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ABSTRACT
Embeddings have become a key paradigm to learn graph represen-

tations and facilitate downstream graph analysis tasks. Existing

graph embedding techniques either sample a large number of node

pairs from a graph to learn node embeddings via stochastic op-

timization, or factorize a high-order proximity/adjacency matrix

of the graph via expensive matrix factorization. However, these

techniques usually require significant computational resources for

the learning process, which hinders their applications on large-

scale graphs. Moreover, the cosine similarity preserved by these

techniques shows suboptimal efficiency in downstream graph anal-

ysis tasks, compared to Hamming similarity, for example. To ad-

dress these issues, we propose NodeSketch, a highly-efficient graph

embedding technique preserving high-order node proximity via

recursive sketching. Specifically, built on top of an efficient data-

independent hashing/sketching technique, NodeSketch generates

node embeddings in Hamming space. For an input graph, it starts by

sketching the self-loop-augmented adjacency matrix of the graph

to output low-order node embeddings, and then recursively gener-

ates k-order node embeddings based on the self-loop-augmented

adjacency matrix and (k-1)-order node embeddings. Our extensive

evaluation compares NodeSketch against a sizable collection of

state-of-the-art techniques using five real-world graphs on two

graph analysis tasks. The results show that NodeSketch achieves

state-of-the-art performance compared to these techniques, while

showing significant speedup of 9x-372x in the embedding learning

process and 1.19x-1.68x speedup when performing downstream

graph analysis tasks.
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1 INTRODUCTION
With the increasing prominence of graph (network) data in real-

world scenarios such as online social networks, biological networks

and communication networks, graph embeddings (a.k.a. network

embeddings) have become a key paradigm to learn node represen-

tations from a graph [3]. Specifically, these techniques represent

each node in a graph as a feature vector, while still preserving key

structural properties of the graph (mostly topological proximity of

the nodes). Based on such node embeddings, downstream graph

analysis tasks, such as node classification and link prediction, can

be easily performed.

However, existing graph embedding techniques usually face

computational challenges in the embedding learning process, and

become inefficient when tackling large graphs. In the current lit-

erature, existing techniques can be roughly classified into two cat-

egories, i.e., graph-sampling based techniques and factorization-

based techniques. First, graph-sampling based techniques such as

DeepWalk [23], Node2Vec [9], LINE [26], SDNE [30] or VERSE [29]

sample node pairs (directly or using random walks) from an input

graph and design specific models to learn node embeddings from

those samples via stochastic optimization. To ensure the quality of

the learnt node embeddings, these methods usually sample a large

number of node pairs, and thus require significant computational

resources (CPU time in particular). Second, factorization-based

techniques such as GraRep [4], HOPE [22] and NetMF [24] learn

node embeddings directly from the high-order proximity/adjacency

matrix of an input graph using matrix factorization. These methods

usually require significant computational resources also (both CPU

time and RAM) due to expensive matrix factorization operations.

These computational challenges indeed hinder the application of

many of those techniques on large-scale graphs (see Section 4.2 for

more details).

Moreover, the learnt node embeddings from the above techniques

also face computational challenges when being used in downstream

tasks, in particular for tasks heavily involving similarity computa-

tion between node embeddings. A typical example is link prediction,

which tries to predict potential links between pairs of nodes in a

graph. For a given graph, it requires to compute the similarity be-

tween all pairs of disconnected nodes in the embedding vector

space, and then to rank the node pairs according to their similarity.

In the current literature, most of the existing graph embedding

techniques measure node proximity using cosine distance (or dot

product after normalization). However, cosine distance is known

to be slow compared to other techniques. A recent work [18], for

instance, applied learning-to-hash techniques [31] to graph em-

bedding problems to learn node embeddings in Hamming space,

and showed that using Hamming distance is able to speedup the

KNN search (which heavily involves similarity computations) by

https://doi.org/10.1145/3292500.3330951
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4x-10x compared to cosine distance. Despite this clear computa-

tional advantage of Hamming distance in downstream tasks, the

graph embedding technique proposed by [18] still undergoes ex-

pensive matrix factorization operations, resulting in an inefficient

embedding learning process (see Section 4.4 for more details).

Against this background and to address the above computational

challenges, we explore data-independent hashing (i.e., sketching
1
)

techniques [6] to efficiently and effectively solve the graph embed-

ding problem. Specifically, sketching techniques use randomized

hashing functions to create compact and fixed-size sketches for the

original high-dimensional data for fast similarity approximation in

Hamming space. Different from learning-to-hash techniques [31],

which are data-dependent and learn dataset-specific hash functions,

data-independent sketching techniques use randomized hashing

functions without involving a learning process on a dataset, which

is often much more efficient. However, it is not straightforward

to directly apply existing sketching techniques such as minhash

[2] or consistent weighted sampling [20], to the graph embedding

problem due to the requirement of considering high-order prox-

imity in graph embedding problems. More precisely, it has been

widely shown that considering high-order proximity is of particular

importance in learning high-quality node embeddings from a graph

[4, 18, 22, 24]. While directly applying sketching techniques to the

adjacency matrix of a graph captures low-order node proximity

only, a straightforward extension to capture high-order proximity

is to sketch the high-order adjacency/proximity matrix of the graph,

measured by Katz index [22] or a high-order transition matrix (used

for random walks in a graph) [4] for example. However, involv-

ing such high-order adjacency matrices dramatically increases the

complexity of the process, since 1) the computation of high-order

transition matrices usually involves expensive matrix multiplica-

tion/inversion operations, and 2) storing them creates significant

overhead in RAM as these high-order adjacency matrices are often

much denser compared to the original adjacencymatrix of the graph.

For example, on our Blog dataset (see Section 4.1.1), we observe

that the density of its original adjacency matrix is only 0.63%, while

the density of its 2nd- and 3rd-order adjacency matrices quickly

raises up to 61.66% and 99.48%, respectively.

In this paper, to efficiently exploit sketching techniques for graph

embeddings, we propose NodeSketch, a highly-efficient graph em-

bedding technique preserving high-order node proximity via re-

cursive sketching. Specifically, NodeSketch is designed on top of

consistent weighted sampling [10, 13, 16, 20, 36], which is a popular

data-independent sketching technique for sketching nonnegative

real-valued, high-dimensional data. Our recursive skeching process

works in the following way. For each node in a given graph, our

technique starts by sketching its Self-Loop-Augmented (SLA) ad-

jacency vector [1] to create its low-order (i.e., 1st- and 2nd-order

proximity-preserving) embedding vector. Afterwards, to output the

k-order embedding of the node, our technique sketches an approxi-

mate k-order SLA adjacency vector, which is generated by merging

the node’s SLA adjacency vector with the (k-1)-order embedding

vectors of all the node’s direct neighbors in a weighted manner.

Such a recursive sketching process actually captures up-to-k-order

1
We use the term “sketching” in this paper to exclusively refer to data-independent

hashing, in order to avoid any potential confusion with learning-to-hash.

node proximity (with an exponential decay weight when increas-

ing k) in the resulting node embeddings. Our design ensures that

NodeSketch is highly-efficient, as it involves fast vector sketch-

ing and merging operations only, without computing and storing

any high-order adjacency matrix. We conduct a thorough empiri-

cal evaluation using five real-world graphs on two graph analysis

tasks, including node classification and link prediction tasks. We

compare NodeSketch against a sizable collection of state-of-the-art

techniques from three categories, i.e., classical graph embedding

techniques, learning-to-hash techniques, and sketching techniques.

The results show that our NodeSketch achieves state-of-the-art

performance with a remarkable speedup in the embedding learning

process. In summary, our contributions are three-fold:

• We investigate data-independent sketching techniques to solve

graph embedding problems, aiming to overcome the computa-

tional challenges in both the node embedding learning process

and the application of node embeddings to downstream graph

analysis tasks;

• We propose NodeSketch, a highly-efficient graph embedding

techniques preserving high-order node proximity via recursive

sketching. NodeSketch not only generates high-quality and efficient-

to-use node embeddings in Hamming space by considering high-

order node proximity, but is also highly-efficient in the embed-

ding learning process due to our recursive sketching process;

• Our extensive evaluation shows that NodeSketch significantly

outperforms learning-to-hash and other sketching techniques,

and achieves state-of-the-art performance compared to classical

graph embedding techniques. More importantly, NodeSketch is

highly-efficient in the embedding learning process, showing 12x-

372x speedup over classical graph embedding baselines, 9x-163x

speedup over learning-to-hash baselines, and a 10x speedup over

other sketching baselines. The resulting node embeddings pre-

serving Hamming distance also lead to an improved efficiency in

downstream graph analysis tasks, showing 1.19x-1.68x speedup

over cosine distance.

2 RELATEDWORK
2.1 Graph Embeddings
In the current literature, most of the existing graph embedding tech-

niques focus on projecting nodes onto real-valued vector spaces,

where the similarity between nodes is measured using cosine simi-

larity (dot-product of normalized embedding vectors). These tech-

niques can be classified into two categories. First, graph-sampling

based techniques design specific models to learn node embeddings

from pairs of nodes sampled from an input graph. DeepWalk [23]

and Node2vec [9], JUST [12] and LBSN2Vec [37] firstly sample pairs

of nodes from an input graph using random walks, and then feed

them into a SkipGram-alike model [21] to output node embeddings.

LINE [26] directly samples node pairs from an input graph consid-

ering specifically the 1st- and 2nd-order node proximity. VERSE

[29] was recently proposed as a generalized graph-sampling based

embedding learning framework that preserves a pre-selected node

similarity measure. SDNE [30] and DVNE [39] use deep neural net-

works to learn node embeddings by sampling nodes from an input

graph. As the embedding learning process of the techniques from

this category usually relies on Stochastic Gradient Descent (SGD),



a large number of node pairs are often sampled and learnt to ensure

the quality of the learnt node embeddings (convergence of the SGD

algorithms), which requires significant computational resources

(CPU time in particular). Second, factorization-based techniques

apply matrix factorization on a high-order proximity/adjacency

matrix of an input graph to output node embeddings. GraRep [4]

preserves the top k-order node proximity by factorizing the top k-
order transition matrices; HOPE [22] investigates several different

node proximity measures and uses a generalized SVD to factor-

ize the corresponding high-order node proximity matrices; NetMF

[24] was recently proposed as a generalized matrix factorization

framework unifying DeepWalk, Node2vec and LINE. Due to ex-

pensive matrix factorization operations, the techniques from this

category suffer from computational challenges (RAM bottleneck

in particular). In this paper, we explore sketching techniques to

efficiently generate node embeddings from a graph and overcome

these computational challenges.

In addition, it has been shown that cosine similarity (used by

above techniques) is not efficient enough in downstream graph

analysis tasks, in particular those involving intensive similarity

computation, such as link prediction. To overcome this issue, INH-

MF [18] was recently proposed to generate node embeddings in

Hamming space using learning-to-hash techniques [31], resulting in

a significant speedup in the downstream KNN search task compared

to cosine similarity. However, similar to factorization-based graph

embedding techniques, INH-MF still has severe computational is-

sues in its embedding learning process, which utilizes expensive

matrix factorization operations. To overcome this limitation, data-

independent hashing (sketching) has been recently explored in

solving attributed graph embedding problems. NetHash [33] has

been proposed for attributed graph embedding, where each node in

a graph is assumed to have a set of attributes describing the prop-

erties of the node. It adopts locality sensitive hashing [7] to sketch

node attributes in a recursive manner. However, as node attributes

are not always available in real-world graphs, this paper focuses on

using sketching techniques to solve general graph embeddings prob-

lems without assuming the availability of node attributes, which

therefore differs from the problem setting of NetHash.

2.2 Similarity-Preserving Hashing
Similarity-preserving hashing [6, 31] has been extensively studied

to efficiently approximate the similarity of high dimensional data,

such as documents or images [7]. Its key idea is to create compact

sketches (in Hamming space) of the original high dimensional data

while still preserving their similarities. According to the hashing

process, the existing techniques can be classified into two categories:

data-dependent hashing and data-independent hashing/sketching

[6] (also called by [31] as learning-to-hash and locality sensitive

hashing, respectively). First, data-dependent hashing (learning-to-

hash) techniques, such as spectral hashing [32], iterative quantiza-

tion [8], discrete graph hashing [19], supervised discrete hashing

[25] and scalable graph hashing [14], learn dataset-specific hashing

functions to closely fit the underlying data distribution in the fea-

ture space. Second, data-independent sketching techniques, such as

minhash [2] and consistent weighted sampling [20], use random-

ized hashing functions without involving any learning process from

a dataset, which is usually more efficient. In this paper, we exploit

data-independent sketching techniques to build a highly-efficient

solution for graph embedding problems, while considering high-

order node proximity. To this end, we resort to a recursive sketching

scheme. Recursive sketching has been exploredmainly for data with

complex structures in order to capture the internal structural in-

formation of each data instance, such as textual structures of a

document [5], or subtrees in a graph [15]. These approaches create

a sketch vector for each complex data instance (e.g., a graph), in

order to fast approximate the similarity between two data instances

(e.g., two graphs). In contrast, our objective is to create a sketch

for each node in a graph, while preserving their high-order node

proximity, which is different from [5, 15].

3 NODESKETCH
In this section, we first briefly introduce consistent weighted sam-

pling techniques, and then present our proposed technique NodeS-

ketch, followed by a theoretical analysis.

3.1 Preliminary:Consistent Weighted Sampling
Consistent weight sampling techniques were originally proposed

to approximate min-max similarity for high-dimensional data [10,

13, 16, 20, 34–36]. Formally, given two nonnegative data vectors

V a
andV b

of size D, their min-max similarity is defined as follows:

SimMM (V a ,V b ) =

∑D
i=1min(V a

i ,V
b
i )∑D

i=1max(V a
i ,V

b
i )

(1)

It is also called weighted Jaccard similarity [16], as it can be sim-

plified to Jaccard similarity under the condition V a ,V b ∈ {0, 1}D .

When applying the sum-to-one normalization

∑D
i=1V

a
i =

∑D
i=1V

b
i =

1, Eq. 1 becomes the normalized min-max similarity, denoted by

SimNMM . It has been shown in [16] that (normalized) min-max

kernel is an effective similarity measure for nonnegative data; it

can achieve state-of-the-art performance compared to other kernels

such as linear kernel and intersection kernel on different classifica-

tion tasks over a sizable collection of public datasets.

The key idea of consistent weight sampling techniques is to

generate data samples such that the probability of drawing identical
samples for a pair of vectors is equal to their min-max similarity.
A set of such samples is then regarded as the sketch of the input
vector. The first consistent weighted sampling method [20] was

designed to handle integer vectors. Specifically, given a data vector

V ∈ ND , it first uses a random hash functionhj to generate indepen-
dent and uniform distributed random hash values hj (i, f ) for each
(i, f ), where i ∈ {1, 2, ...,D} and f ∈ {1, 2, ...,Vi }, and then returns

(i∗j , f
∗
j ) = argmini ∈{1,2, ...,D },f ∈{1,2, ...,Vi } hj (i, f ) as one sample

(i.e., one sketch element Sj ). The random hash function hj depends
only on (i, f ), and maps (i, f ) uniquely to hj (i, f ). By applying L
(L ≪ D) independent random hash functions (j = 1, 2, ...,L), we
generate sketch S (of size L) from V . Subsequently, the collision

probability between two sketch elements (ia∗j , f
a∗
j ) and (ib∗j , f

b∗
j ),

which are generated from V a
and V b

, respectively, is proven to be

exactly the min-max similarity of the two vectors [10, 20]:

Pr [(ia∗j , f
a∗
j ) = (ib∗j , f

b∗
j )] = SimMM (V a ,V b ) (2)



Therefore, the min-max similarity between V a
and V b

of large

size D can be efficiently approximated by the Hamming similarity

between the sketches Sa and Sb of compact size L.
To improve the efficiency of the above method and extend it to

nonnegative real vectors (V ∈ RD
≥0
), Ioffe [13] later proposed to

directly generate one hash value for each i (with its corresponding

f ∈ N, f ≤ Vi ) by taking Vi as the input of the random hash value

generation process, rather than generatingVi different random hash

values. In such a case, Vi can also be any nonnegative real number.

Based on this method, Li [16] further proposed 0-bit consistent

sampling to simplify the sketch by only keeping i∗j rather than

(i∗j , f
∗
j ), and empirically proved Pr [ia∗j = ib∗j ] ≈ Pr [(ia∗j , f

a∗
j ) =

(ib∗j , f
b∗
j )]. Recently, Yang et al. [36] further improved the efficiency

of 0-bit consistent sampling using a much more efficient hash value

generation process, where the resulting sketches have been proven

to be equivalent to those generated by 0-bit consistent sampling. A

succinct description of the method proposed in [36] is as follows.

To generate one sketch element Sj (sample i∗j ), the method uses a

random hash functionhj with an input i (seed for a random number

generator) to generate a random hash value hj (i) ∼ Uni f orm(0, 1),

and then returns the sketch element as:

Sj = argmin

i ∈{1,2, ...,D }

− loghj (i)

Vi
(3)

With a sketch length of L, the resulting sketches actually preserves

normalized min-max similarity [35]:

Pr [Saj = Sbj ] = SimNMM (V a ,V b ), j = 1, 2, ...,L. (4)

Please refer to [13, 16, 36] for more details. In this paper, we take

advantage of the high efficiency of the above consistent weighted

sampling technique to design NodeSketch, a highly-efficient graph

embedding technique via recursive sketching.

3.2 Node Emebeddings via Recursive Sketching
Built on top of the above consistent weighted sampling technique,

our proposed NodeSketch first generates low-order (1st- and 2nd-

order) node embeddings from the Self-Loop-Augmented (SLA) ad-

jacency matrix of an input graph [1], and then generate k-order
node embeddings

2
based on this SLA adjacency matrix and the

(k-1)-order node embeddings in a recursive manner.

3.2.1 Low-Order Node Embeddings. The adjacency matrix A of

a graph encodes the 1st-order node proximity of the graph. It is of-

ten used by classical graph embedding techniques, such as GraRep

[4] and LINE [26], to learn 1st-order node embeddings. However,

directly sketching an adjacency vectorV (one row of the adjacency

matrix A) actually overlooks the 1st-order node proximity and only

preserves 2nd-order node proximity. To explain this, we investi-

gate the min-max similarity between the nodes’ adjacency vectors

(preserved by the sketches). As the adjacency vector of a node con-

tains only its direct neighbors, the min-max similarity between

two nodes indeed characterizes the similarity between their sets of

neighbors only. Figure 1 shows an toy example in its top part.

2
Note that the k -order embeddings here actually refers to up-to-k -order embeddings

in this section; we keep using k -order embeddings for the sake of clarity.

Figure 1: A toy example illustrating the adjacency and SLA
adjacency matrices of a graph and their corresponding nor-
malized min-max similarity matrices SimNMM (computed
using Eq. 1 between each pair of normalized adjacency vec-
tors). In the top part of the figure, we see that SimNMM be-
tween the original adjacency vectors ignores the 1st-order
node proximity, but preserves only the 2nd-order proximity.
More precisely, we have SimNMM (node1,node2) = 0 as nodes1
and nodes2 do not share any common neighbor (even though
they are directly connected), while SimNMM (node1,node3) =
0.2 as nodes1 and nodes3 have a common neighbor node2 (but
they are not directly connected). In contrast, as shown in
the bottom part of the figure, SimNMM between the SLA
adjacency vectors preserves both 1st- and 2nd-order node
proximity. After adding an identity matrix (changes high-
lighted in red), we have SimNMM (node1,node2) = 0.5 and
SimNMM (node1,node3) = 0.14, which implies thatnode1 is now
“closer” (in terms of SimNMM ) to node2 than to node3.

Figure 2: Low-order node embeddings by sketching the SLA
adjacency vector of each node, where the sketch length (em-
beddings size) is set to 3. We highlight the SLA adjacency
vector and the corresponding embeddings of node1 as an ex-
ample. Based on the node embeddings, the SimNMM matrix
can be efficiently approximated by computing the hamming
similarity between node embeddings.

To address this issue, we resort to the Self-Loop-Augmented (SLA)
adjacency matrix of a graph [1]. Specifically, it is obtained by adding
an identity matrix to the original adjacency matrix of the graph:

Ã = I + A (5)

Subsequently, the min-max similarity between the resulted SLA

adjacency vectors Ṽ (row vectors of Ã) is able to preserve both 1st-

and 2nd-order node proximity. More precisely, when two nodes are

directly connected, their SLA adjacency vectors have twomore com-

mon entries than the original adjacency vectors, and thus further

captures 1st-order node proximity beyond the 2nd-order proximity

captured by the original adjacency vectors. Figure 1 shows the SLA

adjacency matrix of the previous toy example in its bottom part.



In summary, we sketch the SLA adjacency vector of each node

using Eq. 3 to generate its low-order (1st- and 2nd-order proximity

preserving) sketch/embedding
3
. Figure 2 shows the low-order node

embeddings generated for the graph in Figure 1.

3.2.2 High-Order Node Embeddings. NodeSketch learns high-

order node embeddings in a recursivemanner. Specifically, to output

thek-order embedding of a node, it sketches an approximatek-order
SLA adjacency vector of the node, which is generated by merging

the node’s SLA adjacency vector with the (k-1)-order embeddings

of all the neighbors of the node in a weighted manner.

One key property of the consistent weighted sampling technique

(in Eq. 3) is the uniformity of the generated samples, which states
that the probability of selecting i is proportional to Vi , i.e., Pr (Sj =
i) = Vi∑

i Vi
. As its proof is omitted in the original paper [36], we

provide a brief proof in the supplemental materials. This uniformity

property serves as the foundation of our recursive sketching process.

It implies that the proportion of element i in the resulting sketch

S is an unbiased estimator of Vi , where we applied sum-to-one

normalization

∑
i Vi = 1, and thus the empirical distribution of

sketch elements is an unbiased approximation of input vector V .

Based on this uniformity property, our recursive sketching pro-

cess works in the following way. First, for each node r , we compute

an approximate k-order SLA adjacency vector Ṽ r (k) by merging the

node’s SLA adjacency vector Ṽ r
with the distribution of the sketch

elements in the (k-1)-order embeddings of all the neighbors of the

node in a weighted manner:

Ṽ r
i (k) = Ṽ

r
i +

∑
n∈Γ(r )

α

L

L∑
j=1
1[Snj (k−1)=i]

(6)

where Γ(r ) is the set of neighbors of node r , Sn (k − 1) is the (k-1)-
order sketch vector of node n, and 1[cond ] is an indicator function

which is equal to 1 when cond is true and 0 otherwise. More pre-

cisely, the sketch element distribution for one neighbor n, (i.e.,
1

L
∑L
j=1 1[Snj (k−1)=i]

where i = 1, ...,D) actually approximates the

(k-1)-order SLA adjacency vector of the neighbor, which preserves

the (k-1)-order node proximity. Subsequently, bymerging the sketch

element distribution for all the node’s neighbors with the node’s

SLA adjacency vector, we indeed expand the order of proximity

by one, and therefore obtain an approximate k-order SLA adja-

cency vector of the node. Moreover, during the summing process,

we assign an (exponential decay) weight α to the sketch element

distribution, in order to give less importance to higher-order node

proximity. Such a weighting scheme in the recursive sketching

process actually implements exponential decay weighting when

considering high-order proximity, where the weights for the kth-
order proximity decays exponentially with k ; it is a widely used

weighting scheme in measuring high-order node proximity [22, 33].

Subsequently, we generate the k-order node embeddings S(k) by

sketching the approximate k-order SLA adjacency vector Ṽ r (k)
using Eq. 3. Figure 3 shows the high-order node embeddings gener-

ated via recursive sketching for the graph of Figure 1.

In summary, Algorithm 1 shows the overall process of generating

k-order node embeddings from three inputs: the SLA adjacency

3
As the sketch vector of a node is regarded as its embedding vector, we do not distin-

guish these two terms in this paper.

Algorithm 1 NodeSketch (Ã, k , α )

1: if k > 2 then
2: Get (k-1)-order sketch: S (k − 1) = NodeSketch (Ã, k − 1, α )
3: for each row (node) r in Ã do
4: Get k-order SLA adjacency vector Ṽ r (k ) using Eq. 6
5: Generate sketch Sr (k ) from Ṽ r (k ) using Eq. 3
6: end for
7: else if k = 2 then
8: for each row (node) r in Ã do
9: Generate low-order sketch Sr (2) from Ṽ r

using Eq. 3

10: end for
11: end if
12: return k-order sketch S (k )

matrix Ã, the order k and decay weight α . When k > 2, we first

generate (k-1)-order node embeddings S(k − 1) using Algorithm

1 again (Line 2), and then generate k-order node embeddings by

sketching each node’s approximate k-order SLA adjacency vector

Ṽ r (k) which is obtained from Ṽ r
and S(k − 1) using Eq. 6 (Line 3-6).

When k = 2, we simply generate low-order node embeddings by

directly sketching each SLA adjacency vector Ṽ (Line 8-10). The

implementation of NodeSketch is available here
4
.

3.3 Theoretical Analysis
3.3.1 Similarity and error bound. According to Eq. 4, the ham-

ming similarity H (·, ·) between the k-order embeddings of two

nodes a and b actually approximates the normalized min-max simi-

larity between the k-order SLA adjacency vectors of the two nodes:

E(H (Sa (k), Sb (k))) = Pr [Saj (k) = Sbj (k)] = SimNMM (Ṽ a (k), Ṽ b (k))

The corresponding approximation error bound is:

Pr [|H − SimNMM | ≥ ϵ] ≤ 2 exp(−2Lϵ2) (7)

The error is bigger than ϵ with probability at most 2 exp(−2Lϵ2).
Please refer to the supplemental materials for the proof.

3.3.2 Complexity. For time complexity, we separately discuss

the cases of low- and high-order node embeddings. First, for low-

order node embeddings where we directly apply Eq. 3 on the SLA

adjacency vector of each node, the time complexity is O(D · L ·

d), where D and L are the number of nodes and embedding size

(sketch length), respectively, and d is the average node degree in

the SLA adjacency matrix. Second, for high-order node embeddings

(k > 2) where the recursive sketching process is involved, the time

complexity is O(D · L · (d + (k − 2) ·min{d · L,d
2

})). In practice, we

often have d ≪ D due to the sparsity of real-world graphs, and also

L,k ≪ D. Therefore, the time complexity is linear w.r.t. the number

of nodes D. Moreover, only involving fast hashing and merging

operations makes NodeSketch highly-efficient as we show below.

For space complexity, NodeSketch is memory-efficient as it only

stores the SLA adjacencymatrix and the node embeddings, resulting

in a space complexity of O(D · (d + L)). Compared to the case of

storing a high-order proximity matrix (such as GraRep [4] and

NetMF [24]) where the space complexity is O(D2), NodeSketch is

much more memory-efficient as d,L ≪ D.

4
https://github.com/eXascaleInfolab/NodeSketch



Figure 3: High-order node embeddings via recursive sketching. Here we highlight the detailed recursive sketching process for
node1 based on the SLA adjacency matrix and (k-1)-order node embeddings (where k=3 in this example). First, we compute the
approximate k-order SLA adjacency vector Ṽ r (k) by summing the SLA adjacency vector of node1 and the sketch element distri-
bution in the (k-1)-order embeddings of all node1’s neighbors (node1 has only one neighbor node2 in the graph) in a weighted
manner. The exponential decay weight is set to α = 0.2 here. Then, we generate the k-order node embeddings by sketching the
approximate k-order SLA adjacency vector Ṽ r (k) using Eq. 3.

Table 1: Characteristics of the experimental graphs

Dataset Blog PPI Wiki DBLP YouTube
#Nodes 10,312 3,890 4,777 13,326 1,138,499

#Edges 333,983 76,584 184,812 34,281 2,990,443

#Labels 39 50 40 2 47

4 EXPERIMENTS
4.1 Experimental Setting

4.1.1 Dataset. We conduct experiments on the following five

real-world graphs which are commonly used by existing works on

graph embeddings. BlogCatalog (Blog) [27] is a social network of

bloggers. The labels of a node represent the topic categories that the

corresponding user is interested in. Protein-Protein Interactions (PPI)
[9] is a graph of the PPI network for Homo Sapiens. The labels of a

node refer to its gene sets and represent biological states.Wikipedia
(Wiki) [9] is a co-occurrence network of words appearing in a

sampled set of the Wikipedia dump. The labels represent the part-

of-speech tags. DBLP [38] is a collaboration network capturing

the co-authorship of authors. The labels of a node refer to the

publication venues of the corresponding author. YouTube [28] is a
social network of users on YouTube. The labels of a node refer to

the groups (e.g., anime) that the corresponding user is interested

in. Table 1 summarizes the main statistics of those graphs.

4.1.2 Baselines. We compare NodeSketch against a sizable col-

lection of state-of-the-art techniques from three categories: 1) clas-

sical graph embedding techniques (preserving cosine similarity),

includingDeepWalk [23],Node2Vec [9], LINE [26], VERSE [29],

GraRep [4],HOPE [22] andNetMF [24]; 2) learning-to-hash tech-

niques which are among the best-performing techniques in [18], in-

cluding Spectral Hashing (SH) [32], Iterative quantization (ITQ) [8],
Scalable Graph Hashing (SGH) [14] and INH-MF [18]; 3) sketching

techniques, including NetHash [33], KatzSketch (which directly

sketches the high-order node proximity matrix using Katz index) ,

NodeSketch(NoSLA) (a variant of our proposed NodeSketch by

using the original adjacency matrix rather than the SLA adjacency

matrix). Please refer to the supplemental materials for detailed descrip-
tion on configuration and parameter tuning for individual methods.
In all the experiments, we tune the parameters of each method on
each task to let it achieve its highest performance. The dimension of

the node embeddings L is set to 128 for all methods.

4.2 Multi-label Node Classification Task
Node classification predicts the most probable label(s) for some

nodes based on other labeled nodes. In this experiment, we ran-

domly pick a set of nodes as labeled nodes for training, and use the

rest for testing. To fairly compare node embeddings with different

similarity measures, we train a one-vs-rest kernel SVM classifier

with a pre-computed kernel (cosine or Hamming kernel according

to the embedding techniques) to return the most probable labels for

each node. We report the average Macro-F1 and Micro-F1 scores

from 10 repeated trials, with 90% training ratio on Blogcatalog,

PPI, Wiki and DBLP, and 9% training ratio on YouTube. We note

that similar results are observed with different training ratios (not

shown due to the space limitation).

Table 2 shows the results. Note that on our YouTube dataset

(>1M nodes), many baselines run out of memory, marked as “-”

(also on other evaluation tasks). More precisely, Node2Vec requires

to compute and store a large and non-sparse 2nd-order transition

probability matrix for parameterized random walk; GraRep, NetMF,

SH, ITQ, INH-MF and KatzSketch involve expensive matrix factor-

ization/inversion/multiplication operations. We also highlight the

best-performing technique from each of the three categories.

First, we observe that NodeSketch outperforms all sketching

baselines in general. The only exception is on the Wiki dataset,

where our proposed baseline KatzSketch is slightly better than

NodeSketch. However, as KatzSketch involves expensive matrix

multiplication/inversion operations to compute Katz index, NodeS-

ketch is much more efficient than it, showing a 10x speedup on

average (see Section 4.4 below). Second, among all the learning-to-

hash methods, we find that INH-MF is the best-performing method

on small and mid-size datasets (Blog, PPI, Wiki and DBLP), while

SGH is the only technique that can handle the large YouTube dataset.

However, they still show inferior performance compared to NodeS-

ketch. Finally, among classical graph embedding methods, NetMF

achieves the best performance on Blog, Wiki and DBLP, while

DeepWalk and VERSE are the best ones on POI and YouTube, re-

spectively. NodeSketch shows comparable performance to these

best-performing baselines; it has better results on PPI, Wiki and

DBLP, and slightly worse results on Blog and YouTube. However,

our NodeSketch is far more efficient than these baselines, i.e., 22x,

239x and 59x faster than NetMF, DeepWalk and VERSE, respectively

(see Section 4.4 below).



Table 2: Node classification performance using kernel SVM

Methods

Micro-F1 (%) Macro-F1 (%)

Blog PPI Wiki DBLP YouTube Blog PPI Wiki DBLP YouTube

DeepWalk 39.60 17.24 46.05 83.46 39.03 21.93 10.28 6.62 83.16 27.84

Node2Vec 37.95 16.04 50.32 93.25 - 20.22 9.57 9.86 93.12 -

LINE 35.49 15.01 48.22 86.83 38.00 16.60 8.70 8.47 86.54 25.68

VERSE 39.61 15.90 41.39 92.79 39.62 22.85 9.76 4.14 92.66 29.16
GraRep 36.21 5.83 56.22 91.41 - 16.91 1.52 12.14 91.25 -

HOPE 31.37 14.69 56.68 91.47 33.91 11.74 8.13 13.30 91.30 19.62

NetMF 40.04 15.03 57.62 93.59 - 23.43 8.74 14.35 93.46 -

SH 17.88 9.03 38.00 66.36 - 4.20 4.04 3.60 60.38 -

ITQ 17.47 6.21 39.97 58.13 - 3.08 2.46 3.14 39.82 -

SGH 21.28 10.95 43.82 68.36 27.74 6.60 6.89 5.63 64.98 11.21
INH-MF 36.13 15.50 45.03 93.27 - 18.88 9.55 6.90 93.16 -

NetHash 35.80 18.85 47.57 97.61 38.61 18.72 12.91 8.05 97.57 27.41

KatzSketch 37.96 20.17 59.09 98.17 - 21.26 13.83 17.01 98.13 -

NodeSketch(NoSLA) 37.10 20.20 59.02 98.23 38.40 20.47 14.36 16.22 98.20 27.08

NodeSketch 38.16 21.04 59.07 98.83 39.18 21.84 15.55 16.31 98.81 28.53

4.3 Link Prediction Task
Link prediction predicts potential links between nodes in a graph.

In this task, we use the same setting as in [22]. Specifically, we

randomly sample 20% of the edges from each graph as test data,

and use the rest of the graph for training. After learning the node

embeddings based on the training graph, we predict the missing

edges by generating a ranked list of potential edges. For each pair of

nodes, we use the cosine or Hamming similarity (according to the

embedding techniques) of their embeddings to generate the ranked

list. We randomly sample 0.1% pairs of nodes for evaluation (0.01%

on YouTube). We report the average precision@100 and recall@100

on Blog, PPI, Wiki and DBLP, and precision@1000 and recall@1000

on YouTube (due to its large size) from 10 repeated trials.

Table 3 shows the results. First, we observe that NodeSketch

consistently outperforms all sketching and learning-to-hash base-

lines. Moreover, compared to the best performing classical graph

embedding baselines (Node2Vec on Blog and Wiki datasets, VERSE

on DBLP and YouTube datasets, and NetMF on PPI dataset), NodeS-

ketch shows comparable results (better on PPI and DBLP, and worse

on other datasets). However, it significantly outperforms these base-

lines in terms of runtime efficiency, which we present below.

4.4 Runtime Performance
We investigate the efficiency of both node embedding learning and

the application of learnt node embeddings on different evaluation

tasks. All the experiments are conducted on a commodity PC (Intel

Core i7-6820HQ@2.70GHz, 16GB RAM, Mac OS X). To discount

the impact of explicit/implicit multi-threading implementation of

individual methods, we use one thread (when applicable) and also

report the CPU time for each method. For NodeSketch, as its com-

plexity mainly depends on the order of proximity k (see Section 4.5

below), we set k=5 which is the largest of all the best-performing k
values in different evaluation tasks and datasets.

First, Table 4 shows the node embedding learning time. We ob-

serve that NodeSketch is highly-efficient, and significantly out-

performs all classical graph embedding baselines with 12x-372x

speedup, all learning-to-hash baselines with 9x-163x speedup, and

other sketching baselines with a 10x speedup. Moreover, compared

to its variant NodeSketch(NoSLA), NodeSketch using the SLA adja-

cency matrix creates negligible computational overhead, but shows

significantly improved performance on individual evaluation tasks.

We also note that as the runtime complexity of LINE depends mostly

on the number of sampled node pairs for learning, we observe a

sublinear learning time for LINE as we set the number of samples

to 1 billion for Blog, PPI, Wiki and DBLP datasets and 10 billion for

YouTube (please refer to supplemental materials for details).

Second, Table 5 shows the end-to-end execution time of node

classification (including classifier training and evaluation) and link

prediction (including similarity computation, ranking and evalua-

tion). We group the results by their distance measures, i.e., cosine

distance for all classical graph embedding techniques, and Ham-

ming distance for all learning-to-hash and sketching techniques.

We see that Hamming distance is consistently more efficient than

cosine distance, showing 1.19x and 1.68x speedup on average on the

node classification and link prediction tasks, respectively. In partic-

ular, the link prediction task shows higher speedup, as it heavily

involves similarity computations between node embeddings.

4.5 Parameter Sensitivity of NodeSketch
We study the impact of decay weight α and order of proximity

k on both graph analysis performance and runtime performance.

First, Figure 4 shows the results on the node classification and

link prediction tasks using the Blog dataset. We observe a clear

convex surface for eachmetric. Furthermore, we see that the optimal

setting varies across different tasks (α = 0.001 and k = 5 for node

classification, and α = 0.2 and k = 4 for link prediction), which

suggests that node embeddings are often task-specific and should be

appropriately generated by tuning parameters for individual graph

analysis tasks. Second, Figure 4(e) shows the impact on embedding

learning time. We see that our embedding learning time linearly

increases with k due to our recursive sketching process, and α has

little impact on the embedding learning time.

5 DISCUSSION
NodeSketch preserves the normalized min-max similarity between

the high-order SLA adjacency vectors of nodes. Due to the nonlin-

earity of the min-max kernel [17], the resulting node embeddings



Table 3: Link prediction performance

Methods

Precision@100 Precision@1000 Recall@100 Recall@1000

Blog PPI Wiki DBLP YouTube Blog PPI Wiki DBLP YouTube

DeepWalk 0.0200 0.0159 0.0090 0.0423 0.0001 0.0301 0.2227 0.0493 0.6749 0.0022

Node2Vec 0.0927 0.0137 0.0267 0.0321 - 0.1378 0.1958 0.1514 0.5174 -

LINE 0.0070 0.0073 0.0031 0.0392 0.0004 0.0103 0.0923 0.0167 0.6186 0.0513

VERSE 0.0404 0.0206 0.0212 0.0436 0.0007 0.0602 0.2723 0.1118 0.6906 0.0783
GraRep 0.0014 0.0011 0.0054 0.0001 - 0.0020 0.0118 0.0286 0.0011 -

HOPE 0.0023 0.0073 0.0027 0.0248 0.0001 0.0035 0.0960 0.0149 0.4034 0.0062

NetMF 0.0175 0.0174 0.0084 0.0218 - 0.0266 0.2287 0.0474 0.3126

SH 0.0001 0.0001 0.0003 0.0001 - 0.0001 0.0001 0.0017 0.0018 -

ITQ 0.0014 0.0007 0.0010 0.0002 - 0.0020 0.0099 0.0057 0.0041 -

SGH 0.0148 0.0019 0.0033 0.0002 0.0001 0.0222 0.0274 0.0186 0.0022 0.0278
INH-MF 0.0158 0.0158 0.0084 0.0252 - 0.0227 0.2209 0.0454 0.4052 -

NetHash 0.0015 0.0134 0.0020 0.0387 0.0001 0.0022 0.1899 0.0101 0.5958 0.0105

KatzSketch 0.0052 0.0124 0.0025 0.0422 - 0.0078 0.1659 0.0134 0.6705 -

NodeSketch(NoSLA) 0.0376 0.0167 0.0034 0.0433 0.0003 0.0564 0.2255 0.0183 0.7558 0.0447

NodeSketch 0.0729 0.0250 0.0176 0.0462 0.0005 0.1080 0.3331 0.0942 0.7595 0.0769

(a) (b) (c) (d) (e)

Figure 4: Impact of k and α on a) Micro-F1 in Node classification, b) Macro-F1 in Node classification, c) Precision@100 in Link
prediction, d) Recall@100 in Link prediction, and e) Embedding learning time in seconds.

Table 4: Node embedding learning time (in seconds) and the
average speedup of NodeSketch over each baseline.

Methods Blog PPI Wiki DBLP YouTube Speedup

DeepWalk 3375 1273 1369 4665 747060 239x

Node2Vec 1073 383 1265 504 - 51x

LINE 2233 2153 1879 2508 29403 148x

VERSE 1095 203 276 1096 245334 59x

GraRep 3364 323 422 10582 - 372x

HOPE 239 100 78 283 15517 12x

NetMF 487 124 708 213 - 22x

SH 2014 99 202 4259 - 151x

ITQ 2295 111 197 4575 - 163x

SGH 200 106 237 126 6579 9x

INH-MF 509 39 98 378 - 16x

NetHash 721 201 134 35 12708 10x

KatzSketch 213 22 42 264 - 10x

NodeSketch(NoSLA) 71 8 17 8 2456 1.01x

NodeSketch 70 8 17 8 2439 N/A

Table 5: Execution time (in seconds) of the evaluation tasks.

Tasks

Distance

Measures
Blog PPI Wiki DBLP YouTube

Node

Classification

Cosine 255.05 55.57 54.16 229.06 170.57

Hamming 226.96 42.78 45.27 204.45 139.25
Link

Prediction

Cosine 5.57 0.75 1.31 8.35 47.70

Hamming 3.51 0.42 0.65 5.46 32.17

cannot be directly used by linear algorithms such as logistic regres-

sion, which is widely used in classical graph embedding papers

[4, 9, 23, 24, 26, 29] for performing node classification. However,

as proposed in [17], the min-max kernel can be easily linearized

via a simple transformation scheme, which suggests to store only

the lowest b bits of each value in a sketch vector; it has also been

shown that b = 8 is often sufficient in practice. Using such a trans-

formation scheme, we report the performance of node classification

using a one-vs-rest logistic regression classifier in Table 6. We make

the same observation as above; NodeSketch outperforms sketching

and learning-to-hash baselines in general, and shows a level of

performance comparable to classical graph embedding baselines

(NodeSketch has better results on Wiki, DBLP and YouTube, and

worse results on Blog and PPI).

6 CONCLUSION
This paper introduced NodeSketch, a highly-efficient graph embed-

ding technique preserving high-order node proximity via recursive

sketching. Built on top of an efficient consistent weighted sampling

technique, NodeSketch generates node embeddings in Hamming

space. It starts by sketching the SLA adjacency vector of each node

to output low-order node embeddings, and then recursively gener-

ates k-order node embeddings based on the SLA adjacency matrix

and the (k-1)-order node embeddings. We conducted a thorough

empirical evaluation of our technique using five real-world graphs

on two graph analysis tasks, and compared NodeSketch against a

sizable collection of state-of-the-art techniques. The results show

that NodeSketch significantly outperforms learning-to-hash and

other sketching techniques, and achieves state-of-the-art perfor-

mance compared to classical graph embedding techniques. More

importantly, NodeSketch is highly-efficient in the embedding learn-

ing process and significantly outperforms all baselines with 9x-372x

speedup. In addition, its node embeddings preserving Hamming



Table 6: Node classification performance using logistic regression

Methods

Micro-F1 (%) Macro-F1 (%)

Blog PPI Wiki DBLP YouTube Blog PPI Wiki DBLP YouTube

DeepWalk 42.84 23.21 50.33 93.19 43.21 28.76 19.48 10.12 93.07 34.74

Node2Vec 41.48 22.30 51.68 93.51 - 27.31 19.14 11.10 93.41 -

LINE 41.91 23.89 53.24 86.49 43.91 25.75 18.97 11.21 86.25 36.16
VERSE 41.96 19.39 42.88 92.35 40.91 29.11 16.54 6.93 92.22 34.36

GraRep 40.53 5.73 58.06 91.81 - 24.26 1.52 12.85 91.64 -

HOPE 35.68 22.96 58.19 91.30 42.37 17.22 18.53 13.52 91.14 32.39

NetMF 42.98 24.95 58.24 94.02 - 28.34 21.07 13.99 93.94 -

SH 22.04 12.88 42.38 67.92 - 7.65 9.57 6.64 61.92 -

ITQ 13.49 6.65 38.95 55.88 - 3.77 5.36 4.04 46.33 -

SGH 23.29 12.41 46.66 68.23 26.60 11.68 10.85 10.08 64.63 16.17
INH-MF 38.14 20.73 53.80 93.14 - 24.80 18.03 13.31 93.04 -

NetHash 35.04 22.45 45.23 97.81 43.30 21.96 19.27 10.21 97.77 34.33

KatzSketch 36.75 23.12 58.81 97.99 - 24.08 20.24 16.21 97.96 -

NodeSketch(NoSLA) 35.82 23.60 57.76 98.07 43.29 22.71 20.56 16.20 98.04 34.36

NodeSketch 38.06 24.61 58.81 98.34 43.99 25.85 21.47 16.23 98.32 36.23

distance also lead to improved efficiency on downstream graph

analysis tasks, with 1.19x-1.68x speedup over cosine distance.

In the future, we plan to extend NodeSketch on dynamic graphs

which evolve over time.
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SUPPLEMENTAL MATERIALS
Proof of the Uniformity Property
We present a brief proof of the uniformity of the generated samples

(using Eq. 3), which states that the probability of selecting i is pro-
portional toVi . First, as hj (i) ∼ Uni f orm(0, 1) in Eq. 3, by applying

the change of variable technique we have

− loghj (i)
Vi ∼ Exp(Vi ). We

hereafter use Xi =
− loghj (i)

Vi ∼ Exp(Vi ) for the sake of notation

simplicity. We now investigate the probability distribution of the

minimum of {Xq |q , i}:

Pr (minq,iXq > x) = Pr (
⋂
q,i

{Xq > x}) =
∏
q,i

e−Vqx = e−(λ−Vi )x

(8)

where λ =
∑
q Vq . As Xi are independent of {Xq |q , i}, the condi-

tional probability of sampling i given Xi is:

Pr (minq,iXq > Xi |Xi ) = e−(λ−Vi )Xi s (9)

By integrating over the distribution of Xi ∼ Exp(Vi ), we obtain the

probability of sampling i as:

Pr (argmin

q
Xq = i) =

∫ ∞

0

Vie
−Vixe−(λ−Vi )xdx =

Vi
λ
=

Vi∑
q Vq

(10)

which means that the probability of selecting i is proportional to
Vi . This completes the proof.

Proof of the Approximation Error Bound
We present a brief proof of the approximation error bound (Eq. 7).

First, let Yj = 1Saj =S
b
j
, where 1cond is an indicator function which

is equal to 1 when cond is true and to 0 otherwise. Subsequently, the

Hamming similarity between the embeddings of two nodes a and b
can be formulated as the empirical mean of variables Yj ∈ [0, 1]:

H (Sa , Sb ) =
1

L

L∑
j=1

Yj (11)

Based on Hoeffding inequality [11], we then have:

Pr [|H −E(H )| ≥ ϵ] ≤ 2 exp(−2Lϵ2) (12)

As E(H ) = SimNMM , we obtain the approximation error bound:

Pr [|H − SimNMM | ≥ ϵ] ≤ 2 exp(−2Lϵ2) (13)

This completes the proof.

Detailed Settings and Parameter Tuning for
Baselines
We compare NodeSketch against a sizable collection of state-of-

the-art techniques from three categories, i.e., classical graph em-

bedding techniques (preserving cosine similarity), learning-to-hash

techniques and data-independent sketching techniques (preserving

Hamming similarity).

First, we consider the following graph embedding techniques:

• DeepWalk5 [23] is a graph-sampling (via random-walk) based

graph embedding technique. It first generates node sequences

using random walks, and then feeds them to the SkipGrammodel

5
https://github.com/phanein/deepwalk

to output node embeddings. Following the suggestion of the

authors, we set the walk length to 40, the number of walks per

node to 80, and the context window size to 10.

• Node2Vec6 [9] extends DeepWalk by introducing a parameter-

ized random walk method to balance the breadth-first search

(return parameter p) and depth-first search (in-out parameter

q) strategies to capture richer graph structures. Following the

suggestions from the original paper, we tune p and q with a

grid search over p,q ∈ {0.25, 0.05, 1, 2, 4}. We keep the other

parameters same as for DeepWalk.

• LINE7 [26] directly samples node pairs from a graph to learn

graph embeddings; it first learns two sets of d/2-dimension node

embeddings based on 1st and 2nd-order node proximity, respec-

tively, and then concatenates them together. We set the total

number of samples to 1 billion for Blog, PPI, Wiki and DBLP

datasets and 10 billion for YouTube.

• VERSE8 [29] directly samples node pairs to learn graph embed-

dings to preserve the node proximity measured by personalized

PageRank. We tune the damping factor α of personalized PageR-

ank using the method suggested by the authors, and leave all

other parameters as default.

• GraRep9 [4] factorizes the k-order transition matrix to gener-

ate node embeddings. It first separately learns k sets of d/k-
dimension node embeddings capturing 1st to kth-order node
proximity, respectively, and then concatenate them together. We

tune k by searching over {1, 2, 3, 4, 5, 6}. When d/k is not an inte-

ger, we learn the first k − 1 sets of ⌈d/k⌉-dimension embeddings,

and the last set of embeddings of dimension d − (k − 1)⌈d/k⌉.
• HOPE10 [22] factorizes the up-to-k-order node proximity matrix

measured by Katz index using a generalized SVD method to learn

node embeddings. The proposed generalized SVD method can

scale up to large matrices. We search the optimal decay parameter

β from 0.1 to 0.9 with a step of 0.1 (further multiplied by the

spectral radius of the adjacency matrix of the graph).

• NetMF11 [24] derives the closed form of DeepWalk’s implicit

matrix, and factorizes this matrix to output node embeddings. Fol-

lowing the suggestion made by the authors, we tune the implicit

window size T within {1, 10}.

Second, we consider the following learning-to-hash techniques,

which are among the best-performing techniques in [18].

• Spectral Hashing (SH)12 [32] learns the hash code of the input

data by minimizing the product of the similarity between each

pair of the input data samples and theHamming distance between

the corresponding pairs of hash code.

• Iterative quantization (ITQ)13 [8] first processes the input data
by reducing the dimension using PCA, and then performs quan-

tization to learn the hash code of the input data via alternative

optimization.

6
https://github.com/snap-stanford/snap/tree/master/examples/node2vec

7
https://github.com/tangjianpku/LINE

8
https://github.com/xgfs/verse

9
https://github.com/ShelsonCao/GraRep

10
http://git.thumedia.org/embedding/HOPE

11
https://github.com/xptree/NetMF

12
//www.cs.huji.ac.il/ yweiss/SpectralHashing/

13
https://github.com/jfeng10/ITQ-image-retrieval



• Scalable Graph Hashing (SGH)14 [14] learns the hash code of

the input data by minimizing the difference between the sim-

ilarity of input data and the Hamming similarity of the corre-

sponding pairs of hash code. It uses the feature transformation

to approximate the similarity matrix without explicitly comput-

ing the similarity matrix, in order to make it scalable to large

datasets.

• INH-MF15 [18] is the first learning-to-hash technique proposed

for the graph embedding problem. It learns the hash code of

nodes in a graph via matrix factorization while preserving the

high-order node proximity in the graph. It also incorporates a

hamming subspace learning process to improve the efficiency of

the learning process. We set the ratio for subspace learning to

100%, to let it achieve its optimal performance w.r.t. the quality

of the learnt node embeddings.

Finally, we consider the following sketching techniques:

• NetHash16 [33] is the first work applying sketching techniques

on attributed graph embedding problems. It first builds a parent-

pointer-tree for each node in a graph, and then recursively applies

minhash on the attributes of nodes in the tree from bottom to

top. However, it cannot be directly applied to our graphs, as it

requires a set of attributes for each node in the graph. To remedy

this issue, we use a node’s direct neighbors as its attributes, which

represents the node’s context in the graph. As suggested by the

authors, we search the optimal tree depth in {1, 2, 3}.

• KatzSketch is one of our proposed baselines. It first computes

the high-order node proximity matrix using Katz index, which

is the best performing high-order proximity measure for graph

embedding problem as suggested by [22]. Then, it directly gen-

erates sketches based on the high-order node proximity vectors

of nodes (rows of the obtained proximity matrix). We search the

optimal decay parameter β used by Katz index in the same way

as for HOPE.

• NodeSketch(NoSLA) is a variant of our proposed NodeSketch

by using the original adjacency matrix rather than the SLA adja-

cency matrix. We search the optimal parameters k and α using

the same strategy as for our method NodeSketch (see below).

• NodeSketch17 is our proposed technique. We search the optimal

order of proximity k up to 6 and the optimal decay parameter α
from 0.0001 to 1 on a log scale.

14
https://github.com/jiangqy/SGH-IJCAI2015

15
https://github.com/DefuLian/network

16
https://github.com/williamweiwu/williamweiwu.github.io/tree/master/Graph_Network%20Embedding/NetHash

17
https://github.com/eXascaleInfolab/NodeSketch
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