence-based identifiers. Then, it groups the RDF triples by
predicates and builds a subject BitMat, for each predicate group and concatenates (S,O) matrices
together to get the two-dimensional BitMat. To compact the materix size, BitMat applies RLE on
each subject row in the concatenated BitMat. During query processing, the BitMat representation
allows fast identification of candidate result triples in addition to providing a compact representa-
tion of the intermediate results for multi-joins. The join procedure of BitMat relies on three main

9http://bmagic.sourceforge.net/dGap.html.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

http://bmagic.sourceforge.net/dGap.html

RDF Data Storage and Query Processing Schemes: A Survey 84:13

Fig. 11. BitMat: sample bit matrix (Atre and Hendler 2009).

primitives: (1) filter, which returns BitMat by identifying a subset of triples that satisfy the triple
pattern and clears bits of all other triples; (2) fold, which returns a bit-array by applying a bitwise
OR on the two dimensions; (3) unfold, which returns BitMat for the bit set to 0 in the mask. In
principle, the main goal of BitMat multi-join algorithm is to ensure that the intermediate result set
is small using any number of join operations.

TripleBit system (Yuan et al. 2013) has been designed as a storage structure that can directly
and efficiently query the compressed data. It uses a bit matrix storage structure and the encoding-
based compression method for storing huge RDF graphs more efficiently. Such storage structure
enables TripleBit to use merge joins extensively for join processing. In particular, TriplBit uses the
Triple Matrix model where RDF triples are represented as a two dimensional bit matrix. In this
matrix, each column of the matrix corresponds to an RDF triple, with only two entries of bit value
associated with the subject entity and object entity of the triple. Each row is defined by a distinct
entity value, with the presence in a subset of entries, representing a collection of the triples having
the same entity. TripleBit sorts the columns by predicates in lexicographic order and vertically
partition the matrix into multiple disjoint buckets, one per predicate. In addition, TripleBit uses two
auxiliary indexing structures: (1) ID-Chunk bit matrix supports a fast search of the relevant chunks
matching to a given subject or object. (2) The ID-Predicate bit matrix provides a mapping of a
subject (S) or an object (O) to the list of predicates to which it relates. These indexing structures are
effectively used to improve the speedup for scan and merge-join performance. TripleBit employs
dynamic query plan generation algorithm to generate an optimal execution plan for a join query,
aiming at minimizing the size of intermediate results as early as possible. TripleBit utilizes a unique
ID for every entity to further improve the query processing efficiency as the query processor does
not need to distinguish whether IDs represent subject or object entities when processing joins.

5 DISTRIBUTED RDF SYSTEMS

With increasing sizes of RDF datasets, executing complex queries on a single node has turned to be
impractical in several cases specially when the node’s main memory is dwarfed by the volume of
the dataset. Therefore, there was a crucial need for distributed systems with a high-degree of par-
allelism that can satisfy the performance demands of complex SPARQL queries. As a result, several
distributed RDF processing systems have been introduced where the storage and query process-
ing of RDF data is managed on multiple nodes and by partitioning the RDF data among a set of
clustered machines. In contrast to centralized systems, distributed RDF systems are characterized
by larger aggregate memory sizes and higher processing capacity. However, they might incur sig-
nificant intermediate data shuffling when answering complex SPARQL queries, especially when

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

84:14 M. Wylot et al.

Fig. 12. NoSQL-Based RDF Systems.

Fig. 13. The Architecture of JenaHBase System (Khadilkar et al. 2012).

queries span multiple disjoint partitions. In this section, we give an overview of various techniques
and systems for efficiently querying large RDF datasets in distributed environments.

5.1 NoSQL-Based RDF Systems

The ever-growing requirement for scalability combined with new application specifications have
created unprecedented challenges for traditional relational database systems. In addition to the
rapid growth of information, data has become increasingly semi-structured and sparse in nature.
Such emerging requirements challenged the traditional data management architectures in their
need for upfront schema definition and relational-based data organization in many scenarios. In
response, we have experienced the emergence of a new generation of distributed and scalable data
storage system, referred to as NoSQL (Not Only SQL) database systems.10 This new generation
of database systems (e.g., HBase,11 Cassandra,12 Accumulo,13 DynamoDB14) is designed with the
ability to horizontally scale out over many machines, efficiently leverage the main memory and
distributed indexes for data storage and to support defining new attributes or data schema dynam-
ically (Sakr et al. 2011; Cattell 2011).

Several approaches have been exploiting the new wave of NoSQL database systems for building
scalable RDF management systems. Figure 12 gives an overview of RDF systems classified accor-
ding to their underlying NoSQL database design. For example, JenaHBase (Khadilkar et al. 2012)
uses HBase, a NoSQL column family store, to provide various custom-built RDF data storage lay-
outs that cover various trade-offs in terms of query performance and physical storage (Figure 13).
In particular, JenaHBase designs several HBase tables with different schemas to store RDF triples.

10http://nosql-database.org/.
11https://hbase.apache.org/.
12http://cassandra.apache.org/.
13http://accumulo.apache.org/.
14https://aws.amazon.com/dynamodb/.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

http://nosql-database.org/
https://hbase.apache.org/
http://cassandra.apache.org/
http://accumulo.apache.org/
https://aws.amazon.com/dynamodb/

RDF Data Storage and Query Processing Schemes: A Survey 84:15

The simple layout uses three tables each indexed by subjects, predicates, and objects. For every
unique predicate, the vertically partitioned layout creates two tables where each of them is
indexed by subjects and objects. The indexed layout uses six tables representing the six possible
combinations of indexing RDF triples, like the index permutation approaches described in
Section 4.2. The hybrid layout combines both the simple and vertical partitioning (Section 4.4)
layouts. The hash layout combines the hybrid layout with hash values for nodes and a separate
table maintaining hash-to-node encodings. For each of these layouts, JenaHBase processes
all operations (e.g., loading triples, deleting triples, querying) on a RDF graph by implicitly
converting them into operations on the underlying storage layout.

H2RDF (Papailiou et al. 2012) is a distributed RDF storage system that combines a multiple-
indexing scheme over HBase and the Hadoop framework. H2RDF creates three RDF indices
(SPO, POS, and OSP) over the HBase store. During data loading, H2RDF collects all the statistical
information that is utilized by the join planner algorithm during query processing. During query
processing, the Join Planner navigates through the query graph and greedily selects the joins that
need to be executed based on the selectivity information and the execution cost of all alternative
join operations. H2RDF uses a join executor module that, for any join operation, chooses the most
advantageous join scenario by selecting between centralized and fully distributed execution, via
the Hadoop platform. Particularly, centralized joins are evaluated in a single cluster node, while
distributed join operations are evaluated by launching MapReduce jobs to process them. H2RDF+
(Papailiou et al. 2013, 2014) extended the approach of H2RDF by storing all permutations of RDF
indexes. Using this indexing schema, all SPARQL queries can be efficiently processed by a single in-
dex scan on the associated index. In addition, it guarantees that each join operation between triple
patterns can be evaluated via merge joins that can effectively utilize the precomputed orderings.

The Rya system (Punnoose et al. 2015) has been built on top of Accumulo, a distributed key-
value and column-oriented NoSQL store that supports the ordering of keys in a lexicographical
ascending order. Accumulo orders and partitions all key-value pairs according to the row ID part
of the key. Rows with similar IDs are grouped into the same node for efficient and faster access.
Rya stores the RDF triple (subject, predicate, and object) in the Row ID part of the Accumulo tables.
In addition, it indexes the triples across three separate tables (SPO, POS, and OSP) that support
all the permutations of the triple pattern. These tables store the triple in the Accumulo Row ID
and order the subject, predicate, and object differently for each table. This approach exploits
the row-sorting mechanism of Accumulo to efficiently store and query triples across multiple
Accumulo tables. SPARQL queries are evaluated using indexed nested loops join operations.

AMADA (Aranda-Andújar et al. 2012) has been presented as a platform for RDF data man-
agement that is implemented on top of the Amazon Web Services (AWS) cloud platform. It is
designed as a Software-as-a-Service (SaaS), which allows users to upload, index, store, and query
RDF data. In particular, RDF data is stored using Amazon Simple Storage Service (S3).15 The S3
interface assigns a URL to each dataset, which can be later used during the query processing on
EC2 nodes. To synchronize the distributed query processing AMADA uses Amazon Simple Queue
Service (SQS) providing an asynchronous message-based communication. AMADA builds its
own data indexes using SimpleDB, a simple database system supporting SQL-style queries based
on a key-value model that supports single-relation queries, i.e., without joins. In AMADA, the
query execution is performed using virtual machines within the Amazon Elastic Compute Cloud
(EC2). In practice, once a query is submitted to the system, it is sent to a query processor module
running on an EC2 instance, which performs a look-up to the indexes in SimpleDB to find out

15https://aws.amazon.com/s3.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

https://aws.amazon.com/s3

84:16 M. Wylot et al.

the relevant indexes for answering the query, and evaluates the query against them. Results are
written in a file stored in S3, whose URI is sent back to the user to retrieve the query answers.

CumulusRDF (Ladwig and Harth 2011) is an RDF store that provides triple pattern lookups, a
linked data server and proxy capabilities, bulk loading, and querying via SPARQL. The storage
back-end of CumulusRDF is Apache Cassandra, a NoSQL database management system originally
developed by Facebook (Lakshman and Malik 2010). Cassandra provides decentralized data stor-
age and failure tolerance based on replication and failover. Cassandra’s data model consists of
nestable distributed hash tables. Each hash in the table is the hashed key of a row and every node
in a Cassandra cluster is responsible for the storage of rows in a particular range of hash keys.
The data model provides two more features used by CumulusRDF: super columns, which act as a
layer between row keys and column keys, and secondary indices that provide value-key mappings
for columns. The index schema of CumulusRDF consists of four indices (SPO, PSO, OSP, CSPO) to
support a complete index on triples and lookups on named graphs (contexts). The indices provide
fast lockup for all variants of RDF triple patterns. The indices are stored in a “flat layout” utilizing
the standard key-value model of Cassandra. CumulusRDF does not use dictionaries to map RDF
terms but instead stores the original data as column keys and values. Thereby, each index provides a
hash-based lookup of the row key, a sorted lookup on column keys and values, thus enabling prefix
lookups. CumulusRDF uses the Sesame query processor16 to provide SPARQL query functionality.
A stock Sesame query processor translates SPARQL queries to index lookups on the distributed
Cassandra indices; Sesame processes joins and filter operations on a dedicated query node.

D-SPARQ (Mutharaju et al. 2013) has been presented as a distributed RDF query engine on
top of MongoDB, a NoSQL document database.17 D-SPARQ constructs a graph from the input
RDF triples, which is then partitioned, using hash partitioning, across the machines in the cluster.
After partitioning, all the triples whose subject matches a vertex are placed in the same partition
as the vertex. In other words, D-SPARQ uses hash partitioning based on subject. In addition,
similar to Huang et al. (2011), a partial data replication is then applied where some of the triples
are replicated across different partitions to enable the parallelization of the query execution.
Grouping the triples with the same subject enables D-SPARQ to efficiently retrieve triples that
satisfy subject-based star patterns in one read call for a single document. D-SPARQ also uses
indexes involving subject-predicate and predicate-object. The selectivity of each triple pattern
plays an important role in reducing the query runtime during query execution by reordering the
individual triple patterns within a star pattern. Thus, for each predicate, D-SPARQ keeps a count
of the number of triples involving that particular predicate.

5.2 Hadoop-Based RDF Systems

In 2004, Google made a seminal contribution to the Big data community by introducing the Map
Reduce model (Dean and Ghemawat 2008). It is a simple and powerful programming model for
developing scalable parallel applications that can process large datasets across multiple machines.
In particular, MapReduce makes programmers think in a data-centric style allowing them to con-
centrate on dataset transformation while MapReduce takes care of the distributed execution and
fault tolerance details, transparently (Sakr et al. 2013). The Apache Hadoop project18 has been in-
troduced by Yahoo! as an open source framework that implemented the concepts of MapReduce.
Hadoop attracted huge interest from both the industrial and research communities. Several sys-
tems have been exploiting the Hadoop framework for building scalable RDF processing engines.

16http://www.openrdf.org/.
17https://www.mongodb.com/.
18http://hadoop.apache.org/.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

http://www.openrdf.org/
https://www.mongodb.com/
http://hadoop.apache.org/

RDF Data Storage and Query Processing Schemes: A Survey 84:17

SHARD (Rohloff and Schantz 2010) is one of the first Hadoop-based approaches that used a
clause-iteration technique to evaluate SPARQL queries against RDF datasets. It is designed to ex-
ploit the MapReduce-style jobs for high parallelization of SPARQL queries. In particular, SHARD
iterates over clauses in queries to incrementally bind query variables to the RDF graph nodes while
conforming to all of the query constraints. In addition, an iteration algorithm is used to coordinate
the iterated MapReduce jobs with one iteration for each clause in the query. In principle, the Map

step filters each of the bindings and the Reduce step removes duplicates where the key value for
both Map and Reduce are the bound variables in the SELECT clause. The initial map step identifies
all feasible bindings of graph data to variables in the first query clause. The output key of the ini-
tial map step is the list of variable bindings and the output values are set to null. The intermediate
MapReduce jobs continue to construct query responses by iteratively binding graph data to vari-
ables in later clauses as new variables are introduced and then joining these new bindings to the
previous bound variables such that the joined bound variables align with iteratively increasing
subsets of the query clauses. The intermediate steps execute MapReduce operations simultane-
ously over both the graph data and the previously bound variables, which were saved to disk to
perform this operation. This iteration of map-reduce-join continues until all clauses are processed
and variables are assigned that satisfy the query clauses. The initial reduce step removes duplicate
bindings without further modifying the output of the initial map step. A final MapReduce step
consists of filtering bound variable assignments to obtain just the variable bindings requested in
the SELECT clause of the original SPARQL query.

Husain et al. (2011) describe an approach to store RDF data in Hadoop Distributed File System
(HDFS) via partitioning and organizing the data files and executing dictionary encoding. In par-
ticular, this approach applies two partitioning components. The Predicate Split (PS) component,
which splits the RDF data into predicate files. These predicate files are then fed into the Predicate

Object Split (POS) component, which splits the predicate files into smaller files based on the type
of objects. Query processing is implemented on top of Hadoop by using a heuristic cost-based al-
gorithm that produces a query plan with the minimal number of Hadoop jobs for joining the data
files and evaluating the input query. The cost of the generated query plan is bounded by the log
of the total number of variables in the given SPARQL query.

The HadoopRDF system (Huang et al. 2011) has been introduced as a scale-out architec-
ture, which combines the distributed Hadoop framework with a centralized RDF store, RDF-3X
(Neumann and Weikum 2010) (see Section 4.2) for querying RDF databases. The data partitioner
of HadoopRDF executes a disjoint partitioning of the input RDF graph by vertex using a graph
partitioning algorithm that allows triples, which are close to each other in the RDF graph to
be allocated on the same node. The main advantages of this partitioning strategy is that it ef-
fectively reduces the network communication at query time. To further reduce the communica-
tion overhead, HadoopRDF replicates some triples on multiple machines. In particular, on each
worker, the data replicator decides which triples are on the boundary of its partition and repli-
cates them based on specified n-hop guarantees. HadoopRDF automatically decomposes the input
query into chunks that can be evaluated independently with zero communication across parti-
tions and uses the Hadoop framework to combine the resulting distributed chunks. It leverages
HadoopDB (Abouzeid et al. 2009) to manage the partitioning of query evaluation across high per-
formance single-node database systems and the Hadoop framework.

The PigSPARQL system (Schätzle et al. 2013) compiles SPARQL queries into the Pig query lan-
guage (Olston et al. 2008), a data analysis platform over the Hadoop framework. Pig uses a fully
nested data model and provides relational style operators (e.g., filters and joins). In PigSPARQL,
a SPARQL query is parsed to generate an abstract syntax tree, which is subsequently compiled
into a SPARQL algebra tree. Using this tree, PigSPARQL applies various optimizations on the

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

84:18 M. Wylot et al.

algebra level such as the early evaluation of filters and using the selectivity information for re-
ordering the triple patterns. Finally, PigSPARQL traverses the optimized algebra tree bottom up
and generates an equivalent sequence of Pig Latin expressions for every SPARQL algebra opera-
tor. For query execution, Pig automatically maps the resulting Pig Latin script onto a sequence of
Hadoop jobs. An advantage of taking PigSPARQL as an intermediate layer that uses Pig between
SPARQL and Hadoop is being independent of the actual Hadoop version or implementation de-
tails. RAPID+ (Ravindra et al. 2011) is another Pig-based system that uses an algebraic approach
for optimizing and evaluating SPARQL queries on top of the Hadoop framework. It uses a data
model and algebra (the Nested TripleGroup Data Model and Algebra (NTGA) (Kim et al. 2013)),
which includes support for expressing graph pattern-matching queries.

The SHAPE system (Lee and Liu 2013) uses a semantic hash partitioning approach that com-
bines locality-optimized RDF graph partitioning with cost-aware query partitioning for processing
queries over big RDF graphs. In practice, the approach utilizes access locality to partition big RDF
graphs across multiple compute nodes by maximizing the intra-partition processing capability and
minimizing the inter-partition communication cost. The SHAPE system is implemented on top of
the Hadoop framework with the master server as the coordinator and the set of slave servers as
the workers. In particular, RDF triples are fetched into the data partitioning module hosted on the
master server, which partitions the data across the set of slave servers. The SHAPE system uses
RDF-3X (Neumann and Weikum 2010) (see Section 4.2) on each slave server and used Hadoop to
join the intermediate results generated by subqueries. For query processing, the master node serves
as the interface for SPARQL queries and performs distributed query execution planning for each
query received. The SHAPE system classifies the query processing into two types: intra-partition
processing and inter-partition processing. The intra-partition processing is used for the queries
that can be fully executed in parallel on each server by locally searching the subgraphs matching
the triple patterns of the query without any inter-partition coordination. The inter-partition pro-
cessing is used for the queries that cannot be executed on any partition server, of which it needs
to be decomposed into a set of subqueries such that each subquery can be evaluated by intra-
partition processing. In this scenario, the processing of the query would requires multiple rounds
of coordination and data transfer across a set of partition servers. Thus, the main goal of the cost-
aware query partitioning phase is to generate locality-optimized query execution plans that can
effectively minimize the inter-partition communication cost for distributed query processing.

CliqueSquare (Goasdoué et al. 2015; Djahandideh et al. 2015) is another Hadoop-based RDF
data management platform for storing and processing big RDF datasets. With the central goal of
minimizing the number of MapReduce jobs and the data transfer between nodes during query
evaluation, CliqueSquare exploits the built-in data replication mechanism of the Hadoop Dis-
tributed File System (HDFS). Each of its partition has three replicas by default, to partition the
RDF dataset in different ways. In particular, for the first replica, CliqueSquare partitions triples
based on their subject, property, and object values. For the second replica, CliqueSquare stores
all subject, property, and object partitions of the same value within the same node. Finally, for
the third replica, CliqueSquare groups all the subject partitions within a node by the value of the
property in their triples. Similarly, it groups all object partitions based on their property values. In
addition, CliqueSquare implements a special treatment for triples whose property is rdf:type, by
translating them into an unwieldy large property partition. CliqueSquare then splits the property
partition of rdf:type into several smaller partitions according to their object value. For SPARQL
query processing, CliqueSquare relies on a clique-based algorithm, which produces query plans
that minimize the number of MapReduce stages. The algorithm is based on the variable graph of
a query and its decomposition into clique subgraphs. The algorithm works in an iterative way
to identify cliques and to collapse them by evaluating the joins on the common variables of each

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

RDF Data Storage and Query Processing Schemes: A Survey 84:19

clique. The process ends when the variable graph consists of only one node. Since triples related to
a particular resource are co-located on one node CliqueSquare can perform all first-level joins in
RDF queries (SS, SP, SO, PP, PS, PO, etc.) locally on each node and reduce the data transfer through
the network. In particular, it allows queries composed of 1-hop graph patterns to be processed in
a single MapReduce job, which enables a significant performance competitive advantage.

6 SPARK-BASED RDF SYSTEMS

The Spark project was developed as a big data processing framework that takes the performance
and concepts of the Hadoop framework to the next level by loading the data in distributed main-
memory and employing cheaper shuffle operations during data processing (Zaharia et al. 2010).
The fundamental programming abstraction of Spark is called a Resilient Distributed Dataset (RDD)
(Zaharia et al. 2010), which represents a logical collection of data partitioned over the nodes. In
practice, maintaining RDDs as an in-memory data structures enables Spark to exploit its func-
tional programming paradigm by enabling user’s programs to load data into a cluster’s memory.
In addition, users are allowed to explicitly cache an RDD in memory across nodes and reuse it in
multiple MapReduce-like parallel operations. Several systems have been designed to exploit the
Spark framework for building scalable RDF processing engines.

S2RDF19 (SPARQL on Spark for RDF) (Schätzle et al. 2015) introduced a relational partition-
ing schema for encoding RDF data called ExtVP (the Extended Vertical Partitioning) that extends
the Vertical Partitioning (VP) schema introduced by Abadi et al. (2007) (see Section 4.4) and uses
a semi-join-based preprocessing to efficiently minimize query input size by taking into account
the possible join correlations between the underlying encoding tables of the RDF data and join
indices (Valduriez 1987). In particular, ExtVP precomputes the possible join relations between par-
titions (i.e., tables). The main goal of ExtVP is to reduce the unnecessary I/O operations, compar-
isons, and memory consumption during executing join operations by avoiding the dangling tuples
in the input tables of the join operations, i.e., tuples that do not find a join partner. In particular,
S2RDF determines the subsets of a VP table VPp1 that are guaranteed to find at least one match
when joined with anotherVP tableVPp2, wherep1 andp2 are query predicates. S2RDF uses this in-
formation to precompute a number of semi-join reductions (Bernstein and Chiu 1981) ofVPp1. The
relevant semi-joins between tables in VP are determined by the possible joins that can occur when
combining the results of triple patterns during query execution. Clearly, ExtVP comes at the cost
of some additional storage overhead in comparison to the basic vertical partitioning techniques.
Therefore, ExtVP does not use exhaustive precomputations for all the possible join operations.
Instead, an optional selectivity threshold for ExtVP can be specified to materialize only the tables
where reduction of the original tables is large enough. This mechanism facilitates the ability to
control and reduce the size overhead while preserving most of its performance benefit. S2RDF
uses the Parquet20 columnar storage format for storing the RDF data on the Hadoop Distributed
File System (HDFS). S2RDF is built on top of Spark. The query evaluation of S2RDF is based on
SparkSQL (Armbrust et al. 2015), the relational interface of Spark. It parses a SPARQL query into
the corresponding algebra tree and applies some basic algebraic optimizations (e.g., filter pushing)
and traverses the algebraic tree bottom-up to generate the equivalent Spark SQL expressions. For
the generated SQL expression, S2RDF can use the precomputed semi-join tables, if they exist, or
alternatively uses the base encoding tables.

SparkRDF (Chen et al. 2014, 2015) is another Spark-based RDF engine that partitions the RDF
graph into MESGs (Multi-layer Elastic SubGraphs) according to relations (R) and classes (C) by

19http://dbis.informatik.uni-freiburg.de/S2RDF.
20https://parquet.apache.org/.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

http://dbis.informatik.uni-freiburg.de/S2RDF
https://parquet.apache.org/

84:20 M. Wylot et al.

building five kinds of indices (C, R, CR, RC, CRC) with different granularities to support efficient
evaluation for the different query triple patterns. SparkRDF creates an index file for every in-
dex structure and stores such files directly in the HDFS, which are the only representation of
triples used for the query execution, similar to the index permutation approaches described in
Section 4.2. These indices are modeled as Resilient Discreted SubGraphs (RDSGs), a collection
of in-memory subgraphs partitioned across nodes. SPARQL queries are evaluated over these in-
dices using a series of basic operators (e.g., filter, join). All intermediate results are represented
as RDSGs and maintained in the distributed memory to support faster join operations. SparkRDF
uses a selectivity-based greedy algorithm to build a query plan with an optimal execution order
of query triple patterns that aims to effectively reduce the size of the intermediate results. In ad-
dition, it uses a location-free pre-partitioning strategy that avoids the expensive shuffling cost for
the distributed join operations. In particular, it ignores the partitioning information of the indices
while repartitioning the data with the same join key to the same node.

The S2X (SPARQL on Spark with GraphX) (Schätzle et al. 2015) RDF engine has been imple-
mented on top of GraphX (Gonzalez et al. 2014), an abstraction for graph-parallel computation
that has been augmented to Spark (Zaharia et al. 2010). It combines graph-parallel abstractions
of GraphX to implement the graph pattern-matching constructs of SPARQL. A similar approach
has been followed by Goodman and Grunwald (2014) for implementing an RDF engine on top
the GraphLab framework, another graph-parallel computation platform (Low et al. 2012). Naacke
et al. (2016) compared five Spark-based SPARQL query processing based on different join execu-
tion models. The results showed that hybrid query plans combining partitioned join and broadcast
joins improve query performance in almost all cases.

TripleRush (Stutz et al. 2015) is based on the graph processing framework Signal/Collect (Stutz
et al. 2010), a parallel graph processing system written in Scala. TripleRush evaluates queries by
routing partially matched copies of the query through an index graph. By routing query descrip-
tions to data, the system eliminates joins in the traditional sense. TripleRush implements three
kinds of Signal/Collect vertices: (1) Triple Vertices represent RDF triples; each vertex contains a
subject, predicate, and Object. (2) Index Vertices for triple patterns that routes to triples. Each ver-
tex contains a triple pattern (with one or more positions as wildcards); these vertices build a graph
from a match-it-all triple pattern to actual tipples. (3) Query Vertices to coordinate the query exe-
cution process. Such vertices are created for each query executed in the system. The vertex then
initiates a query traversal process through the index graph before returning the results. The most
distinguished feature of TripleRush is the ability to inherently divide a query among many pro-
cessing units.

6.1 Main Memory-Based Distributed Systems

Trinity.RDF (Zeng et al. 2013) has been presented as a distributed in-memory RDF system. Trin-
ity.RDF is built on top of Trinity (Shao et al. 2013), a distributed main memory-based key-value
storage system and a custom communication protocol using the Message Passing Interface (MPI)
standard. In particular, Trinity.RDF provides a graph interface on top of the key-value store by ran-
domly partitioning the RDF dataset across a cluster of machines by hashing on the graph nodes.
Therefore, each machine maintains a disjoint part of the graph. For any SPARQL query, a user
submits his query to a proxy. Trinity.RDF performs parallel search on each machine by decom-
posing the input query into a set of triple patterns and conducting a sequence of graph traversal
to produce bindings for each of the triple pattern. The proxy generates a query plan and sub-
mits the plan to all the machines that maintain the RDF dataset where each machine evaluates
its part of the query plan under the coordination of the proxy node. Once the bindings for all the

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

RDF Data Storage and Query Processing Schemes: A Survey 84:21

variables are resolved, all machines return the evaluated bindings to the proxy where the final
result is computed and delivered to the end user.

In general, the way the RDF graph is partitioned can significantly impact the performance
of any distributed RDF query engine. chameleon-db (Aluc et al. 2013) has been proposed as a
workload-aware RDF data management system that automatically and periodically adjusts its lay-
out of the RDF database with the aim of optimizing the query execution time and auto-tuning
its performance. Such adjustment is done in a way that enables partitions to be concurrently up-
dated without the need of stopping the query processing. Similar to gStore (Zou et al. 2014), in
chameleon-db, RDF data and SPARQL queries are represented as graphs, and queries are eval-
uated using a subgraph matching algorithm. However, in contrast with gStore, which evalu-
ates the queries over the entire RDF graph, chameleon-db partitions the RDF graph and prunes
out the irrelevant partitions during query evaluation by using partition indexes. In practice, dur-
ing the evaluation of RDF queries, it is natural that some intermediate dormant tuples are re-
turned as part of the results of sub-queries; however, these tuples do not contribute to the final
result, because, for instance, they may not join with intermediate results of another sub-query.
The main goal of the chameleon-db partitioning strategy, called as partition-restricted evalua-
tion (PRE), is to carefully identify the graph partitions that truly contribute to the final results to
reduce the number of dormant triples that is required to be processed during query evaluation
and hence improve the system performance for that workload. To prune the irrelevant partitions,
chameleon-db uses an incremental indexing technique that uses a decision tree to keep track of
which segments are relevant to which queries. In addition, it uses a vertex-index, which is a hash
table that maps URIs to the subset of partitions that contain vertices of that URI and a range-index

that keeps track of the minimum and maximum literal values within each partition for each distinct
predicate.

AdHash (Harbi et al. 2015; Al-Harbi et al. 2016) is another distributed in-memory RDF engine
that initially applies lightweight hash partitioning that distributes triples of the RDF triples by
hashing on their subjects. AdHash attempts to improve the query execution times by increas-
ing the number of join operations that can be executed in parallel without data communication
through utilizing hash-based locality. In particular, the join patterns on subjects included in a
query can be processed in parallel. The locality-aware query optimizer exploits this property to
build a query evaluation plan that reduces the size of intermediate results transferred among the
worker nodes. In addition, AdHash continuously monitors the data access patterns of the exe-
cuted workload and dynamically adapts to the query workload by incrementally redistributing
and replicating the frequently used partitions of the graphs. The main goal for the adaptive dy-
namic strategy of AdHash is to effectively minimize or eliminate the data communication cost for
future queries. Therefore, hot patterns are redistributed and potentially replicated to allow future
workloads that contain them to be evaluated in parallel by all worker nodes without any data
transfer. To efficiently manage the replication process, AdHash specifies a budget constraint and
uses an eviction policy for the redistributed patterns. As a result, AdHash attempts to overcome
the disadvantages of static partitioning schemes and dynamically reacts with changing workloads.
Figure 14 illustrates the architecture of the AdHash RDF engine. In this architecture, the master
starts by partitioning the data across the worker nodes and gathering global statistical information.
In addition, the master node is responsible for receiving queries from users, generating execution
plans, coordinating worker nodes, collecting final results, and returning the results to users. The
statistics manager maintains statistics about the RDF graph that are exploited during the global
query planning and adaptive re-partitioning purposes. These statistics are distributedly gathered
during the bootstrapping phase. The redistribution controller monitors the executed query work-
load in the form of heat maps and starts an adaptive Incremental ReDistribution (IRD) process for

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

84:22 M. Wylot et al.

Fig. 14. The Architecture of Adhash System (Harbi et al. 2015).

hot patterns. In this process, only data that is retrieved by the hot patterns are redistributed and
potentially replicated across the worker nodes (Harbi et al. 2015). In principle, a redistributed hot
pattern can be answered by all workers in parallel without communication. The locality-aware
query planner uses the global statistics and the pattern index from the redistribution controller
to decide if a query, in whole or partially, can be processed without communication. Queries that
can be fully answered without communication are planned and executed by each worker indepen-
dently. However, for queries that require communication, the planner exploits the hash-based data
locality and the query structure to find a plan that minimizes communication and the number of
distributed joins (Harbi et al. 2015).

The Triple-Asynchronous-Distributed (TriAD) system (Gurajada et al. 2014) uses a main-
memory shared-nothing architecture and is based on an asynchronous Message Passing protocol.
TriAD applies a classical master-slave architecture in which the slave nodes are autonomously
and asynchronously exchange messages among them to evaluate multiple join operations in par-
allel. Relying on asynchronous communication allows the sibling execution paths of a query plan
to be processed in a freely multi-threaded fashion and only get merged (i.e., get synchronized)
when the intermediate results of entire execution paths are joined. Similar to the index permu-
tation approaches described in Section 4.2, TriAD employs six comprehensive combinations of
indexing over the RDF elements. These indices are maintained into a distributed main-memory
data structure where each index is first hash-partitioned according to its join key and then locally
sorted in lexicographic order. Therefore, TriAD can perform efficient, distributed merge-joins over
the hash-partitioned permutation lists. In addition, TriAD uses join-ahead pruning using an ad-
ditional RDF summary graph, which is deployed at the master node, to prune entire partitions of
triples from the SPO lists that cannot contribute to the results of a given SPARQL query. TriAD
uses a bottom-up dynamic programming mechanism for join-order enumeration and considers
the locality of the index structures at the slave nodes, the data exchange cost of the intermediate
results, and the option to execute sibling paths of the query plan in a multi-threaded fashion, to
estimate the query execution plan with the cheapest cost.

6.2 Other Distributed Systems

As Virtuoso (Erling and Mikhailov 2008) stores data in a very similar fashion as that of relational
database systems (see Section 4), the clustered version of this system, namely, VirtuosoCluster also
follows the strategies known from the relational databases world. The partitioning is defined at
the index level, so keys from the same table can be distributed among many machines. Virtuoso
implements hash partitioning with the number of logical partitions that are n times greater than

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

RDF Data Storage and Query Processing Schemes: A Survey 84:23

the number of physical machines. The logical partitions are assigned to the physical machines.
Partitions can be re-located between machines, during this process the data is still served by the
original server, but all the update operations are logged and after the re-location they are applied on
the new host for the logical partition. Since the physical machines host multiple logical partitions,
the allocation can be done unevenly with respect to the capacity of the physical host.

Partout (Galárraga et al. 2014) is a distributed engine that relies on a workload-aware partition-
ing strategy for RDF data by allowing queries to be executed over a minimum number of machines.
Partout exploits a representative query load to collect information about frequently co-ocurring
subqueries and for achieving optimized data partitioning and allocation of the data to multiple
nodes. The architecture of Partout consists of a coordinator node and a cluster of n hosts that
store the actual data. The coordinator node is responsible for distributing the RDF data among
the host nodes, designing an efficient distributed query plan for a SPARQL query, and initiating
query evaluation. The coordinator does not have direct access to the actual data but instead utilizes
global statistics of the RDF data, generated at partitioning time, for query planning. Each of the
host nodes runs a triple store, RDF-3X (Neumann and Weikum 2010) (see Section 4.2). Queries are
issued at the coordinator, which is responsible for generating a suitable query plan for distributed
query execution. The data is located at the hosts that are hosting the data partitions. Each host
executes part of the query over its local data and sends the results to the coordinator, which will
finally hold the query result. Partout’s global query optimization algorithm avoids the need for a
two-step approach by starting with a plan optimized with respect to the selectivities of the query
predicates and then applying heuristics to obtain an efficient plan for the distributed setup. Each
host relies on the RDF-3X optimizer for optimizing its local query plan.

The Distributed RDF Engine with Adaptive Query Planner and Minimal Communication
(DREAM) system (Hammoud et al. 2015; Hasan et al. 2016) has been designed with the aim of avoid-
ing partitioning RDF graphs and partitions SPARQL queries only, thus attempting to combine the
advantages of the centralized and distributed RDF systems. DREAM stores a complete dataset at
each cluster machine and employs a query planner that effectively partitions any SPARQL query,
Q . In particular, DREAM partitions SPARQL queries rather than partitioning RDF datasets. This
is achieved by using rule- and cost-based query planner that uses statistical information of the
RDF database. Specifically, the query planner transforms Q into a graph, G, decomposes G into
sets of sub-graphs, each with a basic two-level tree structure, and maps each set to a separate ma-
chine. Afterwards, all machines process their sets of sub-graphs in parallel and coordinate with
each other to return the final result. No intermediate data is shuffled whatsoever and only mini-
mal control messages and meta-data21 are exchanged. To decide upon the number of sets (which
dictates the number of machines) and their constituent sub-graphs (i.e.,G’s graph plan), the query
planner enumerates various possibilities and selects a plan that will expectedly result in the lowest
network and disk costs for G. This is achieved through utilizing a cost model that relies on RDF
graph statistics. Using the above approach, DREAM is able to select different numbers of machines
for different query types, hence, rendering it adaptive.

Cheng and Kotoulas (2015) presented a hybrid method for processing RDF that combines similar-
size and graph-based partitioning strategies. With similar-size partitioning, it places similar vol-
umes of raw triples on each computation node without a global index. In addition, graph parti-
tioning algorithms are used to partition RDF data in a manner such that triples close to each other
can be assigned to the same computation node. In practice, the main advantage of similar-size
partitioning is that it allows for fast loading data while graph-based partitioning allows to achieve

21DREAM uses RDF-3X (Neumann and Weikum 2010) at each slave machine and communicates only triple ids (i.e., meta-

data) across machines. Locating triples using triple ids in RDF-3X is a straightforward process.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

84:24 M. Wylot et al.

efficient query processing. A two-tier index architecture is adopted. The first tier is a lightweight
primary index that is used to maintain low loading times. The second tier is a series of dynamic,
multi-level secondary indexes, evaluated during query execution, which is utilized for decreas-
ing or removing the inter-machine data transfer for subsequent operations that maintain similar
graph patterns. Additionally, this approach relies on a set of parallel mechanisms that combine the
loading speed of similar-size partitioning with the execution speed of graph-based partitioning.
For example, it uses fixed-length integer encoding for RDF terms and indexes that are based on
hash-tables to increase access speed. The indexing process does not use network communication
to increase the loading speed. The local lightweight primary index is used to support very fast
retrieval and avoid costly scans while the secondary indexes are used to support non-trivial ac-
cess patterns that are built dynamically, as a byproduct of query execution, to amortize costs for
common access patterns.

The DiploCloud system (Wylot et al. 2011; Wylot and Cudré-Mauroux 2016) has been designed
to use a hybrid storage structure by co-locating semantically related data to minimize inter-node
operations. The co-located data patterns are mined from both instance and schema levels. Diplo-
Cloud uses three main data structures: molecule clusters, template lists, and a molecule index.
Molecule clusters extend property tables to form RDF subgraphs that group sets of related URIs
in nested hash-tables and to co-locate data corresponding to a given resource. Template lists are
used to store literals in lists, like in a columnar database system. Template lists allow to process
long lists of literals efficiently; therefore, they are employed mainly for analytics and aggregate
queries. The molecule index serves to index URIs based on the molecule cluster to which they
belong. In the architecture of DiploCloud, the Master node is composed of three main subcompo-
nents: a key index encoding URIs into IDs, a partition manager, and a distributed query executor.
The Worker nodes of the system hold the partitioned data and its corresponding local indices.
The workers store three main data structures: a type index (grouping keys based on their types),
local molecule clusters, and a molecule index. The worker nodes run subqueries and send results
to the Master node. The data partitioner of DiploCloud relies on three molecule-based data par-
titioning techniques: (1) Scope-k Molecules manually defines the size for all molecules, (2) Manual

Partitioning where the system takes an input manually defined shapes of molecules, (3) Adaptive

Partitioning starts with a default shape of molecules and adaptively increases or decreases the size
of molecules based on the workload. Queries that are composed of one Basic Graph Pattern (e.g.,
starlike queries) are executed in parallel without any central coordination. For queries requiring
distributed joins, DiploCloud picks one of two executions strategies: (1) if the intermediate result
set is small, then DiploCloud ships everything to the Master node that performs the join; (2) if the
intermediate result set is large, then DiploCloud performs a distributed hash-join.

The EAGRE (Zhang et al. 2013) system has been presented as an Entity Aware Graph compRE-
ssion technique to encode RDF datasets using key-value storage structures that preserves the struc-
ture and semantic information of RDF graphs. The main idea of this techniques is to extract entities
and entity classes from the original RDF to build a compressed RDF entity graph. EAGRE adopts
a graph partition mechanism that distributes RDF data across the worker nodes and implements
an in-memory index structure to efficiently accelerate the evaluation of range and order sensitive
queries. In particular, the entity classes are partitioned on the computing nodes in a way that they
preserve the structure locality of the original RDF graph. The evaluation process of a SPARQL
query starts by identifying the entity classes using an in-memory index for the compressed RDF
entity graph on a query engine. Then, the query is submitted to the worker nodes, which maintain
the RDF data where the query coordinator on each worker participates in a voting process that
decides the scheduling function of distributed I/O operations. EAGRE uses a distributed I/O sched-
uling mechanism to reduce the cost of the disk scans and the total time for the query evaluation

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

RDF Data Storage and Query Processing Schemes: A Survey 84:25

Fig. 15. The Architecture of Semstore System (Wu et al. 2014).

process. In practice, whenever some workers complete their local I/O operation, they exploit the
scheduler to feed other workers with the gathered statistical information of the processed data.

Figure 15 illustrates the the architecture of the Semstore system (Wu et al. 2014) for distributed
processing of RDF queries. Semstore consists of the following main components: a data parti-
tioner, a master node, and a number of computing nodes. Semstore partitioner adopts a partition-
ing mechanism, Rooted Sub-Graph (RSG), which is designed to effectively localize all the queries
in the shapes of a star, a chain, a tree, or a cycle that are all frequent for SPARQL queries. After
partitioning the RDF graph, the data partitioner assigns each partition to one of the underlying
computing nodes. The Semstore partitioner uses a k-means partitioning algorithm for assigning
the highly correlated RSGs into the same node. Each computing node builds local data indices and
statistics for its assigned subgraph and utilizes this information during local join processing and
optimization. In addition, the data partitioner builds a global bitmap index over the vertices of the
RDF graph and collects the global statistics. In Semstore, each computing node uses a centralized
RDF processor, TripleBit (Yuan et al. 2013) (see Section 4.6), for local query evaluation. The master
node is the Semstore component that receives the user query, builds the distributed query plan
and coordinates distributed data transfer between the computing nodes.

Blazegraph22 is an open-source triplestore written in Java, which is designed to scale horizon-
tally by distributing data with dynamic key-range partitions. It also supports transactions with
multiversion concurrency control relying on timestamps to detect conflicts. It maintains three RDF
indices (SPA, POS, OSP) and leverages a B+Tree implementation. Those indices are dynamically
partitioned into key-range shards that can be distributed between nodes in a cluster. Its scale-out
architecture is based on multiple services. The shard locator service maps each key-range partition
to a metadata record that allows to locate the partition. A transaction service coordinates locks to
provide isolation. A client service, finally, allows to execute distributed tasks. The query execution
process starts with the translation of a SPARQL query to an Abstract Syntax Tree (AST). Then,
the tree is rewritten to optimize the execution. Finally, it is translated to a physical query plan,
vectorized, and submitted for execution.

HDT23 (Martínez-Prieto et al. 2012) (Header, Dictionary, Triples) has been presented as a data
structure and binary serialization format. However, the framework includes querying tools and en-
ables distributed query processing in conjunction with Hadoop (Giménez-García et al. 2015). The

22https://www.blazegraph.com.
23http://www.rdfhdt.org/.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

https://www.blazegraph.com
http://www.rdfhdt.org/

84:26 M. Wylot et al.

Fig. 16. HDT triples encoding (Martínez-Prieto et al. 2012).

data format consists of three components: (1) a Header, which holds metadata about the dataset;
(2) a Dictionary, which encodes strings into integers that are used internally to describe triples;
(3) Triples, which are encoded in a binary format that transform the RDF representation into
multiple trees (one tree for one distinct subject) (Figure 16). Each tree consists of three levels
(root/subject, list of predicates, and objects). During query execution, the patterns starting with a
specified subject can be directly retrieved from the binary tree corresponding to the subject. To
facilitate the evaluation of triple patterns that specify a predicate or an object, HDT introduces ad-
ditional indices. SPARQL queries containing multiple triple patterns are resolved by using merge
and index joins.

Peng et al. (2016) proposed a method to distribute and allocate the RDF partitions by exploring
the intrinsic similarities among the structures of queries in the executed workload to reduce the
number of crossing matches and the communication cost during query processing. In particular,
the proposed approach mines and selects some of the frequent access patterns that reflect the
characteristics of the workload. Based on the selected frequent access patterns, two fragmentation
strategies, vertical and horizontal fragmentation, are used to divide RDF graphs while meeting
different kinds of query processing objectives. On the one hand, the design goal of the vertical
fragmentation strategy is to achieve better throughput by grouping the homomorphic matches
to the same frequent access pattern into the same fragment. This strategy helps to easily filter
our the irrelevant fragments during the query evaluation so that only nodes that stored relevant
fragments need to be accessed to find matches while nodes that do not store relevant fragments can
be used to evaluate other queries in parallel, which improves the total throughput of the system. In
principle, the main focus of the vertical fragmentation strategy is to utilize the locality of SPARQL
queries to improve both throughput and query response time. On the other hand, the design goal of
the horizontal fragmentation strategy is to achieve better performance by putting matches of one
frequent access pattern into the different fragments and distribute them among different nodes.
As a result, the evaluation of one query may involve many fragments and each fragment has a
few matches. In practice, the size of a fragment is often much smaller than the size of the whole
data, thus finding matches of a query over a fragment explores a smaller search space than finding
matches over the whole data. Therefore, with horizontal fragmentation, each node finds a few
matches over some fragments, which supports the utilization of the parallelism over the clusters
of nodes and reduces the query response time. For fragment allocation, a fragment affinity metric is
used to measure the togetherness between the fragments and identify those that are closely related.
In particular, if the affinity metric of two fragments is large, it means that these two fragments are
often involved by the same query and they should be placed together to reduce the number of
cross-sites joins.

6.3 Federated RDF Query Processing

The proliferation of RDF datasets created a significant need for answering RDF queries over multi-
ple SPARQL endpoints. Such queries are referred to as RDF federated queries. In practice, answering

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

RDF Data Storage and Query Processing Schemes: A Survey 84:27

Fig. 17. FedX Query Processing Model (Schwarte et al. 2011).

such type of queries requires performing on-the-fly data integration in addition to complex graph
operation over heterogeneous distributed RDF datasets. Saleem et al. (2016) perform an extensive
fine-grained evaluation of federated RDF query engines. The authors show that factors like the
number of selected sources, total number of used SPARQL ASK requests, and source selection
time have significant impact on the query execution time. The authors conclude that the method
used to select relevant sources (index-based or index-free) greatly affects the query results. More-
over, using SPARQL ASK to select sources without any caching is very expensive (two orders of
magnitude difference in query execution time). To minimize the number of sub-queries most of the
systems group the triple patterns that can be entirely executed on one endpoint. Several systems
and approaches have been presented to deal with the challenges of federated RDF query process-
ing. The aim of this section to highlight some of the important systems in this domain. For more
information and comprehensive comparisons, we refer the reader to the surveys strictly focused
on the federated RDF queries (Haase et al. 2010; Rakhmawati et al. 2013; Haase et al. 2014; Oguz
et al. 2015; Saleem et al. 2016)

Figure 17 illustrates the query processing model of the FedX federated RDF query engine
(Schwarte et al. 2011). In this approach, the query processing starts with the query parsing, then
the system selects relevant sources for every triple pattern. Next, the system applies query opti-
mization techniques, i.e., join ordering and grouping of triple patterns. The groups of triple pat-
terns are then executed on the relevant endpoints. The partial results are joined with the modified
nested loop join strategy to further minimize the network traffic. To select a relevant source for
a triple pattern, FedX sends a SPARQL ASK query to all known endpoints. The results of such
ASK queries are cached for later use. The join order optimization is based on the variable count-
ing technique (Stocker et al. 2008). This technique estimates the cost of execution by counting free
variables that are not bound through previous joins. To further minimize the cost of joins executed
locally, FedX groups triple patterns that have the same set of sources on which they can be exe-
cuted. They groups also must have only this source (exclusive groups). This allows them to be sent
to the endpoints as a conjunctive query and minimize the cost of local joins as well as the network
traffic. A set of triple patterns can be also grouped together with SPARQL UNION and sent to a re-
mote data source instead of sending each triple pattern separately. This technique requires to keep
track of the original mappings and local post-processing to return the final results. The advantage
of this method is that the number of remote requests can be reduced by the factor determined by
the number of grouped triple patterns. FedX is implemented in Java on top of Sesame. It is built as
a Storage Layer Interface (SAIL). Nikolov et al. (2013) built a query engine on top of FedX, which
is optimized for full text search and top-k queries.

SPLENDID (Görlitz and Staab 2011) uses statistics that are obtained from Vocabulary of Inter-
linked Datasets (VOID) (Alexander and Hausenblas 2009) descriptions to optimize the execution
of federated queries. The main components of this system are: the Index Manager and the Query
Optimizer (Figure 18). The Index Manager maintains the local copy of collected and aggregated
statistics from remote SPARQL endpoints. The statistics for each endpoint provide information
like triple count, number of distinct predicates, subjects, and objects. Moreover, SPLENDID keeps

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

84:28 M. Wylot et al.

Fig. 18. The Architecture of SPLENDID (Görlitz and Staab 2011).

inverted indexes for each predicate and type. These indexes map predicates and types to a data
source where it can be found and its number of occurrence within this data source. The Query
Optimizer transforms the query into a syntax tree, selects a data source to federate the execution,
and optimizes the order of joins. To select a data source for a triple pattern, SPLENDID uses two
inverted indexes for bound predicates and types, with priority for types. In case a triple pattern has
neither bound predicate nor type then all the available data sources are pre-selected. To further
refine the data source selection the system sends SPARQL ASK queries with the triple pattern to
the pre-selected data sources. In case one source is exclusively selected for a group of triple pat-
terns, SPLENDID, similarly to FedX, groups them and sends to this source as a single sub-query.
To join the sub-results SPLENDID implements two strategies: (1) for small result sets, the tuples
are requested in parallel and a hash join is performed locally, (2) for large result sets and high
selectivity of a join variable, one sub-query is executed and the join variable in the second one is
repeatedly replaced with the results of the first one (bind join (Haas et al. 1997)).

The ANAPSID system (Acosta et al. 2011) leverages the concept of a non-blocking join operator
Xjoin (Urhan and Franklin 2000), which is optimized to produce results quickly even in the pres-
ence of slow endpoints, and the Symmetric Hash Join (Deshpande et al. 2007). ANAPSID has four
main components:

—Catalog to store list of available endpoints along with the ontology they use and execution
timeouts indicating capabilities of the endpoint.

—Query Decomposer decomposes queries into sub-queries and chooses endpoints to execute
each of them.

—Query Optimizer to determine the exact execution plan of the sub-queries based on the
collected statistics.

—Adaptive Query Engine gathers partial results and perform final joins. These module pro-
duce the final results incrementally as the data arrives from remote endpoints. It can detect
if an endpoint is blocked and modify the execution plan to prioritize the sub-queries exe-
cuted on available endpoints.

To join the results from the remote endpoints ANAPSID implements the Adaptive Group Join
operator agjoin, which is based on Xjoin and Symmetric Hash Join. These operators maintain a
separate hash tables for results of each sub-query, for each endpoint. Sub-queries are executed
in parallel on each endpoint, when a tuple arrives from one endpoint it is inserted to the corre-
sponding hash table. Such hash table indexes tuples by instantiations of join variables. Then the
operator immediately check other hash tables if a join operation is possible. The join is performed
and the final result is produced as soon as possible, without waiting for all sub-queries to complete.
ANAPSID implements a three-stage policy to manage flushing the hash table items to a secondary
memory. At the first stage, it operates in the main memory, and when the main memory is full

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

RDF Data Storage and Query Processing Schemes: A Survey 84:29

the system moves the least recently used items to the secondary memory. When both sources
are blocked, i.e., there is no item in the main memory to perform a join, then the operator start
checking items in the secondary memory. Finally, the third stage is fired when all data from all
sources has arrived. In this case all remaining data in the main and the secondary memory is used
to produce the remaining results.

The Large-scale High-speed Distributed engine (LHD) system (Wang et al. 2013), built on top
of Jena, leverages the concept of Xjoin (Urhan and Franklin 2000). Moreover, since their focus is
on a highly parallel infrastructure they also leverage Double-Pipelined Hash Join (Raschid and
Su 1986). They maintain multiple hash tables to join many sub-queries simultaneously. As results
for sub-queries are arriving they are stored in parallel in such hash tables and at the same time
probed against other hash tables to check if a join can be produced. To minimize the amount of
data transferred via the network LHD used VoID statistics to estimate the cardinality of each sub-
query and then, based on the cardinality, it estimates the cost. The cardinality estimation bases on
the total number of triples and the total number of distinct subject and objects in a data source.
Moreover, the system takes into account the number of distinct subject and objects specified in the
query predicates. To generate the query plan the system chooses the cheapest possible join order
the triple patterns. Then, it executes triple patterns that have specified subject or object. Finally,
LHD uses dynamic programming to find optimal plan and join order to execute triple patterns
with unbound subject and object.

7 BENCHMARKING RDF SYSTEMS

The Semantic Web and Linked Data community has developed several frameworks to evaluate
the performance and scalability of RDF Systems. The Lehigh University Benchmark (LUBM)24 (Guo
et al. 2005) is one of the oldest and most popular benchmarks for Semantic Web data. It provides
an ontology describing universities together with a data generator and 14 queries. Its test data
consists of synthetically-generated instance data over that ontology; the data generation process
is repeatable and can be scaled to an arbitrary size. The benchmark offers fourteen test queries
over the data. The queries vary in terms of the input size (number of classes involved), selectiv-
ity, complexity (number of joins, matched graph degree), and inference (hierarchical and logical).
The BowlognaBench benchmark (Demartini et al. 2012) has similar characteristics as LUBM. It pro-
vides an ontology describing the academic realm that strictly follows the setting as prescribed by
the Bologna process,25 thus the generated dataset is more realistic. The benchmark proposes 13
queries classified in eight groups that model real-world interests. The queries also include the time
dimension and analytic computations.

The Berlin SPARQL Benchmark (BSBM)26 (Bizer and Schultz 2009) is designed from an e-comm-
erce scenario in which a set of products is provided by various vendors and consumers are post-
ing reviews about products. The framework allows three data representations following similar
semantics: RDF triples, Named Graphs data models, and relational data. The benchmark provides
three use cases (query mixes): (1) EXPLORE: consists of search and navigation patterns of a con-
sumer searching for a given product. (2) EXPLORE&UPDATE: includes the previous explore mix
and adds updates on the dataset (adding new product information, reviews, offers, and deleting
outdated offers). (3) BusinessIntelligence: consists of set of eight analytical queries.

The SP2B benchmark (Schmidt et al. 2009)27 is based on a DBLP scenario. The DBLP database
contains bibliographic data for Computer Science. The data is generated in an incremental and

24http://swat.cse.lehigh.edu/projects/lubm/.
25http://ec.europa.eu/education/policy/higher-education/bologna-process_en.
26http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/.
27http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

http://swat.cse.lehigh.edu/projects/lubm/
http://ec.europa.eu/education/policy/higher-education/bologna-process_en
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://dbis.informatik.uni-freiburg.de/index.php?project$=$SP2B

84:30 M. Wylot et al.

deterministic way. The workload queries vary along different dimensions, including: query size,
selectivity, output size, and different types of joins. The queries includes various graph patterns to
match, as well as, clauses like OPTIONAL, UNION, DISTINCT, FILTER. The benchmark contains
eleven SELECT queries and three ASK queries.

The DBpedia SPARQL Benchmark (DBPSB) (Morsey et al. 2011) generates data based on a sam-
ple from the original DBPedia. The generator duplicates all triples and changes their namespaces,
hence creating a copy of the original knowledge base. The workload queries are based on queries
retrieved from logs that were originally issued against DBpedia. Specifically, the authors created
query templates with variables that are replaced with generated data, which results in actual
queries used for benchmarking. The query templates include various characteristics including: dif-
ferent numbers of triple patterns, various JOIN patterns, graph pattern constructors (UNION, OP-
TIONAL), modifiers (e.g., DISTINCT) and filtering conditions and operators (e.g., FILTER, LANG,
REGEX).

The Semantic Publishing Benchmark v2.0 (SPB)28 is built around a media publishing scenario
and is inspired by the BBC’s Dynamic Semantic Publishing scenario. The benchmark uses synthetic
data containing a number of annotations of media assets. The annotations consist of various prop-
erties, e.g., description, date of creation, tagged entities, and so on. The benchmark considers three
kinds of dimensions when producing synthetic data: (i) clustering effect created by annotations
about a single entity for a period of time, (ii) correlations created by annotations about multiple
entities from reference data for a period of time, and (iii) random tagging achieved by introducing a
random noise in the generated data. The query workload simulates two type of activities: editorial

(executing insert/update/delete operations) and aggregation (executing select/construct/describe
operations). The benchmark also allows to run multiple agents in parallel to simulate a real multi-
user scenario.

The Social Network Intelligence BenchMark29 (Pham et al. 2012) simulates a social network mod-
eling relations between users and social activities (posts, comments, groups, etc.). The benchmark
allows to scale the data size with the number of users in the network. The synthetic data is linked
with DBPedia, e.g., by linking to real world resources. The workload queries use some of the ad-
vanced features of SPARQL 1.1 (e.g., path expressions). The queries are clustered in three workload
scenarios: interactive (20 queries), update (8 update actions), and analysis (11 reports).

The WatDiv30 (Aluç et al. 2014a) data generator allows users to control various characteristics
of the generated data such as included entities, how structured is the collection, the way entities
are associated and the association probability and cardinality for various types of entities. This
allows to achieve different heterogeneity and structuredness of a data collection. The benchmark
comes with the following workload scenarios:

—Basic Testing: 20 queries of various complexity,
—Extensions to Basic Testing with two use cases,

—Incremental Linear Testing tests the performance for queries with increasing number of
triple patterns,

—Mixed Linear Testing tests the performance for queries of different (not necessarily
increasing) number of triple patterns. The number of triple patterns ranges between 5
and 10,

—Stress Testing offers a thorough stress test of systems.

28http://ldbcouncil.org/developer/spb.
29http://ldbcouncil.org/developer/snb.
30http://dsg.uwaterloo.ca/watdiv/.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

http://ldbcouncil.org/developer/spb
http://ldbcouncil.org/developer/snb
http://dsg.uwaterloo.ca/watdiv/

RDF Data Storage and Query Processing Schemes: A Survey 84:31

Many RDF management systems present their own evaluation and comparison with related sys-
tems; however, such evaluations are inherently biased and difficult to generalize. Several bench-
marking studies (Liu and Hu 2005; Schmidt et al. 2008; Sidirourgos et al. 2008; Cudré-Mauroux
et al. 2013) have been conducted to provide an evaluation of a subset of the existing RDF data man-
agement systems. The results are typically available on websites of benchmarks. The biggest data
collection was used in the report published within the BSBM benchmark (10M-150B triples).31 The
largest tests on non-Hadoop systems were performed for DiploCoud (Wylot and Cudré-Mauroux
2016) (up to 128 Amazon EC2 units). Sidirourgos et al. (2008) presented an independent reeval-
uation of the approach proposed by Abadi et al. (2007). They reported that the performance of
binary tables is not always outperforming clustered property tables as the performance mainly
depends on the characteristics of the RDF graph. They also reported that the gain in performance
in column-store databases over row-store databases depends on the number of predicates in a
data set. Cudré-Mauroux et al. (2013) presented an evaluation of different NoSQL stores (e.g.,
HBase, Couchbase, Cassandra) for RDF processing deployed on the Amazon EC2 infrastructure (1–
16 units). The authors used four datasets of different sizes (up to one billion triples) based on the
DBPedia Benchmark and BSBM. The results showed that NoSQL systems can execute simple RDF
queries very efficiently.

8 CONCLUSIONS

The RDF is increasingly being adopted for modeling data in various application domains and
has become a cornerstone for publishing, exchanging, sharing, and interrelating data on the Web
through the Linked Data movement. In general, efficiently maintaining large volumes of RDF data
is a challenging task due to the inherent heterogeneity of its structure. While RDF management
systems started by borrowing form relational and centralized architectures, new physical designs
have become a crucial requirement following the massive increase of available RDF data. In this
article, we provided a comprehensive survey of RDF data management systems by focusing on
the different storage and indexing approaches, design decisions, and architectures that have been
adopted to tackle the various challenges of managing RDF data.

Most of the current RDF systems focus on efficiently executing conjunctive pattern-matching
queries. Although such querying constructs represent the backbone of the SPARQL query lan-
guage, SPARQL allows for much more expressive queries, including transitive closures, optional
clauses, and aggregate queries. Efficiently executing such types of queries over massive RDF
datasets is an open challenge that still needs to be addressed. In addition, with the high hetero-
geneity of available RDF datasets, no single set of design decisions or system architecture will
ever represent a clear winner for complex SPARQL workloads (Aluç et al. 2014b). Therefore, RDF
management systems will increasingly have to incorporate self-tuning capabilities such that they
can adapt to dynamic requirements. We believe that these topics will attract significant interest in
the near future.

ACKNOWLEDGMENT

The work of Sherif Sakr is funded by the European Regional Development Funds via the Mobilitas
Plus programme(grant MOBTT75).

31http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V7/.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V7/

84:32 M. Wylot et al.

REFERENCES

Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach. 2007. Scalable semantic web data management us-

ing vertical partitioning. In Proceedings of the 33rd International Conference on Very Large Data Bases. VLDB Endowment,

411–422.

Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Alexander Rasin, and Avi Silberschatz. 2009. HadoopDB: An

architectural hybrid of mapreduce and DBMS technologies for analytical workloads. Proc. VLDB 2, 1 (2009), 922–933.

Retrieved from http://www.vldb.org/pvldb/2/vldb09-861.pdf.

Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, and Edna Ruckhaus. 2011. ANAPSID: An adaptive

query processing engine for SPARQL endpoints. Semant. Web (2011), 18–34. https://link.springer.com/chapter/10.1007%

2F978-3-642-25073-6_2.

Razen Al-Harbi, Ibrahim Abdelaziz, Panos Kalnis, Nikos Mamoulis, Yasser Ebrahim, and Majed Sahli. 2016. Accelerating

SPARQL queries by exploiting hash-based locality and adaptive partitioning. VLDB J. 25, 3 (2016), 355–380. DOI:http://

dx.doi.org/10.1007/s00778-016-0420-y

Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, and Dimitris Plexousakis. 2001. On storing voluminous RDF

descriptions: The case of web portal catalogs. In Proceedings of the International Workshop on the Web and Databases

(WebDB’01). 43–48.

Keith Alexander and Michael Hausenblas. 2009. Describing linked datasets—On the design and usage of void, the vocabulary

of interlinked datasets. In Proceedings of the Linked Data on the Web Workshop (LDOW’09). Retrieved from http://richard.

cyganiak.de/2008/papers/void-ldow2009.pdf.

Güneş Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. 2014a. Diversified stress testing of RDF data management

systems. In Proceedings of the International Semantic Web Conference. Springer, 197–212.

Güneş Aluç, M. Tamer Özsu, and Khuzaima Daudjee. 2014b. Workload matters: Why RDF databases need a new design.

Proc. VLDB Endow. 7, 10 (2014), 837–840.

Güneş Aluç, M. Tamer Ozsu, Khuzaima Daudjee, and Olaf Hartig. 2013. Chameleon-db: A Workload-Aware Robust RDF Data

Management System. Technical Report CS-2013-10. University of Waterloo.

Andrés Aranda-Andújar, Francesca Bugiotti, Jesús Camacho-Rodríguez, Dario Colazzo, François Goasdoué, Zoi Kaoudi, and

Ioana Manolescu. 2012. AMADA: Web data repositories in the amazon cloud. In Proceedings of the 21st ACM International

Conference on Information and Knowledge Management (CIKM’12). 2749–2751. DOI:http://dx.doi.org/10.1145/2396761.

2398749

Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan,

Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL: Relational data processing in spark. In Proceedings

of the ACM International Conference on Management of Data (SIGMOD’15). 1383–1394. DOI:http://dx.doi.org/10.1145/

2723372.2742797

Medha Atre and James A. Hendler. 2009. BitMat: A main memory bit-matrix of RDF triples. In Proceedings of the 5th

International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS’09). Citeseer, 33.

Medha Atre, Jagannathan Srinivasan, and James A. Hendler. 2008. BitMat: A main-memory bit matrix of RDF triples for

conjunctive triple pattern queries. In Proceedings of the Poster and Demonstration Session at the 7th International Semantic

Web Conference (ISWC’08). Retrieved from http://ceur-ws.org/Vol-401/iswc2008pd_submission_16.pdf.

Anirudh Badam and Vivek S. Pai. 2011. SSDAlloc: Hybrid SSD/RAM memory management made easy. In Proceedings of the

8th USENIX Conference on Networked Systems Design and Implementation. USENIX Association, 16–16.

Tim Berners-Lee, James Hendler, Ora Lassila et al. 2001. The semantic web. Sci. Amer. 284, 5 (2001), 28–37.

Philip A. Bernstein and Dah-Ming W. Chiu. 1981. Using semi-joins to solve relational queries. J. ACM 28, 1 (1981), 25–40.

Christian Bizer, Tom Heath, and Tim Berners-Lee. 2009. Linked data-the story so far. https://eprints.soton.ac.uk/271285/.

Christian Bizer and Andreas Schultz. 2009. The Berlin SPARQL benchmark. Int. J. Semantic Web Inf. Syst. 5, 2 (2009), 1–24.

DOI:http://dx.doi.org/10.4018/jswis.2009040101

Mihaela A. Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha Srinivas, Patrick Dantressangle, Octavian Udrea, and

Bishwaranjan Bhattacharjee. 2013. Building an efficient RDF store over a relational database. In Proceedings of the 2013

International Conference on Management of Data. ACM, 121–132.

Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. 2002. Sesame: A generic architecture for storing and querying

RDF and RDF schema. In Proceedings of the 1st International Semantic Web Conference on the Semantic Web (ISWC’02).

Springer, 54–68. DOI:http://dx.doi.org/10.1007/3-540-48005-6_7

Rick Cattell. 2011. Scalable SQL and NoSQL data stores. ACM SIGMOD Rec. 39, 4 (2011), 12–27.

Surajit Chaudhuri and Gerhard Weikum. 2000. Rethinking database system architecture: Toward a self-tuning RISC-style

database system. In Proceedings of 26th International Conference on Very Large Data Bases (VLDB’00). 1–10.

Xi Chen, Huajun Chen, Ningyu Zhang, and Songyang Zhang. 2014. SparkRDF: Elastic discreted RDF graph processing en-

gine with distributed memory. In Proceedings of the Posters & Demonstrations Track a Track Within the 13th International

Semantic Web Conference (ISWC’14). 261–264. Retrieved from http://ceur-ws.org/Vol-1272/paper_43.pdf.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

http://www.vldb.org/pvldb/2/vldb09-861.pdf
https://link.springer.com/chapter/10.1007%2F978-3-642-25073-6_2
http://dx.doi.org/10.1007/s00778-016-0420-y
http://richard.cyganiak.de/2008/papers/void-ldow2009.pdf
http://dx.doi.org/10.1145/2396761.2398749
http://dx.doi.org/10.1145/2723372.2742797
http://ceur-ws.org/Vol-401/iswc2008pd_submission_16.pdf
https://eprints.soton.ac.uk/271285/
http://dx.doi.org/10.4018/jswis.2009040101
http://dx.doi.org/10.1007/3-540-48005-6_7
http://ceur-ws.org/Vol-1272/paper_43.pdf

RDF Data Storage and Query Processing Schemes: A Survey 84:33

Xi Chen, Huajun Chen, Ningyu Zhang, and Songyang Zhang. 2015. SparkRDF: Elastic discreted RDF graph processing

engine with distributed memory. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence and

Intelligent Agent Technology (WI-IAT’15). 292–300. DOI:http://dx.doi.org/10.1109/WI-IAT.2015.186

Long Cheng and Spyros Kotoulas. 2015. Scale-out processing of large RDF datasets. IEEE Trans. Big Data 1, 4 (2015), 138–150.

DOI:http://dx.doi.org/10.1109/TBDATA.2015.2505719

Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan Srinivasan. 2005. An efficient SQL-based RDF

querying scheme. In Proceedings of the 31st International Conference on Very Large Data Bases (VLDB’05). VLDB Endow-

ment, 1216–1227. Retrieved from http://portal.acm.org/citation.cfm?id=1083592.1083734.

World Wide Web Consortium. 2014a. RDF 1.1: On Semantics of RDF Datasets. https://www.w3.org/TR/rdf11-datasets/.

World Wide Web Consortium. 2014b. RDF 1.1 Primer.

George P. Copeland and Setrag Khoshafian. 1985. A decomposition storage model. In Proceedings of the ACM SIGMOD

International Conference on Management of Data. 268–279.

Philippe Cudré-Mauroux, Iliya Enchev, Sever Fundatureanu, Paul Groth, Albert Haque, Andreas Harth, Felix Leif

Keppmann, Daniel Miranker, Juan F Sequeda, and Marcin Wylot. 2013. Nosql databases for rdf: An empirical evalu-

ation. In Proceedings of the International Semantic Web Conference. Springer, 310–325.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified data processing on large clusters. Commun. ACM 51 (Jan.

2008), 107–113. Issue 1. DOI:http://dx.doi.org/10.1145/1327452.1327492

Gianluca Demartini, Iliya Enchev, Marcin Wylot, Joel Gapany, and Philippe Cudre-Mauroux. 2012. BowlognaBench—

Benchmarking RDF analytics. In Data-Driven Process Discovery and Analysis, Karl Aberer, Ernesto Damiani, and

Tharam Dillon (Eds.). Lecture Notes in Business Information Processing, Vol. 116. Springer, Berlin, 82–102. DOI:http://

dx.doi.org/10.1007/978-3-642-34044-4_5

Uwe Deppisch. 1986. S-tree: A dynamic balanced signature index for office retrieval. In Proceedings of the 9th Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 77–87.

Amol Deshpande, Zachary Ives, Vijayshankar Raman et al. 2007. Adaptive query processing. Foundations and Trends in

Databases 1, 1 (2007), 1–140.

Benjamin Djahandideh, François Goasdoué, Zoi Kaoudi, Ioana Manolescu, Jorge-Arnulfo Quiané-Ruiz, and Stamatis Zam-

petakis. 2015. CliqueSquare in action: Flat plans for massively parallel RDF queries. In Proceedings of the 31st IEEE

International Conference on Data Engineering (ICDE’15). 1432–1435. DOI:http://dx.doi.org/10.1109/ICDE.2015.7113394

Orri Erling and Ivan Mikhailov. 2008. Towards web scale RDF. Proc. SSWS (2008). https://www.csee.umbc.edu/courses/

graduate/691/spring13/01/papers/VOSArticleWebScaleRDF.pdf.

Dieter Fensel. 2003. Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce. Springer Science &

Business Media.

Luis Galárraga, Katja Hose, and Ralf Schenkel. 2014. Partout: A distributed engine for efficient RDF processing. In 23rd

International World Wide Web Conference (WWW’14). 267–268. DOI:http://dx.doi.org/10.1145/2567948.2577302

José M. Giménez-García, Javier D. Fernández, and Miguel A. Martínez-Prieto. 2015. HDT-MR: A scalable solution for RDF

compression with HDT and MapReduce. In Proceedings of the European Semantic Web Conference. Springer, 253–268.

François Goasdoué, Zoi Kaoudi, Ioana Manolescu, Jorge-Arnulfo Quiané-Ruiz, and Stamatis Zampetakis. 2015.

CliqueSquare: Flat plans for massively parallel RDF queries. In Proceedings of the 31st IEEE International Conference

on Data Engineering (ICDE’15). 771–782. DOI:http://dx.doi.org/10.1109/ICDE.2015.7113332

Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion Stoica. 2014. GraphX:

Graph processing in a distributed dataflow framework. In Proceedings of the 11th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’14). 599–613. Retrieved from https://www.usenix.org/conference/osdi14/

technical-sessions/presentation/gonzalez.

Eric L. Goodman and Dirk Grunwald. 2014. Using vertex-centric programming platforms to implement SPARQL queries

on large graphs. In Proceedings of the 4th Workshop on Irregular Applications: Architectures and Algorithms (IA3’14). IEEE

Press, Piscataway, NJ, 25–32. DOI:http://dx.doi.org/10.1109/IA3.2014.10

Olaf Görlitz and Steffen Staab. 2011. Splendid: Sparql endpoint federation exploiting void descriptions. In Proceedings of the

2nd International Conference on Consuming Linked Data. CEUR-WS.org, 13–24.

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark for OWL knowledge base systems. Web Semant.

3 (Oct. 2005), 158–182. Issue 2–3. DOI:http://dx.doi.org/10.1016/j.websem.2005.06.005

Sairam Gurajada, Stephan Seufert, Iris Miliaraki, and Martin Theobald. 2014. TriAD: A distributed shared-nothing RDF

engine based on asynchronous message passing. In Proceedings of the International Conference on Management of Data

(SIGMOD’14). 289–300. DOI:http://dx.doi.org/10.1145/2588555.2610511

Laura Haas, Donald Kossmann, Edward Wimmers, and Jun Yang. 1997. Optimizing queries across diverse data sources.

VLDB. 276–285. http://www.vldb.org/conf/1997/P276.PDF.

Peter Haase, Katja Hose, Ralf Schenkel, Michael Schmidt, and Andreas Schwarte. 2014. Federated query processing

over linked data. In Linked Data Management. 369–387. Retrieved from http://www.crcnetbase.com/doi/abs/10.1201/

b16859-19.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

http://dx.doi.org/10.1109/WI-IAT.2015.186
http://dx.doi.org/10.1109/TBDATA.2015.2505719
http://portal.acm.org/citation.cfm?id$=$1083592.1083734
https://www.w3.org/TR/rdf11-datasets/
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1007/978-3-642-34044-4_5
http://dx.doi.org/10.1109/ICDE.2015.7113394
https://www.csee.umbc.edu/courses/graduate/691/spring13/01/papers/VOSArticleWebScaleRDF.pdf
http://dx.doi.org/10.1145/2567948.2577302
http://dx.doi.org/10.1109/ICDE.2015.7113332
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
http://dx.doi.org/10.1109/IA3.2014.10
http://dx.doi.org/10.1016/j.websem.2005.06.005
http://dx.doi.org/10.1145/2588555.2610511
http://www.vldb.org/conf/1997/P276.PDF
http://www.crcnetbase.com/doi/abs/10.1201/b16859-19

84:34 M. Wylot et al.

Peter Haase, Tobias Mathäß, and Michael Ziller. 2010. An evaluation of approaches to federated query processing over

linked data. In Proceedings of the 6th International Conference on Semantic Systems. ACM, 5.

Mohammad Hammoud, Dania Abed Rabbou, Reza Nouri, Seyed-Mehdi-Reza Beheshti, and Sherif Sakr. 2015. DREAM:

Distributed RDF engine with adaptive query planner and minimal communication. Proc. VLDB 8, 6 (2015), 654–665.

Retrieved from http://www.vldb.org/pvldb/vol8/p654-Hammoud.pdf.

Razen Harbi, Ibrahim Abdelaziz, Panos Kalnis, and Nikos Mamoulis. 2015. Evaluating SPARQL queries on massive RDF

datasets. Proc. VLDB 8, 12 (2015), 1848–1851. Retrieved from http://www.vldb.org/pvldb/vol8/p1848-harbi.pdf.

Stephen Harris and Nicholas Gibbins. 2003. 3store: Efficient bulk RDF storage. In Proceedings of the 1st International Work-

shop on Practical and Scalable Semantic Systems (PSSS’03). CEUR-WS.org.

Steve Harris, Nick Lamb, and Nigel Shadbolt. 2009. 4store: The design and implementation of a clustered RDF store. In

Proceedings of the 5th International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS’09). 94–109.

Andreas Harth and Stefan Decker. 2005. Optimized index structures for querying RDF from the web. In Proceedings of the

IEEE Latin American Web Congress (LA-WEB’05). 71–80.

Aisha Hasan, Mohammad Hammoud, Reza Nouri, and Sherif Sakr. 2016. DREAM in action: A distributed and adaptive

RDF system on the cloud. In Proceedings of the 25th International Conference on World Wide Web (WWW’16). 191–194.

DOI:http://dx.doi.org/10.1145/2872518.2901923

Jiewen Huang, Daniel J. Abadi, and Kun Ren. 2011. Scalable SPARQL querying of large RDF graphs. Proc. VLDB 4, 11 (2011),

1123–1134.

Mohammad Husain, James McGlothlin, Mohammad M. Masud, Latifur Khan, and Bhavani M. Thuraisingham. 2011.

Heuristics-based query processing for large RDF graphs using cloud computing. IEEE Trans. Knowl. Data Eng. 23, 9

(2011), 1312–1327.

Vijay Ingalalli, Dino Ienco, Pascal Poncelet, and Serena Villata. 2016. Querying RDF data using a multigraph-based ap-

proach. In Proceedings of the 19th International Conference on Extending Database Technology (EDBT’16). 245–256.

DOI:http://dx.doi.org/10.5441/002/edbt.2016.24

Zoi Kaoudi and Ioana Manolescu. 2015. RDF in the clouds: A survey. VLDB J. 24, 1 (2015), 67–91.

Vaibhav Khadilkar, Murat Kantarcioglu, Bhavani M. Thuraisingham, and Paolo Castagna. 2012. Jena-HBase: A distributed,

scalable and effcient RDF triple store. In Proceedings of the ISWC 2012 Posters & Demonstrations Track. Retrieved from

http://ceur-ws.org/Vol-914/paper_14.pdf.

HyeongSik Kim, Padmashree Ravindra, and Kemafor Anyanwu. 2013. Optimizing RDF(S) queries on cloud platforms. In

Proceedings of the 22nd International World Wide Web Conference (WWW’13). 261–264. Retrieved from http://dl.acm.org/

citation.cfm?id=2487917.

Jinha Kim, Hyungyu Shin, Wook-Shin Han, Sungpack Hong, and Hassan Chafi. 2015. Taming subgraph isomorphism for

RDF query processing. Proc. VLDB 8, 11 (2015), 1238–1249. Retrieved from http://www.vldb.org/pvldb/vol8/p1238-kim.

pdf.

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. Graphchi: Large-scale graph computation on just a pc. In Proceedings

of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI’12), Vol. 8. 31–46.

Günter Ladwig and Andreas Harth. 2011. CumulusRDF: Linked data management on nested key-value stores. In Proceedings

of the 7th International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS’11). 30.

Avinash Lakshman and Prashant Malik. 2010. Cassandra: A decentralized structured storage system. SIGOPS Oper. Syst.

Rev. 44, 2 (April 2010), 35–40. DOI:http://dx.doi.org/10.1145/1773912.1773922

Kisung Lee and Ling Liu. 2013. Scaling queries over big RDF graphs with semantic hash partitioning. Proc. VLDB Endow. 6,

14 (2013), 1894–1905.

Baolin Liu and Bo Hu. 2005. An evaluation of RDF storage systems for large data applications. In Proceedings of the 1st

International Conference on Semantics, Knowledge and Grid. IEEE, 59–59.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M. Hellerstein. 2012. Distributed

graphlab: A framework for machine learning in the cloud. Proc. VLDB 5, 8 (2012), 716–727. Retrieved from http://vldb.

org/pvldb/vol5/p716_yuchenglow_vldb2012.pdf.

Li Ma, Zhong Su, Yue Pan, Li Zhang, and Tao Liu. 2004. RStar: An RDF storage and query system for enterprise resource

management. In Proceedings of the 13th ACM International Conference on Information and Knowledge Management. ACM,

484–491.

Miguel A. Martínez-Prieto, Mario Arias, and Javier D. Fernandez. 2012. Exchange and consumption of huge RDF data. In

The Semantic Web: Research and Applications. Springer, 437–452.

Brian McBride. 2002. Jena: A semantic web toolkit. IEEE Internet Comput. 6, 6 (2002), 55–59.

Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga Ngomo. 2011. DBpedia SPARQL benchmark–

Performance assessment with real queries on real data. In Proceedings of the International Semantic Web Conference

(ISWC’11). Springer, 454–469.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

http://www.vldb.org/pvldb/vol8/p654-Hammoud.pdf
http://www.vldb.org/pvldb/vol8/p1848-harbi.pdf
http://dx.doi.org/10.1145/2872518.2901923
http://dx.doi.org/10.5441/002/edbt.2016.24
http://ceur-ws.org/Vol-914/paper_14.pdf
http://dl.acm.org/citation.cfm?id$=$2487917
http://www.vldb.org/pvldb/vol8/p1238-kim.pdf
http://dx.doi.org/10.1145/1773912.1773922
http://vldb.org/pvldb/vol5/p716_yuchenglow_vldb2012.pdf

RDF Data Storage and Query Processing Schemes: A Survey 84:35

Raghava Mutharaju, Sherif Sakr, Alessandra Sala, and Pascal Hitzler. 2013. D-SPARQ: Distributed, scalable and efficient

RDF query engine. In Proceedings of the ISWC 2013 Posters & Demonstrations Track. 261–264. Retrieved from http://

ceur-ws.org/Vol-1035/iswc2013_poster_21.pdf.

Hubert Naacke, Olivier Curé, and Bernd Amann. 2016. SPARQL query processing with apache spark. CoRR abs/1604.08903

(2016). Retrieved from http://arxiv.org/abs/1604.08903.

Thomas Neumann and Gerhard Weikum. 2008. RDF-3X: A RISC-style engine for RDF. Proc. VLDB Endow. 1, 1 (2008), 647–

659.

Thomas Neumann and Gerhard Weikum. 2010. The RDF-3X engine for scalable management of RDF data. VLDB J. 19, 1

(2010), 91–113.

Andriy Nikolov, Andreas Schwarte, and Christian Hütter. 2013. Fedsearch: Efficiently combining structured queries and

full-text search in a SPARQL federation. In Proceedings of the International Semantic Web Conference. Springer, 427–443.

Damla Oguz, Belgin Ergenc, Shaoyi Yin, Oguz Dikenelli, and Abdelkader Hameurlain. 2015. Federated query processing

on linked data: A qualitative survey and open challenges. Knowl. Eng. Rev. 30, 5 (2015), 545–563.

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins. 2008. Pig latin: A not-so-

foreign language for data processing. In Proceedings of the ACM SIGMOD International Conference on Management of

Data (SIGMOD’08). 1099–1110. DOI:http://dx.doi.org/10.1145/1376616.1376726

M. Tamer Özsu. 2016. A survey of RDF data management systems. Front. Comput. Sci. 10, 3 (2016), 418–432.

Nikolaos Papailiou, Ioannis Konstantinou, Dimitrios Tsoumakos, Panagiotis Karras, and Nectarios Koziris. 2013. H2RDF+:

High-performance distributed joins over large-scale RDF graphs. In Proceedings of the 2013 IEEE International Conference

on Big Data. 255–263. DOI:http://dx.doi.org/10.1109/BigData.2013.6691582

Nikolaos Papailiou, Ioannis Konstantinou, Dimitrios Tsoumakos, and Nectarios Koziris. 2012. H2RDF: Adaptive query

processing on RDF data in the cloud. In Proceedings of the 21st World Wide Web Conference (WWW’12). 397–400.

DOI:http://dx.doi.org/10.1145/2187980.2188058

Nikolaos Papailiou, Dimitrios Tsoumakos, Ioannis Konstantinou, Panagiotis Karras, and Nectarios Koziris. 2014. H2RDF+:

An efficient data management system for big RDF graphs. In Proceedings of the International Conference on Management

of Data (SIGMOD’14). 909–912. DOI:http://dx.doi.org/10.1145/2588555.2594535

Peng Peng, Lei Zou, Lei Chen, and Dongyan Zhao. 2016. Query workload-based RDF graph fragmentation and allocation.

In Proceedings of the 19th International Conference on Extending Database Technology (EDBT’16). 377–388. DOI:http://

dx.doi.org/10.5441/002/edbt.2016.35

Minh-Duc Pham, Peter Boncz, and Orri Erling. 2012. S3g2: A scalable structure-correlated social graph generator. In Pro-

ceedings of the Technology Conference on Performance Evaluation and Benchmarking. Springer, 156–172.

Roshan Punnoose, Adina Crainiceanu, and David Rapp. 2015. SPARQL in the cloud using Rya. Inf. Syst. 48 (2015), 181–195.

DOI:http://dx.doi.org/10.1016/j.is.2013.07.001

Nur Aini Rakhmawati, Jürgen Umbrich, Marcel Karnstedt, Ali Hasnain, and Michael Hausenblas. 2013. Querying over

federated SPARQL endpoints—A state of the art survey. arXiv Preprint arXiv:1306.1723 (2013).

Louiqa Raschid and Stanley Y. W. Su. 1986. A parallel processing strategy for evaluating recursive queries. In Proceedings

of the Conference on Very Large Data Bases (VLDB’86), Vol. 86. 412–419.

Padmashree Ravindra, HyeongSik Kim, and Kemafor Anyanwu. 2011. An intermediate algebra for optimizing RDF graph

pattern matching on mapreduce. In Proceedings of the 8th Extended Semantic Web Conference: Research and Applications

(ESWC’11). 46–61. DOI:http://dx.doi.org/10.1007/978-3-642-21064-8_4

Kurt Rohloff and Richard E. Schantz. 2010. High-performance, massively scalable distributed systems using the mapreduce

software framework: The SHARD triple-store. In Programming Support Innovations for Emerging Distributed Applica-

tions. ACM, 4.

Sherif Sakr, Anna Liu, Daniel M. Batista, and Mohammad Alomari. 2011. A survey of large scale data management ap-

proaches in cloud environments. IEEE Commun. Surveys Tutor. 13, 3 (2011), 311–336. DOI:http://dx.doi.org/10.1109/

SURV.2011.032211.00087

Sherif Sakr, Anna Liu, and Ayman G. Fayoumi. 2013. The family of mapreduce and large-scale data processing systems.

Comput. Surveys 46, 1 (2013).

Muhammad Saleem, Yasar Khan, Ali Hasnain, Ivan Ermilov, and Axel-Cyrille Ngonga Ngomo. 2016. A fine-grained evalu-

ation of SPARQL endpoint federation systems. Semantic Web 7, 5 (2016), 493–518.

Alexander Schätzle, Martin Przyjaciel-Zablocki, Thorsten Berberich, and Georg Lausen. 2015. S2X: Graph-parallel querying

of RDF with graphX. In Proceedings of the 1st International Workshop on Big-Graphs Online Querying (BigOQ’15).

Alexander Schätzle, Martin Przyjaciel-Zablocki, Thomas Hornung, and Georg Lausen. 2013. PigSPARQL: A SPARQL query

processing baseline for big data. In Proceedings of the ISWC 2013 Posters & Demonstrations Track. 241–244. Retrieved

from http://ceur-ws.org/Vol-1035/iswc2013_poster_16.pdf.

Alexander Schätzle, Martin Przyjaciel-Zablocki, Simon Skilevic, and Georg Lausen. 2015. S2RDF: RDF querying with

SPARQL on spark. CoRR abs/1512.07021 (2015). Retrieved from http://arxiv.org/abs/1512.07021.

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

http://ceur-ws.org/Vol-1035/iswc2013_poster_21.pdf
http://arxiv.org/abs/1604.08903
http://dx.doi.org/10.1145/1376616.1376726
http://dx.doi.org/10.1109/BigData.2013.6691582
http://dx.doi.org/10.1145/2187980.2188058
http://dx.doi.org/10.1145/2588555.2594535
http://dx.doi.org/10.5441/002/edbt.2016.35
http://dx.doi.org/10.1016/j.is.2013.07.001
http://dx.doi.org/10.1007/978-3-642-21064-8_4
http://dx.doi.org/10.1109/SURV.2011.032211.00087
http://ceur-ws.org/Vol-1035/iswc2013_poster_16.pdf
http://arxiv.org/abs/1512.07021

84:36 M. Wylot et al.

M. Schmidt, T. Hornung, N. Küchlin, G. Lausen, and C. Pinkel. 2008. An experimental comparison of RDF data management

approaches in a SPARQL benchmark scenario. In Proceedings of the International Semantic Web Conference (ISWC’08).

82–97.

M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. 2009. SPˆ 2bench: A SPARQL performance benchmark. In Proceedings

of the IEEE 25th International Conference on Data Engineering (ICDE’09). IEEE, 222–233.

Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt. 2011. Fedx: Optimization techniques

for federated query processing on linked data. In Proceedings of the International Semantic Web Conference. Springer,

601–616.

Bin Shao, Haixun Wang, and Yatao Li. 2013. Trinity: A distributed graph engine on a memory cloud. In Proceedings of the

2013 International Conference on Management of Data. ACM, 505–516.

Lefteris Sidirourgos, Romulo Goncalves, Martin Kersten, Niels Nes, and Stefan Manegold. 2008. Column-store support for

RDF data management: Not all swans are white. Proc. VLDB Endow. 1, 2 (2008), 1553–1563.

Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, and Dave Reynolds. 2008. SPARQL basic graph

pattern optimization using selectivity estimation. In Proceedings of the 17th International Conference on World Wide Web

(WWW’08). ACM, 595–604.

M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. R. Madden, E. O’Neil, P. O’Neil,

A. Rasin, N. Tran, and S. Zdonik. 2005. C-store: A column oriented DBMS. In Proceedings of the International Conference

on Very Large Data Bases (VLDB’05).

Philip Stutz, Abraham Bernstein, and William Cohen. 2010. Signal/collect: Graph algorithms for the (semantic) web. In

Proceedings of the International Semantic Web Conference. Springer, 764–780.

Philip Stutz, Bibek Paudel, Mihaela Verman, and Abraham Bernstein. 2015. Random walk triplerush: Asynchronous graph

querying and sampling. In Proceedings of the 24th International Conference on World Wide Web (WWW’15). ACM, 1034–

1044.

Tolga Urhan and Michael J. Franklin. 2000. Xjoin: A reactively scheduled pipelined join operatorỳ. Bull. Tech. Committee

(2000), 27.

Patrick Valduriez. 1987. Join indices. ACM Trans. Database Syst. 12, 2 (1987), 218–246. DOI:http://dx.doi.org/10.1145/22952.

22955

Xin Wang, Thanassis Tiropanis, and Hugh C. Davis. 2013. Lhd: Optimising linked data query processing using parallelisa-

tion. LDOW. http://ceur-ws.org/Vol-996/papers/ldow2013-paper-06.pdf.

Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. 2008. Hexastore: Sextuple indexing for semantic web data man-

agement. Proc. VLDB Endow. 1, 1 (2008), 1008–1019. DOI:http://dx.doi.org/10.1145/1453856.1453965

Kevin Wilkinson, Craig Sayers, Harumi A. Kuno, and Dave Reynolds. 2003. Efficient RDF storage and retrieval in jena2. In

Proceedings of the International Conference on Semantic Web and Databases (SWDB’03). 131–150.

Kevin Wilkinson and Kevin Wilkinson. 2006. Jena property table implementation. In Proceedings of the International Work-

shop on Scalable Semantic Web Knowledge Base Systems (SSWS’06).

Buwen Wu, Yongluan Zhou, Pingpeng Yuan, Hai Jin, and Ling Liu. 2014. SemStore: A semantic-preserving distributed RDF

triple store. In Proceedings of the ACM International Conference on Information and Knowledge Management (CIKM’14).

509–518. DOI:http://dx.doi.org/10.1145/2661829.2661876

Marcin Wylot and Philippe Cudré-Mauroux. 2016. DiploCloud: Efficient and scalable management of RDF data in the cloud.

IEEE Trans. Knowl. Data Eng. 28, 3 (2016), 659–674. DOI:http://dx.doi.org/10.1109/TKDE.2015.2499202

Marcin Wylot, Jigé Pont, Mariusz Wisniewski, and Philippe Cudré-Mauroux. 2011. dipLODocus[RDF] - Short and long-tail

RDF analytics for massive webs of data. In Proceedings of the International Semantic Web Conference. 778–793.

Pingpeng Yuan, Pu Liu, Buwen Wu, Hai Jin, Wenya Zhang, and Ling Liu. 2013. TripleBit: A fast and compact system for

large scale RDF data. Proc. VLDB Endow. 6, 7 (2013), 517–528.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster computing

with working sets. In Proceedings of the 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud’10). Retrieved

from https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets.

Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan Wang. 2013. A distributed graph engine for web scale

RDF data. In Proceedings of the 39th International Conference on Very Large Data Bases. VLDB Endowment, 265–276.

Xiaofei Zhang, Lei Chen, Yongxin Tong, and Min Wang. 2013. EAGRE: Towards scalable I/O efficient SPARQL query eval-

uation on the cloud. In Proceedings of the 29th IEEE International Conference on Data Engineering (ICDE’13). 565–576.

DOI:http://dx.doi.org/10.1109/ICDE.2013.6544856

Lei Zou, M. Tamer Özsu, Lei Chen, Xuchuan Shen, Ruizhe Huang, and Dongyan Zhao. 2014. gStore: A graph-based SPARQL

query engine. VLDB J. 23, 4 (2014), 565–590. DOI:http://dx.doi.org/10.1007/s00778-013-0337-7

Received November 2016; revised December 2017; accepted December 2017

ACM Computing Surveys, Vol. 51, No. 4, Article 84. Publication date: September 2018.

http://dx.doi.org/10.1145/22952.22955
http://ceur-ws.org/Vol-996/papers/ldow2013-paper-06.pdf
http://dx.doi.org/10.1145/1453856.1453965
http://dx.doi.org/10.1145/2661829.2661876
http://dx.doi.org/10.1109/TKDE.2015.2499202
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
http://dx.doi.org/10.1109/ICDE.2013.6544856
http://dx.doi.org/10.1007/s00778-013-0337-7

