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Streaming Graph Embeddings via Incremental
Neighborhood Sketching
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Abstract—Graph embeddings have become a key paradigm to learn node representations and facilitate downstream graph analysis
tasks. Many real-world scenarios such as online social networks and communication networks involve streaming graphs, where edges
connecting nodes are continuously received in a streaming manner, making the underlying graph structures evolve over time. Such a
streaming graph raises great challenges for graph embedding techniques not only in capturing the structural dynamics of the graph, but
also in efficiently accommodating high-speed edge streams. Against this background, we propose SGSketch, a highly-efficient
streaming graph embedding technique via incremental neighborhood sketching. SGSketch cannot only generate high-quality node
embeddings from a streaming graph by gradually forgetting outdated streaming edges, but also efficiently update the generated node
embeddings via an incremental embedding updating mechanism. Our extensive evaluation compares SGSketch against a sizable
collection of state-of-the-art techniques using both synthetic and real-world streaming graphs. The results show that SGSketch
achieves superior performance on different graph analysis tasks, showing 31.9% and 21.9% improvement on average over the
best-performing static and dynamic graph embedding baselines, respectively. Moreover, SGSketch is significantly more efficient in both
embedding learning and incremental embedding updating processes, showing 54x-1813x and 118x-1955x speedup over the baseline
techniques, respectively.

Index Terms—Dynamic graph embedding, Streaming graph, Concept drift, Data sketching, Consistent weighted sampling
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1 INTRODUCTION

G Raphs are a fundamental type of data structures for
many real-world data, such as social networks, biolog-

ical networks and communication networks, etc. To facili-
tate various machine learning tasks on graph data, graph
embeddings (a.k.a. network embeddings) have become a
promising paradigm to learn node representations from a
graph [1]. Specifically, graph embedding techniques repre-
sent each node in a graph as a feature vector, preserving
key structural properties of the graph (mostly topological
proximity of the nodes). Based on such node embeddings,
downstream graph analysis tasks, such as node classifica-
tion and link prediction, can be efficiently performed.

Traditional graph embedding techniques mostly focus
on static graphs where nodes and edges are fixed and do not
change over time [2]. However, in many real-world scenar-
ios such as communication networks, nodes and edges are
intrinsically dynamic, making the underlying graph struc-
tures evolve over time. For example, communication events
(edges) between two users (nodes) are often continuously
received in a streaming manner (streaming edges), to which
we refer as a streaming graph [3]. The streaming nature of
the graph implies the dynamics of its underlying structures
over time, as evidenced by the complex evolution patterns
in the communication network between students from the
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University of California [4] and also in the user interaction
network on Facebook [5], for example. Efficiently capturing
such dynamics is critical to ensure the performance of
downstream graph analysis tasks.

In the current literature, dynamic graph embedding
problems have been investigated to capture the dynamics of
time-evolving graphs [2]. Existing techniques often focus on
discrete-time dynamic graphs, where a sequence of snapshots
(sampled at regularly-spaced times) from a dynamic graph
is required as input; the embedding techniques then learn
from these snapshots to capture the structural dynamics of
the graph over time. These techniques mainly follow three
categories [2]. First, factorization-based techniques learn the
dynamics over a sequence of graph snapshots by leveraging
the correlations between node embeddings (obtained by
factorizing the corresponding adjacency matrices) across
different snapshots [6], [7], [8]. Second, graph-sampling-
based techniques cache and reuse previous samples (e.g.,
random walk sequences) from the snapshot t − 1 together
with the new samples from the snapshot t to update the
node embeddings [9], [10], [11], [12], [13]. Third, (graph-
)neural-network-based techniques connect (graph) neural
networks (designed for static graph embeddings) via neu-
ral sequence models, such as Recurrent Neural Networks
(RNNs) or Long Short Term Memory (LSTM) [14], [15], [16],
[17], [18], [19], [20].

Although these techniques capture structural dynamics
across graph snapshots, they are not suitable for stream-
ing graphs, due to the following reasons. First, it is not
straightforward to define an appropriate time interval to
discretize a streaming graph to graph snapshots [3]. Specif-
ically, the discretization of a streaming graph to graph
snapshots should consider the dynamic level of the stream-
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ing graph. Intuitively, a highly-dynamic streaming graph
should be transformed to a fine-temporal-interval graph
snapshots, and vice versa. However, the dynamic level
of real-world streaming graphs is often complex and un-
known, and may even vary over time (e.g., the presence of
abrupt/gradual concept drift of graph structures), making
it hard to define an appropriate time interval beforehand
to discretize a streaming graph. Second, these techniques
designed for graph snapshots face computational challenges
when tackling streaming graphs. Their embedding learn-
ing process often involves computationally expensive op-
erations (e.g., matrix factorization, gradient descent, and
backpropagation), making it computationally infeasible to
learn from streaming edges. A few techniques involve an
incremental learning process over graph snapshots, using
incremental matrix factorization [7], [8], incrementally up-
dating random walks from recently updated node only [9],
[10], or initializing current (graph) neural networks using
the learned embeddings from previous graph snapshots to
accelerate the convergence of the network learning process
[19]. However, these incremental learning methods face
the issues of accumulating approximation error over time,
requiring to re-train the embedding models from time to
time. Moreover, their incremental learning processes still
require a significant amount of computational resources and
thus fail to be able to accommodate high-speed streaming
graphs in an efficient manner [2]. In addition, there are
a few graph embedding techniques directly learning from
streaming graphs [3], [21], [22], [23], [24]; however, these
techniques involve the computationally expensive training
process of graph neural networks, making them inefficient
for handling high-speed streaming graphs, and thus failing
to efficiently update the embeddings over streaming edges.

Against this background, we explore data-independent
hashing (i.e., sketching1) techniques [25] to solve the stream-
ing graph embedding problem. Sketching techniques use
randomized hashing functions to create compact and fixed-
size sketches for the original high-dimensional data for
fast similarity approximation. Different from learning-to-
hash techniques [26], which are data-dependent and learn
dataset-specific hash functions, data-independent sketch-
ing techniques use randomized hash functions without
involving a learning process on a dataset, which is often
much more efficient. It has been successfully used to de-
sign highly-efficient graph embedding techniques for static
graphs capturing high-order node proximity [27]. However,
to tackle streaming graph embedding problems, it is chal-
lenging to efficiently generate node embeddings (capturing
the structural dynamics of a streaming graph) at any given
time over edge streams. On one hand, it is nontrivial to
design an incremental embedding updating mechanism to
efficiently accommodate edge streams and output consistent
node embeddings. On the other hand, as streaming graphs
usually involve complex dynamics of graph structures (e.g.,
abrupt/gradual concept drift of the underlying graph struc-
tures), the embedding technique should be flexible and
robust to such structural dynamics.

1. We use the term “sketching” in this paper to exclusively refer to
data-independent hashing, in order to avoid any potential confusion
with learning-to-hash.

In this paper, we propose SGSketch, a highly-efficient
streaming graph embedding technique via incremental
neighborhood sketching. Specifically, built on top of NodeS-
ketch [27] (a highly-efficiently graph embedding technique
for static graphs via sketching), our SGSketch has two
unique features to accommodate streaming graphs. First, to
handle the structural dynamics of a streaming graph, SGS-
ketch seamlessly incorporates a gradual forgetting mecha-
nism on the streaming edges to gradually forget the out-
dated edges, so as to keep the high quality of the generated
node embeddings (capturing recent graph structures). Sec-
ond, to tackle the efficiency issue of learning from streaming
graphs, SGSketch is designed to have a flexible incremen-
tal embedding updating mechanism, which can efficiently
generate node embeddings based on the previous node
embeddings and the newly incoming streaming edges, by
performing minimum yet sufficient updates on impacted
neighboring nodes’ embeddings only. Moreover, different
from the traditional incremental embedding techniques (us-
ing incremental matrix factorization [7], [8] for example)
that accumulate approximation error over time, our incre-
mental updating mechanism is proven to be error-free over
streaming edges. In other words, the incrementally updated
node embeddings are guaranteed to be consistent with
the node embeddings generated from the graph directly.
We conduct a thorough empirical evaluation using both
synthetic and real-world streaming graphs on two graph
analysis tasks node classification and link prediction. We
compare SGSketch against a sizable collection of state-of-
the-art techniques for both static and dynamic graph em-
beddings. The results show that our SGSketch can efficiently
generate high-quality node embeddings from a streaming
graph, which achieves state-of-the-art performance on dif-
ferent downstream graph analysis tasks. In summary, our
contributions are three-fold:
• We investigate streaming graph embedding problems,

aiming to overcome both the challenge of capturing the
dynamics of graph structures over time and the com-
putational challenge in learning node embeddings from
streaming graphs;

• We propose SGSketch, a highly-efficient streaming graph
embedding technique. SGSketch cannot only generate
high-quality node embeddings from a streaming graph by
gradually forgetting outdated streaming edges, but also
efficiently update the generated node embeddings via an
incremental embedding updating mechanism;

• Our extensive evaluation shows that SGSketch achieves
superior performance on different downstream graph
analysis tasks, showing 31.9% and 21.9% improvement
on average over the best-performing static and dynamic
graph embedding baselines, respectively. Moreover, SGS-
ketch is significantly more efficient in both embedding
learning and incremental embedding updating processes,
showing 54x-1813x and 118x-1955x speedup over the
baseline techniques, respectively.

2 RELATED WORK

2.1 Static Graph Embeddings
Traditional graph embedding techniques project nodes of
a static graph onto real-valued vector spaces, where the
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proximity between nodes is preserved as the similarity
between the corresponding node embedding vectors. Exist-
ing techniques mostly follow four learning schemes. First,
graph-sampling-based techniques sample a large number
of node pairs/neighbors from an input graph and learn
node embeddings via specifically-designed models, such
as DeepWalk [28], Node2Vec [29], LINE [30] and VERSE
[31]). Second, factorization-based techniques factorize a
high-order proximity/adjacency matrix of the graph via
computationally-expensive matrix factorization algorithms,
such as GraRep [32], HOPE [33], NetMF [34]) and ProNE
[35]. Third, (graph-)neural-network-based techniques de-
sign sophisticated (graph) neural network models to capture
the subtle structural properties of the input graph, such
as SDNE [36], DVNE [37], GCN [38], and GraphSAGE
[39]). Finally, sketching-based techniques generate node
embeddings using either data-dependent hashing or data-
independent hashing/sketching [25] (also called by [26]
as learning-to-hash and locality sensitive hashing, respec-
tively), such as INH-MF [40], NetHash [41], #GNN [42]
and NodeSketch [27]. These techniques focus on generating
node embeddings from static graphs where the graph struc-
tures (nodes and edges) are fixed and do not change over
time [2]. However, in many real-world use cases such as
online social networks and communication networks, nodes
and edges are intrinsically dynamic, making the underlying
graph structures evolve over time.

2.2 Dynamic Graph Embeddings

Dynamic graph embeddings have been investigated to cap-
ture the dynamics of time-evolving graphs [2]. Existing
techniques for dynamic graph embeddings mostly focus on
discrete-time dynamic graphs, which are represented by se-
quences of graph snapshots. Following the previous catego-
rization for static graph embeddings, these dynamic graph
embedding techniques mainly follow three categories. First,
graph-sampling-based techniques cache and reuse previous
samples (e.g., random walk sequences) from the snapshot
t − 1 together with the new samples from the snapshot t
to update the node embeddings [9], [10], [11], [12], [13].
Second, factorization-based techniques learn the dynamics
over a sequence of graph snapshots by leveraging the cor-
relations between node embeddings (obtained by factoriz-
ing the corresponding adjacency matrices) across different
snapshots [6], [7], [8]. Third, (graph-)neural-network-based
techniques connects (graph) neural networks (designed for
static graph embeddings) via neural sequence models, such
as Recurrent Neural Networks (RNNs) or Long Short Term
Memory (LSTM) [14], [15], [16], [17], [18], [19], [20], [43]. Al-
though these techniques capture structural dynamics across
graph snapshots, they are not suitable for streaming graphs.
More precisely, it is not straightforward to discretize a
streaming graph to graph snapshots due to the complex and
varying dynamic level of the streaming graph. To tackle this
problem, a few streaming graph embedding techniques [3],
[21], [22], [23], [24] have been proposed to capture the se-
quential information of streaming edges, the time intervals
between edges, and information propagation over graphs,
by designing streaming graph neural networks. However,
the embedding learning process of all these techniques often

involves computationally expensive operations (e.g., matrix
factorization, gradient descent optimization via backprop-
agation), which still face computational challenges when
tackling fast-evolving streaming graphs, in particular for
fine-temporal-interval graph snapshots (in the extreme case,
one graph snapshot for each incoming streaming edge).

To tackle such computational challenges, a few dy-
namic graph embedding techniques are designed for in-
cremental learning over graph snapshots. For example, for
factorization-based techniques, incremental matrix factor-
ization algorithms are adopted to adjust node embeddings
learnt from previous graph snapshots in the case of small
changes on the adjacency matrix of a dynamic graph [7],
[8]; for graph-sampling-based techniques, random walks
generated on previous graph snapshots are partially reused
and mixed with a few newly generated random walks to
incrementally update the embeddings of affected nodes [9],
[10], [11], [12], [13]; for (graph-)neural-network-based tech-
niques, embeddings learnt from previous graph snapshots
are used to initialize current (graph) neural networks for
the purpose of fast convergence of the training process [19].
Although these incremental learning methods alleviate to
some extent the computational challenges of learning from
graph snapshots, they still face the issues of accumulating
approximation error over time, requiring to re-train the
embedding models from time to time. Moreover, their incre-
mental learning processes still require a significant amount
of computation and thus fail to be able to accommodate
high-speed streaming graphs in an efficient manner [2].

In addition, we also note that (dynamic) graph em-
beddings have also been studied for graphs of complex
structures, such as heterogeneous graphs [44], [45], [46], re-
lational graphs [47], [48], and hypergraphs [49], [50], where
structure-specific techniques are developed to capture the
complex structural properties of the graphs. We leave this
direction as our future work.

2.3 Similarity-Preserving Hashing

Similarity-preserving hashing [25], [26] has been extensively
studied to efficiently approximate the similarity of high
dimensional data, such as documents or images [51]. Its
key idea is to create compact sketches of the original high
dimensional data while still preserving their similarities. Ac-
cording to the hashing process, the existing techniques can
be classified into two categories: data-dependent hashing
and data-independent hashing/sketching [25] (also called
by [26] as learning-to-hash and locality sensitive hashing,
respectively). First, data-dependent hashing (learning-to-
hash) techniques, such as spectral hashing [52], iterative
quantization [53] and discrete graph hashing [54], learn
dataset-specific hashing functions to closely fit the under-
lying data distribution in the feature space. Second, data-
independent sketching techniques, such as minhash [55]
and consistent weighted sampling [56], use randomized
hashing functions without involving any learning process
from a dataset, which is usually more efficient. In the current
literature, techniques of both categories have been used for
static graph embedding problems. For example, INH-MF
[40] generates node embeddings in Hamming space using
learning-to-hash techniques [26], resulting in a significant



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

speedup in the downstream KNN search task compared to
cosine similarity; NetHash [41] and #GNN [42] are proposed
for attributed graph embeddings, where each node in a
graph is assumed to have a set of attributes describing
the properties of the node; NodeSketch [27] is a highly-
efficiently graph embedding technique for static graphs
by recursively sketching the self-loop-augmented adjacency
matrix of an input graph. Different from these sketching-
based embedding techniques for static graphs, we explore in
this paper sketching techniques to efficiently generate node
embeddings for fast-evolving streaming graphs.

3 PRELIMINARIES

In this section, we briefly introduce two preliminaries, 1)
data sketching technique consistent weighted sampling [56]
and 2) sketching-based static graph embedding technique
NodeSketch [27].

3.1 Consistent Weighted Sampling
Consistent weighted sampling techniques were originally
proposed to approximate min-max similarity for high-
dimensional data [56], [57], [58], [59], [60]. Formally, given
two nonnegative data vectors V a and V b of size D, their
min-max similarity is defined as follows:

SimMM (V a, V b) =

∑D
i=1 min(V ai , V

b
i )∑D

i=1 max(V ai , V
b
i )

(1)

When applying the sum-to-one normalization
∑D
i=1 V

a
i =∑D

i=1 V
b
i = 1, Eq. 1 becomes the normalized min-max simi-

larity SimNMM . It has been shown that (normalized) min-
max kernel is an effective similarity measure for nonnega-
tive data, achieving state-of-the-art performance compared
to other kernels such as linear kernel and intersection kernel
on different classification tasks [57]. A succinct description
of an efficient consistent weighted sampling method pro-
posed in [60] is as follows. To generate one sketch element
Sj (sample i∗j ), the method uses a random hash function hj
with an input i (seed for a random number generator) to
generate a random hash value hj(i) ∼ Uniform(0, 1), and
then returns the sketch element:

Sj = argmin
i∈{1,2,...,D}

− log hj(i)

Vi
(2)

With a sketch length of L, the resulting sketches actually
preserve normalized min-max similarity [59]:

Pr[Saj = Sbj ] = SimNMM (V a, V b), j = 1, 2, ..., L. (3)

Please refer to [57], [60] for more details. Based on this
efficient sketching method, NodeSketch was proposed as
a highly-efficient graph embedding technique, which we
briefly introduce below.

3.2 NodeSketch
NodeSketch is designed on top of consistent weighted sam-
pling techniques for generating static graph embeddings via
recursive sketching. Specifically, it first generates low-order
(1st- and 2nd-order) node embeddings from the Self-Loop-
Augmented (SLA) adjacency matrix of an input graph [61],

and then generates k-order node embeddings2 based on this
SLA adjacency matrix and the (k-1)-order node embeddings
in a recursive manner.

3.2.1 Low-Order Node Embeddings
To generate low-order node embeddings, NodeSketch di-
rectly applies the sketching technique in Eq. 2 to the SLA
adjacency matrix of the input graph. Specifically, it has been
shown that directly sketching an adjacency vector V (one
row of the adjacency matrix A) actually overlooks the 1st-
order node proximity and only preserves 2nd-order node
proximity, as the min-max similarity between two node’s
adjacency vector is proportional to the number of their
common neighbors. In the case of two connected nodes
without any common neighbors, their adjacency vectors do
not have any common entries, resulting in a zero min-max
similarity and thus ignoring the 1st-order node proximity.

To address this issue, sketching SLA adjacency matrix
(adding an identity matrix to the original adjacency matrix
of the graph Ã = I + A) is able to preserve both 1st-
and 2nd-order node proximity in the resulting embeddings.
For example, when two nodes are directly connected, their
SLA adjacency vectors have two more common entries than
the original adjacency vectors, and thus further captures
1st-order node proximity beyond the 2nd-order proximity
captured by the original adjacency vectors.

3.2.2 High-Order Node Embeddings
To generate high-order node embeddings, NodeSketch
sketches an approximate k-order SLA adjacency vector of
the node, which is generated by merging the node’s SLA
adjacency vector with the (k-1)-order embeddings of all the
neighbors of the node in a weighted manner. Specifically,
one key property of the consistent weighted sampling tech-
nique (in Eq. 2) is the uniformity of the generated samples,
which states that the probability of selecting i is propor-
tional to Vi, i.e., Pr(Sj = i) = Vi∑

i Vi
(please refer to [27] for

the detailed proof). It implies that the proportion of element
i in the resulting sketch S is an unbiased estimator of Vi,
where we applied sum-to-one normalization

∑
i Vi = 1,

and thus the empirical distribution of sketch elements is an
unbiased approximation of input vector V .

Based on this uniformity property, the recursive sketch-
ing process of NodeSketch works in the following way.
First, for each node r, it computes an approximate k-order
SLA adjacency vector Ṽ r(k) by merging the node’s SLA
adjacency vector Ṽ r with the distribution of the sketch
elements in the (k-1)-order embeddings of all the neighbors
of the node in a weighted manner:

Ṽ ri (k) = Ṽ ri +
∑

n∈Γ(r)

α

L

L∑
j=1

1[Sn
j (k−1)=i] (4)

where Γ(r) is the set of neighbors of node r, Sn(k − 1)
is the (k-1)-order sketch vector of node n, and 1[cond] is
an indicator function which is equal to 1 when cond is
true and 0 otherwise. More precisely, the sketch element

2. Note that the k-order embeddings here actually refers to up-to-k-
order embeddings in this section; we keep using k-order embeddings
for the sake of clarity.
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distribution for one neighbor n, (i.e., 1
L

∑L
j=1 1[Sn

j (k−1)=i]

where i = 1, ..., D) actually approximates the (k-1)-order
SLA adjacency vector of the neighbor, which preserves the
(k-1)-order node proximity. Subsequently, by merging the
sketch element distribution for all the node’s neighbors
with the node’s SLA adjacency vector, it indeed expands
the order of proximity by one, and therefore obtains an
approximate k-order SLA adjacency vector of the node.
Finally, it generates the k-order node embeddings S(k) by
sketching the approximate k-order SLA adjacency vector
Ṽ r(k) using Eq. 2.

Moreover, NodeSketch uses an order decay weight α
to the sketch element distribution, in order to give less
importance to higher-order node proximity. Such a weight-
ing scheme in the recursive sketching process actually im-
plements exponential decay weighting when considering
high-order proximity, where the weights for the kth-order
proximity decays exponentially with k.

3.2.3 Approximation Error Bound
According to Eq. 3, the hamming similarity H(·, ·) between
the k-order embeddings of two nodes a and b actually
approximates the normalized min-max similarity between
the k-order SLA adjacency vectors of the two nodes:

E(H(Sa(k), Sb(k))) = Pr[Saj (k) = Sbj (k)]

= SimNMM (Ṽ a(k), Ṽ b(k))

The corresponding approximation error bound is:

Pr[|H − SimNMM | ≥ ε] ≤ 2 exp(−2Lε2) (5)

The error is bigger than ε with probability at most
2 exp(−2Lε2). Please refer to [27] for more detail.

4 STREAMING GRAPH EMBEDDING VIA SKETCH-
ING

In this section, we introduce SGSketch, our streaming graph
embedding technique via incremental neighborhood sketch-
ing. Specifically, we first introduce streaming graphs with
gradual forgetting, followed by two key steps of our SGS-
ketch, i.e., node embedding creation and incremental node
embedding update.

4.1 Streaming Graph with Gradual Forgetting
A streaming graph SG is defined as a stream of edges
{..., (ri, rj)t, ...} continuously received over time, where
t ∈ N indicates the order of the received edges, and (ri, rj)
refers to a streaming edge3 connecting two nodes ri and rj
[3]. Such definition of streaming graphs fit many real-world
scenarios, such as the communication events between de-
vices in a telecommunication network, emails between users
on the Internet, interaction between users on an online social
network, etc. From a streaming graph, we can then build its
adjacency matrix A, using all the unique edges observed
so far, i.e., Ai,j = Aj,i = 1[(ri,rj)t∈SG], where 1[cond] is an
indicator function which is equal to 1 when cond is true
and 0 otherwise. To accommodate a newly arrived edge,

3. We consider undirected graphs in this work, and leave directed
graphs in future work.

the corresponding entry of the adjacency matrix is updated
accordingly. Note that streaming graphs are also known
as continuous-time dynamic graphs [2]; it can be regarded
as a generalization of discrete-time dynamic graphs, as the
latter is a special case of streaming graphs assuming all
the streaming edges observed between two graph snapshots
having the same timestamp.

In this paper, to tackle the structural dynamics of stream-
ing graphs (e.g., the concept drift of underlying graph
structures), we incorporate a gradual forgetting mechanism
when building the adjacency matrix A from the streaming
graph SG. Specifically, the most common approach to han-
dle concept drift over data streams is to forget outdated
data [62]. A typical solution is gradual forgetting, where
the streaming data are associated with weights inversely
proportional to their age [63]. In the case of a streaming
graph, it means that a newer edge should have a higher
weight than older ones when building the corresponding
adjacency matrix. To this end, we adopt the exponential
decay weight [64] to compute the weight of a streaming
edge (ri, rj)

t.
The most common implementation of the exponential

decay weight for streaming data is to compute the weight
of the streaming edge depending on its timestamp only, i.e.,
wt = e−λ(tn−t), where tn is the order of the latest edge
received from the stream and λ is the weight decay factor.
This implies that the weights of all existing edges decrease
by a factor e−λ every time when a new edge is received
from the edge streams, to which we refer as global forgetting.
Subsequently, the corresponding adjacency matrix is:

Ai,j = Aj,i = max
t≤tn

e−λ(tn−t)1[(ri,rj)t∈SG] (6)

The max operation ensures that when the same edge (ri, rj)
is observed multiple times over the edge streams, the latest
observation is taken into account to compute its weight
(which is the largest according to the definition of the
exponential decay weight). Fig. 1 shows an example of a
streaming graph and its associated adjacency matrix with
global forgetting in its top and middle parts, respectively.

Such a global forgetting mechanism has been widely
used for various applications of streaming data processing
[62]. However, for streaming graph embeddings, it intro-
duces increasing biases over time to the node similarity
computation using the SLA adjacency matrix, which we
present below.

4.2 Node Embedding Creation
The first key step of our SGSketch is to output node embed-
dings directly from the adjacency matrix A of a streaming
graph at any given time. To this end, we adapt NodeSketch
that is originally designed for static graphs to fit our steam-
ing graphs with gradual forgetting. Specifically, different
from a static unweighted graph that has a binary adjacency
matrix, the adjacency matrix A of our streaming graph
with global forgetting has real values, which exponentially
decrease over time. Subsequently, when computing node
similarity based on the SLA adjacency matrix (adding an
identity matrix to the adjacency matrix Ã = I + A), the
diagonal entries of the SLA adjacency matrix (which are
always one due to the addition of the identity matrix)
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Fig. 1. An example of a streaming graph SG (top) with its associated
adjacency matrices A with global (middle) and local (bottom) forgetting.
The exponential decay weight for gradual forgetting e−λ = 0.9. New
edges (and its associated updates) are highlighted in green, while the
gradual forgetting weights are highlighted in red. For global forgetting,
every time when a new edge is received, the weights of all existing edges
(all entries in A) decrease by a factor of 0.9 before adding the new
edge with weight 1. For local forgetting, every time when a new edge
connecting two nodes is received, only the weights of the existing edges
of these two nodes (the corresponding two rows in A) decrease by a
factor of 0.9 before adding the new edge with weight 1.

gradually dominate the node similarity computation, as all
other entries of Ã are gradually forgotten (with decreasing
values) over time. This introduces increasing biases over
time to the node similarity computation, in particular for
those nodes that are not impacted by adding a new edge.
Fig. 2 illustrates an example of such biases in its top part,
corresponding to the streaming graph SG shown in Fig. 1.

To overcome this issue, we propose a local forgetting
mechanism, where the weight of an edge for a node is
assigned according to the order of the edge in SG observed
locally by that node. Formally, to compute the weight of a
streaming edge (ri, rj)

t for node ri, we first compute the
number of edges involving the node ri observed during the
period (t, tn] as follows:

φ(t,tn](ri) = |{(rp, rq)t
′
|ri ∈ (rp, rq), t

′ ∈ (t, tn]}| (7)

Subsequently, the weight for node ri is computed as
wt(ri) = e−λφ(t,tn](ri). This implies that only the weights
of the edges containing ri decrease by a factor e−λ every
time when a new edge containing ri is received from the
edge streams. Note that in a more general case, the weight
wt(ri) can be computed by any function of ri, t and tn (more
discussion later).

Compared to global forgetting, our local forgetting in-
deed performs gradual forgetting on the existing edges of
the nodes that are involved in the new edge only, instead
of gradually forgetting all existing edges. In other words,
the weight of an existing edge is unchanged if none of
its connecting nodes are involved in the new edge. Note
that for the same streaming edge, the weight wt(ri) does
not necessarily equal to wt(rj), as the number of edges

Fig. 2. The SLA adjacency matrices Ã with global (top) and local
(bottom) forgetting, with their corresponding normalized min-max sim-
ilarity matrices SimNMM (low-order node proximity computed using
Eq. 1 between each pair of normalized SLA adjacency vectors). In
the SLA adjacency matrices Ã, new edges are highlighted in green,
while the gradual forgetting weights are highlighted in red. In the node
similarity matrices SimNMM , the expected impacted entries resulted
by adding a new edge (ri, rj) are shaded in green (i.e., the i-th and j-th
rows/columns). In the top part of the figure showing the SLA adjacency
matrices with global forgetting, we observe that the diagonal entries of
the SLA adjacency matrices gradually dominate over time, as all other
entries are gradually forgotten. This introduces increasing biases to the
node similarity computation over time. Taking the similarity between r1
and r2 as an example, the similarity evolves over the four timestamps
SimNMM (r1, r2) = 1 → 0.49 → 0.50 → 0.52. However, there should
be no updates for the 3rd and 4th timestamps, as the respective new
edges (r3, r4) and (r3, r5) do not involve either r1 or r2 (outside of
the impacted entries). Such biases are caused by forgetting all the
entries in the adjacency matrices, even for the entries that are not
impacted by the updates. In the bottom part of the figure showing the
SLA adjacency matrices with local forgetting, the existing edges of a
node are forgotten only when the node is involved in the new edge. In
other words, the adjacency vector of a node is unchanged when the
node is not involved in the new edge. This eliminates the biases in the
node similarity computation over time. Following the previous example,
we now have SimNMM (r1, r2) = 1 → 0.49 → 0.49 → 0.49 over the
four timestamps, where the similarity is consistent across 3rd and 4th
timestamps.

involving ri could be different from that of rj , resulting in
an asymmetric adjacency matrix4. Subsequently, the corre-
sponding adjacency matrix becomes:

Ai,j = max
t≤tn

e−λφ(t,tn](ri)1[(ri,rj)t∈SG] (8)

The max operation takes the latest observation of edge
(ri, rj) into account to compute its weight, when the same
edge (ri, rj) is observed multiple times over the edge

4. The meaning of this matrix here departs from the definition of
a graph adjacency matrix. Each row of this matrix now represents the
local connectivity of the corresponding node as the weighted neighbors
of that node, where the weights are assigned according to their order
observed locally by that node. We keep using the term adjacency matrix
for the sake of terminology simplicity.
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Algorithm 1 SGSKETCHCREATION (Ã, k, α)
1: if k > 2 then
2: Get (k-1)-order sketch: S(k− 1) = SGSKETCHCREATION

(Ã, k − 1, α)
3: for each row (node) r in Ã do
4: Get k-order SLA adjacency vector Ṽ r(k) using Eq. 4
5: Generate sketch Sr(k) from Ṽ r(k) using Eq. 2
6: end for
7: else if k = 2 then
8: for each row (node) r in Ã do
9: Generate sketch Sr(2) from Ṽ r using Eq. 2

10: end for
11: end if
12: return k-order sketch S(k)

streams. Fig. 1 shows in its bottom part the adjacency
matrices with local forgetting of the streaming graph SG.
Using the local forgetting mechanism, the (SLA) adjacency
vector of a node remains unchanged if the node is not
involved in any new edges, making the similarity between
such nodes (which are not involved in the new edges)
consistent after adding the new edges, and thus eliminating
the biases in the node similarity computation over time. Fig.
2 shows in its bottom part the SLA adjacency matrix with
local forgetting and illustrates an example of consistent node
similarity computation over time.

Based on the SLA adjacency matrix with local forgetting,
we adopt a similar recursive sketching process as NodeS-
ketch to output node embeddings. As shown in Alg. 1, our
sketch creation algorithm takes the SLA adjacency matrix Ã,
the order k and order decay weight α as inputs. When k > 2,
we first generate (k-1)-order node embeddings S(k − 1)
using Alg. 1 recursively (Line 2), and then generate k-order
node embeddings by sketching each node’s approximate k-
order SLA adjacency vector Ṽ r(k) which is obtained from
Ṽ r and S(k − 1) using Eq. 4 (Line 3-6). When k = 2, we
simply generate low-order node embeddings by directly
sketching each SLA adjacency vector Ṽ in Ã (Line 8-10).

4.3 Incremental Node Embedding Update
The second key step of our SGSketch is to efficiently up-
date node embeddings of a streaming graph. To achieve
this goal, we design an incremental embedding updating
mechanism to perform minimum yet sufficient updates on
the embeddings of impacted neighboring nodes only, which
are tracked in a Breadth-First Search (BFS) manner.

The SLA adjacency matrix with local forgetting ensures
the consistency of the similarity between non-impacted
nodes during streaming graph updates, which serves as the
foundation of our incremental updating process. In the pre-
vious section, we introduce Eq. 8 to compute the adjacency
matrix with local forgetting from streaming edges, which
requires scanning all streaming edges for the weight compu-
tation. We now present an incremental updating mechanism
for the SLA adjacency matrix with local forgetting, which is
computationally efficient without the need of using Eq. 8.
More precisely, given an SLA adjacency matrix Ã computed
using Eq. 8 and an incoming edge (ri, rj), our updating
mechanism follows two steps: 1) forget the adjacency (row)
vectors of nodes ri and rj in Ã by the forgetting factor

Algorithm 2 SGSKETCHUPDATE (Ã, S, Ω, k, α)
1: if k > 2 then
2: Update (k-1)-order sketch and the impacted node set:

SGSKETCHUPDATE (Ã, S, Ω, k, α)
3: for each node r in Ω do
4: Get k-order SLA adjacency vector Ṽ r(k) using Eq. 4
5: Generate sketch Sr(k) from Ṽ r(k) using Eq. 2
6: end for
7: else if k = 2 then
8: for each node r in Ω do
9: Generate sketch Sr(2) from Ṽ r using Eq. 2

10: end for
11: end if
12: for each node r in Ω do
13: Add r’s neighbors to Ω
14: end for

e−λ; and 2) update new edges and related diagonal entries
(Ãi,j , Ãj,i, Ãi,i, Ãj,j) to 1. Fig. 3 shows an example in its
bottom part. It is easy to see that this incremental updating
process efficiently outputs the exact same SLA adjacency
matrix as the one recomputed using Eq. 8, as 1) if a node is
not involved in the new edge, the corresponding adjacency
vector is unchanged; and 2) if a node is involved in the
new edge, the corresponding diagonal entry is updated
together with the new edge to 1 while all other entries in the
adjacency vector is gradually forgotten by the factor e−λ.

To update node embeddings, we perform incremental
updates for each order of the k-order node embeddings.
Specifically, the low-order node embeddings created using
the consistent weighted sampling technique in Eq. 2 depend
only on the node’s SLA adjacency vector V . If a node is
not involved in the new edge, its SLA adjacency vector
remains unchanged, making its low-order node embed-
ding unchanged. Subsequently, to update low-order node
embeddings, we only need to re-generate embeddings for
nodes involved in the new edges, while keeping other
nodes’ embeddings unchanged. Afterward, a node’s (high)
k-order embeddings are obtained by sketching its approx-
imate weighted k-order SLA adjacency vector, which de-
pends not only on its SLA adjacency vector but also on its
neighbors’ (k-1)-order embeddings as shown in Eq. 4. This
implies that a node’s (k-1)-order embeddings will impact
its neighbors’ k-order embeddings. Subsequently, to update
k-order node embeddings, we need to re-generate embed-
dings for nodes with updated (k-1)-order embeddings and
also for their neighbors, while keeping other nodes’ embed-
dings unchanged. Following this process, when increasing
k, the set of impacted nodes grows in a BFS search manner.
Fig. 3 shows an example in its top part.

In summary, Alg. 2 shows our incremental node em-
bedding updating process. The algorithm takes five inputs:
the incrementally updated SLA adjacency matrix Ã, the
previous node embeddings S to be updated, the initial set
of impacted nodes (i.e., nodes involved in the new edges)
Ω, the order k and order decay weight α. When k > 2,
we first update (k-1)-order node embeddings S(k − 1) and
the impacted nodes Ω using Alg. 2 recursively (Line 2),
and then for each impacted node we update its k-order
node embeddings by sketching its approximate k-order
SLA adjacency vector Ṽ r(k) obtained using Eq. 4 (Line 3-
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Fig. 3. The incremental node updating mechanism for the SLA adja-
cency matrices Ã (bottom) and the corresponding node embeddings
(top). To incrementally update the SLA adjacency matrix (bottom), we
first forget the adjacency (row) vector of node 3 (as node 5 has not
appear yet) in Ã by the forgetting factor e−λ = 0.9, and then update
new edge (Ã3,5, Ã5,3) and related diagonal entries (Ã3,3, Ã5,5) to 1.
To update node embeddings, we perform incremental updates for each
order of the k-order node embeddings (top); the updated embedding
vectors are highlighted in green color. For low-order (2nd-order) node
embeddings, we only update embeddings for node 3 and 5 that are in-
volved in the new edge. For the 3rd-order node embeddings, we update
embeddings for nodes with updated 2nd-order embeddings (node 3 and
5), as well as for their neighbors (node 2 and 4).

6). When k = 2, we update low-order node embeddings
by directly sketching each SLA adjacency vector Ṽ of the
(initial) set of impacted nodes Ω (Line 8-10). After updating
the embeddings of impacted nodes Ω for each order k − 1,
we add the neighbors of these impacted nodes to Ω as
impacted nodes for the next order k (Line 12-14).

4.4 Discussion

4.4.1 Complex Dynamics of Graph Structures

Compared to (graph)-neural-network based methods which
design sophisticated neural architectures to predict the evo-
lution of dynamic graphs in a self-supervised manner,
SGSketch is designed to efficiently adapt to the dynamic
graphs. Subsequently, SGSketch may not well capture the
complex evolution patterns compared to (graph)-neural-
network based methods (also evidenced by our experi-
ments). However, as a sketching-based method, SGSketch
is far more efficient than these methods in the embedding
learning process.

4.4.2 Time Interval between Streaming Edges

SGSketch uses a local forgetting weighting mechanism. For
the sake of efficiency, we instantiate this weight based on
the number of edges involving a node observed during
the period (t, tn], as shown in Eq. 7. However, in a more
general case, this weight can be computed based on any
function of ri, t and tn. For example, the time interval
between streaming edges can be incorporated by computing

φ(t,tn](ri) =
∑
t′∈(t,tn],ri∈(rp,rq)t′ f(tn, t

′), where f repre-
sents a function computing the time interval between tn
and t′. Under this formulation, Eq. 7 is indeed a special case
when f(tn, t

′) = 1. Subsequently, the incremental updating
process also needs to be adapted accordingly by setting the
forgetting factor as a function of f(tn, t

′).

4.4.3 Weighted Streaming Edges
SGSketch maintains the SLA adjacency matrix of a stream-
ing graph. For the sake of simplicity, we illustrated both
the embedding creation and updating processes with an
unweighted streaming graph, where each incoming stream-
ing edge is associated with a unique weight 1. However,
SGSketch is not limited to unweighted streaming graphs;
it can naturally accommodate weighted streaming graphs,
by taking any real-valued weight of an incoming streaming
edge as input.

4.4.4 Efficient Implementation with Sparse Matrices
We illustrated the embedding generation process of SGS-
ketch using an adjacency matrix for the sake of clarity. In
practice, we implement SGSketch using Compressed Sparse
Column (CSC) representations [65] of a sparse adjacency
matrix. More precisely, the consistent weighted sampling
technique proposed in Eq. 2 implies that the zero-valued
entries in the adjacency matrix lead to an infinite hash
value, which is then ignored by the argmin operation. Sub-
sequently, SGSketch can be efficiently implemented using
the CSC representation of the adjacency matrix to scan only
its non-zeros entries. Our implementation of SGSketch is
available here5.

4.4.5 Batch Incremental Update
Our incremental embedding updating process can be easily
extended to batch incremental updates. Specifically, for a
batch of multiple new edges, we first update the SLA
adjacency matrix Ã by iteratively adding these edges ac-
cording to their timestamps, and then define the initial set
of impacted nodes Ω as all nodes that are involved in these
new edges. Subsequently, Alg. 2 can incrementally update
all related node embeddings for this batch of the new edges
simultaneously. In the extreme case where the batch of new
edges involves all nodes in the graph (i.e., the initial set of
impacted nodes Ω contains all nodes), Alg. 2 is equivalent
to the node embedding creation process as shown in Alg. 1,
regenerating embeddings for all nodes recursively.

4.4.6 Error Bound Analysis
The incremental updating process of our SGSketch is error-
free over streaming edges, as it does not introduce any
additional error when accommodate edge streams, com-
pared to the node embeddings directly created from the
SLA adjacency matrix using Alg. 1. Specifically, k-order
embeddings of a node are updated if and only if the node
is expected to be impacted by adding new edges. In other
words, we perform minimum yet sufficient updates to ensure
the consistency between the incrementally updated node
embeddings using Alg. 2 and the node embeddings directly
created from the SLA adjacency matrix using Alg. 1.

5. https://github.com/dingqi/SGSketch
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4.4.7 Complexity
Time. For node embedding creation using Alg. 1, when k =
2, the time complexity is O(D · L · d), where D and L are
the number of nodes and embedding size (sketch length),
respectively, and d is the average node degree in the SLA
adjacency matrix; when k > 2 where the recursive sketching
process is involved, the time complexity is O(D · L · (d +

(k − 2) ·min{d · L, d2})). In practice, we often have d� D
due to the sparsity of real-world graphs, and also L, k � D.
For incremental node embedding updating from a new edge
(connecting two nodes), the time complexity is O(2 · L · d)
when k = 2; when k > 2, the time complexity isO(|Γ≤k−2| ·
L · (d + (k − 2) · min{d · L, d2})), where Γ≤k is the set of
up-to-k-order neighbors of the two nodes.
Space. SGSketch is memory-efficient as it only stores the
SLA adjacency matrix and the node embeddings. Compared
to NodeSketch, SGSketch further stores all up-to-k-order
node embeddings for fast incremental embedding updating,
resulting in a space complexity of O(D · (d+ k · L)).

5 EXPERIMENTS

5.1 Experimental Setting
5.1.1 Dataset
Synthetic Streaming Graph (SYN). Synthetic data is widely
used in studying concept drift adaptation over streaming
data [62], [64], [66]. The advantage is that we can simu-
late different cases of concept drift of graph structures in
streaming graphs with controllable parameters. Specifically,
we adopt the widely used Stochastic Block Models (SBM)
[67] for synthetic graph generation, which first partitions
a given set of nodes into disjoint communities and then
creates edges connecting nodes according to specified in-
community and cross-community probabilities pcross and
pin, respectively; the label of a node is its community
membership. To simulate a streaming graph, we then se-
quentially sample edges from a synthetic graph at random.
Following this scheme, we generate streaming graphs (con-
taining 200 nodes with an average node degree 10 and
10,000 streaming edges), considering two typical cases of
concept drift of graph structures as follows:
• Abrupt drift. The streaming graph is generated from an

initial graph having three equal-sized communities with
pcross = 2pin. At the timestamp of receiving 25% of the
streaming edges, for each community, half of its nodes
suddenly shift their community membership to other
communities, and also change their edges according to
their new membership immediately.

• Gradual drift. The streaming graph is generated from the
same initial graph as for abrupt drift. However, starting
from 25% to 50% of the streaming edges, for each com-
munity, half of its nodes gradually shift their community
membership to other communities one by one, starting
from 0% to 100% of the nodes during this period. Once
a node changes its membership, it also changes its edges
according to its new membership.

Real-world Streaming Graph. We use three real-world
streaming graph datasets. UCI [4] is an online communi-
cation network between students from the University of
California, Irvine. Each node denotes a user and each edge

TABLE 1
Characteristics of the real-world streaming graphs

Dataset UCI DNC EPI FACE ENRON
#Nodes 1,899 2,029 6,224 46,952 87,273
#Edges 59,835 39,264 19,311 876,993 1,148,072
#Labels - - 15 - -

denotes a message communication between two users. DNC
[68] is an email communication network in the 2016 Demo-
cratic National Committee email leak. Each node denotes
a person and each edge denotes an email communication
between two persons. EPI [3] is a social network between
users on a product review platform Epinions. Each node
represents a user and each edge represents a trust relation
between two users. The label of a user refers to the category
of the majority of the user’s reviewed products. FACE
[5] is a user interaction network on Facebook. Each node
represents a user and each edge represents an interaction
of writing a post to another user’s wall. ENRON [69] is
an email communication network between employees of
Enron. Each node represents an employee and each edge
represents an email from a user to another. Table 1 summa-
rizes the main statistics of these datasets.

5.1.2 Baselines
We compare SGSketch against the following state-of-the-art
techniques for both static and dynamic graph embeddings.
• Static graph embedding techniques: Deepwalk [28] feeds

random walk sequences on an input graph to the Skip-
Gram model (we set the walk length to 40, the number
of walks per node to 80, and the context window size to
10); Node2vec [29] extends DeepWalk by balancing the
breadth-first search and depth-first search strategies dur-
ing random walks (we tune return parameter p and in-out
parameter q with a grid search over {0.05, 1, 2}, and keep
the other parameters same as for DeepWalk); LINE [30]
directly samples node pairs from a graph and learns node
embeddings capturing 1st and 2nd-order node proximity
(we set the total number of samples to 10 million); GraRep
[32] factorizes the k-order transition matrix to generate
node embeddings (we tune the order k from 1 to 6); HOPE
[33] factorizes the up-to-k-order node proximity matrix
measured by Katz index using a generalized SVD method
to learn node embeddings (we tune the order decay
weight from 0.1 to 0.9 with a step of 0.2); NetMF [34]
derives the closed form of DeepWalk’s implicit matrix,
and factorizes this matrix to output node embeddings (we
tune the implicit window size T within {1, 10}); ProNE
[35] is a fast and scalable graph embedding method using
sparse matrix factorization techniques (we use its default
parameters for Chebyshev expansion); NodeSketch [27] is
a sketching-based graph embedding technique via recur-
sive consistent weighted sampling techniques (we tune
the order k from 1 to 6 and order decay parameter α from
0.005 to 0.2 on a log scale).

• Dynamic graph embedding techniques: Dynnode2vec [9]
uses random walk sequences from previous graph snap-
shots together with the new random walk sequences
rooted on evolving nodes from the current graph snap-
shot to update the node embeddings (we use the same
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parameter settings as for Node2vec); TIMERS [8] uses
matrix factorization techniques to learn embeddings from
dynamic graph snapshots, triggering SVD restart when
the margin between reconstruction loss of incremental
updates and the minimum loss in SVD model overpass
a certain threshold (we tune this threshold from 10 to 50
on a linear scale); DynGEM [19] learns from a sequence
of graph snapshots and uses the learned embedding from
previous graph snapshots to initialize the embeddings
of the current graph snapshot (we tune the number of
lookback snapshots from 1 to 5); Dyngraph2vec [20]
learns the temporal transitions in dynamic graph snap-
shots using a deep architecture composed of dense and
recurrent layers (similar to DynGEM, we tune the number
of lookback snapshots from 1 to 5); DyGNN [3] is a
streaming graph neural network capturing the sequen-
tial information of streaming edges, the time intervals
between edges, and information propagation over graphs
coherently (we tune the threshold of filtering temporal
neighbors from 10 to 50 with a step of 10); TGN [23] is
a generic temporal graph network for dynamic graphs
represented as sequences of timed events/edges (As this
method requires features/attributes on nodes/edges, we
use random features/attributes on nodes and edges for
our datasets as suggested by the authors. We also set
this method to self-supervised mode for a fair comparison
with other methods on node classification tasks.); TGAT
[22] is an inductive representation learning method us-
ing a temporal graph attention mechanism to aggregate
temporal-topological neighborhood features (similar to
TGN, we use random features/attributes on nodes and
edges). SGSketch is our proposed method (we tune the
weight decay factor λ from 0.005 to 0.2 on a log scale and
keep other parameters the same as for NodeSketch).

5.1.3 Evaluation Protocol
To evaluate the performance of different graph embedding
techniques, we apply these techniques on the edge stream
of a streaming graph and evaluate the output node em-
beddings on two common graph analysis tasks, i.e., node
classification and link prediction. As static graph embed-
ding techniques and snapshot-based graph embedding tech-
niques cannot directly handle streaming graphs, we make
the following adaptions. We evaluate the performance of
these two tasks over the edge stream by setting testing
points from 10% to 90% of the streaming edges with a
step of 2% (resulting in 41 graph snapshots in total). Each
static graph embedding technique learns from one graph
snapshot to generate the corresponding node embeddings;
each snapshot-based dynamic graph embedding technique
learns from the sequence of 41 graph snapshots to out-
put a series of node embeddings, one for each snapshot;
each streaming graph embedding technique learns from the
streaming edges directly and outputs the node embeddings
at each testing point for evaluation. For the node classi-
fication task, at each testing point, we randomly split all
nodes into 5 folds and report classification accuracy (Acc)
via 5-fold cross-validation. For the link prediction task, at
each testing point, we consider the future 10% streaming
edges as ground truth, and rank node pairs according to the
similarity of their embeddings; we report Mean Reciprocal

(a) Abrupt drift

(b) Gradual drift

Fig. 4. Impact of weight decay factor λ.

Rank (MRR) and Recall on top 10 ranked edges (Rec10).
We report the average results over all testing points (for
synthetic streaming graphs, the reported results are further
averaged over 20 repeated simulations). The dimension of
the node embeddings L is set to 128 for all methods.

5.2 Performance on Synthetic Graphs
5.2.1 Impact of weight decay factor λ on SGSketch
The weight decay factor λ balances the trade-off be-
tween the concept drift adaptation speed and the
node similarity approximation performance. In this ex-
periment, we vary the weight decay factor λ within
[0, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2] to investigate the perfor-
mance of SGSketch. Fig. 4 shows the performance on node
classification and link prediction tasks over time in both
cases of abrupt and gradual drift of graph structures.
Comparing the results of different weight decay factors,
we clearly observe the trade-off between the concept drift
adaptation speed and the performance on graph analysis
tasks. On one hand, larger λ values imply faster adapta-
tion to concept drift, as SGSketch quickly forgets outdated
edges. On the other hand, larger values of λ lead to lower
performance on both node classification and link prediction
tasks, as SGSketch does not fully leverage all information
from past streaming edges, leading to worse performance.
Therefore, tuning λ allows us to find a good balance be-
tween the concept drift adaptation speed and graph analysis
performance on specific tasks. In the following experiments
on synthetic graphs, we empirically set λ to 0.05 and 0.1 on
node classification and link prediction tasks, respectively.

5.2.2 Comparison with other methods
To compare the performance of our SGSketch with other
static/dynamic graph embedding techniques, we first in-
vestigate the average performance over all testing points
over time. Table 2 shows the results. We highlighted the
best-performing methods in each category of embedding
techniques. First, we observe that our SGSketch outper-
forms other methods in most cases. More precisely, static
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TABLE 2
Comparison with other methods (averaged performance over time) on

synthetic streaming graphs

Methods Abrupt drift Gradual drift
Acc MRR Rec10 Acc MRR Rec10

Deepwalk 0.7012 0.1532 0.3968 0.7117 0.1492 0.3848
Node2vec 0.7010 0.1532 0.3967 0.7117 0.1492 0.3849
LINE 0.7013 0.1766 0.4872 0.7103 0.1716 0.4686
HOPE 0.6083 0.0408 0.0774 0.6221 0.0401 0.0755
GraRep 0.6226 0.0341 0.0617 0.6342 0.0338 0.0624
NetMF 0.6860 0.1334 0.3180 0.6997 0.1309 0.3126
ProNE 0.7037 0.1736 0.4802 0.7187 0.1683 0.4624
NodeSketch 0.6717 0.1683 0.4268 0.6857 0.1636 0.4438
Dynnode2vec 0.7014 0.1632 0.4168 0.7007 0.1692 0.3978
TIMERS 0.7078 0.2226 0.6059 0.7057 0.2271 0.6179
DynGEM 0.5896 0.2140 0.5813 0.5971 0.2185 0.5933
Dyngraph2vec 0.6223 0.2245 0.6102 0.6291 0.2325 0.6253
DyGNN 0.5978 0.0961 0.1888 0.5914 0.0968 0.1908
TGN 0.7076 0.1548 0.3706 0.7092 0.1528 0.3657
TGAT 0.7037 0.0617 0.1331 0.7094 0.0628 0.1368
SGSketch 0.8220 0.2338 0.5917 0.7929 0.2301 0.5871

(a) Abrupt drift

(b) Gradual drift

Fig. 5. Comparison with the best-performing baselines over time.

graph embedding techniques do not consider the dynam-
ics of graph structures, leading to unsatisfied results. Dy-
namic graph embedding techniques are designed to capture
node/edge dynamics by either learning from new edge
samples (Dyngraph2vec), factorizing adjacency matrices in-
crementally (TIMERS), or using recurrent neural networks
(DynGEM, Dyngraph2vec, DyGNN, TGN and TGAT). Al-
though some dynamic graph embedding techniques are
better than our SGSketch in some cases (such as TIMERS
and Dyngraph2vec on Rec10), SGSketch is far more efficient
than these techniques (119x and 316x faster than TIMERS
and Dyngraph2vec, respectively). See Section 5.4 for detail.

Moreover, we further investigate the performance over
time. For a better visibility, we compare SGSketch with the
best-performing baselines in each category of embedding
methods, i.e., static graph embedding techniques LINE and
ProNE, and dynamic graph embedding technique TIMERS
and Dyngraph2vec. Fig. 5 shows the results. We see that
compared to the best-performing baselines, SGSketch can
better adapt to concept drift by quickly recovering to the
same level of performance as before concept drift happens.
Specifically, we observe that before concept drift happens,

some baseline techniques have better performance than our
SGSketch (such as LINE and ProNE on the node classifica-
tion task, TIMERS and Dyngraph2vec on the link prediction
task); however, these methods fail to recover from the con-
cept drift, leading to worse performance than our SGSketch.

5.3 Performance on Real-world Streaming Graphs
We compare our SGSketch on real-world streaming graphs.
Different from the synthetic graphs where we have con-
trollable concept drift via simulation, real-world stream-
ing graphs have complex and often unknown structural
dynamics over time. Therefore, we compare the average
performance over time of different embedding techniques.
Table 3 shows the results. We observe that SGSketch yields
state-of-the-art performance on both tasks across different
datasets, and outperforms other techniques in most cases.
Specifically, SGSketch consistently outperforms the best
static graph embedding techniques by 31.9% on average
across different tasks and datasets. Compared to the best-
performing dynamic graph embedding baselines, our SGS-
ketch is better on the link prediction task on UCI, EPI and
FACE datasets, and worse in other cases; on average, our
SGSketch still outperforms the best-performing dynamic
graph embedding baselines by 21.9%. We note again that
our SGSketch significantly outperforms these baselines in
terms of runtime efficiency, which we present below.

5.4 Runtime Performance
We investigate the runtime performance of different embed-
ding methods. Specifically, we consider both node embed-
ding learning and updating time (when applicable). All the
experiments are conducted on the same benchmark hard-
ware with (Intel Xeon6248@2.50GHz, 128GB RAM@2666Hz,
NVIDIA Tesla V100 16GB, Ubuntu 18.04). To discount the
impact of explicit/implicit multi-threading implementation
of individual methods, we use one thread (when applicable)
and also report the CPU time for each method.

Table 4 shows the embedding learning time of differ-
ent methods. We observe that SGSketch is highly-efficient
and significantly outperforms all other graph embedding
baselines with 54x-1813x speedup. Specifically, we see that
SGSketch and NodeSketch have very similar runtime effi-
ciency, as the node embedding learning process of SGSketch
is extended from NodeSketch; both of them are designed on
top of data sketching techniques, making them much more
efficient than other graph embedding techniques. However,
SGSketch significantly outperforms NodeSketch in graph
analysis tasks by learning from streaming graphs with
gradual forgetting (see Section 5.2 and 5.3 for more detail).
Moreover, we observe that larger graphs (with more nodes)
usually require more embedding learning time. However,
DyGNN shows opposite results. Because DyGNN learns
from the sequences of streaming edges, where the number
of streaming edges determines its required learning time.

Table 5 shows the incremental embedding updating time
of the applicable methods. We observe that SGSketch is
much more efficient than the baselines with 118x-1955x
speedup. Specifically, Dynnode2vec uses a similar amount
of time on all graphs, as its time complexity depends
only on the number of updated nodes. TIMERS measures
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TABLE 3
Comparison with other methods (averaged performance over time) on real-world streaming graphs. Note that the node classification task is only
applicable to EPI dataset whose nodes have label information. On large datasets, some baselines run out of memory or take more than 1 day in

the embedding learning process; we mark the corresponding entries as “-”.

Methods UCI DNC EPI FACE ENRON
MRR Rec10 MRR Rec10 Acc MRR Rec10 MRR Rec10 MRR Rec10

Deepwalk 0.0440 0.0950 0.0682 0.1410 0.1246 0.0126 0.0225 0.4034 0.5897 0.1569 0.2994
Node2vec 0.0439 0.0932 0.0676 0.1390 0.1259 0.0127 0.0226 0.4066 0.5858 0.1578 0.3114
LINE 0.0480 0.1152 0.0739 0.1572 0.1257 0.0122 0.0216 0.3575 0.5276 0.1287 0.2723
HOPE 0.0128 0.0231 0.0604 0.1414 0.1091 0.0092 0.0159 0.2421 0.3811 0.1332 0.2511
GraRep 0.0110 0.0223 0.0468 0.0962 0.1110 0.0111 0.0210 - - - -
NetMF 0.0459 0.1028 0.0643 0.1333 0.1221 0.0116 0.0197 - - - -
ProNE 0.0372 0.0823 0.0678 0.1406 0.1259 0.0132 0.0237 0.3428 0.5227 0.1352 0.2840
NodeSketch 0.0269 0.0509 0.1093 0.2286 0.1247 0.0127 0.0228 0.3604 0.5456 0.1378 0.2830
Dynnode2vec 0.0436 0.0997 0.0692 0.1420 0.1248 0.0124 0.0219 - - - -
TIMERS 0.0225 0.0469 0.1833 0.3562 0.1419 0.0072 0.0125 0.1728 0.3478 - -
DynGEM 0.0684 0.1523 0.1469 0.3113 0.1237 0.0101 0.0188 - - - -
Dyngraph2vec 0.0405 0.0881 0.1600 0.3133 0.1180 0.0116 0.0240 - - - -
DyGNN 0.0369 0.0450 0.0461 0.0464 0.1028 0.0116 0.0109 0.0488 0.0694 - -
TGN 0.0250 0.0541 0.1922 0.3885 0.1182 0.0135 0.0260 0.2079 0.3265 0.1118 0.3605
TGAT 0.0206 0.0429 0.2036 0.3958 0.1112 0.0122 0.0254 0.0174 0.0480 0.1894 0.2980
SGSketch 0.0887 0.1539 0.1601 0.3457 0.1292 0.0209 0.0391 0.4029 0.5522 0.1775 0.3226

TABLE 4
Embedding learning time (in seconds) and the average speedup of SGSketch over each baseline. *Note that to ensure a reasonable running time
for neural network based methods, we activate the GPU acceleration for DynGEM, Dyngraph2vec, DyGNN, TGN and TGAT, but report CPU time

only. In other words, the actual time used by these three methods is longer than the reported time below. (also on other evaluation tasks).

Methods SYN UCI DNC EPI FACE ENRON Speedup
Deepwalk 72.75 165.95 170.63 330.22 16374.53 21687.51 920x
Node2vec 75.72 188.29 219.44 314.19 16227.58 21164.68 940x
LINE 18.60 53.58 58.10 96.55 3175.03 5365.62 216x
HOPE 15.16 9.26 22.10 18.02 2577.34 2976.33 158x
GraRep 11.37 17.92 17.38 23.28 - - 97x
NetMF 8.13 11.82 11.22 15.64 - - 69x
ProNE 8.95 10.40 10.77 11.13 152.61 196.33 54x
NodeSketch 0.03 1.01 1.08 9.43 7.45 30.72 1x
Dynnode2vec 72.99 164.42 171.93 332.43 - - 656x
TIMERS 12.67 22.15 54.77 191.99 812.99 - 119x
DynGEM* 26.52 145.12 154.72 725.55 - - 297x
Dyngraph2vec* 21.74 242.02 252.14 1096.24 - - 316x
DyGNN* 154.29 614.00 533.31 164.30 23476.05 - 1813x
TGN* 88.56 220.32 169.52 125.61 5672.33 6507.29 686x
TGAT* 62.86 250.76 149.87 78.11 3272.4 4050.53 487x
SGSketch 0.03 1.01 1.08 9.44 7.45 30.81 N/A

TABLE 5
Incremental embedding updating time for one edge (in seconds). Only

Dynnode2vec, TIMERS and SGSketch support incremental update.

Methods SYN UCI DNC EPI FACE ENRON Speedup
Dynnode2vec 0.85 0.87 0.85 0.78 - - 118x
TIMERS 12.12 14.27 13.79 71.54 183.56 - 1955x
SGSketch 0.002 0.05 0.05 0.06 0.24 0.74 N/A

the difference between the adjacency matrices before and
after adding the new edge (to decide whether to update
node embeddings). SGSketch updates node embeddings
by performing minimum yet sufficient updates on impacted
neighboring nodes only. All three methods support batch
updates (update node embeddings according to a batch
of streaming edges). In the worst case when all nodes are
impacted, the updating process takes the same amount of
time as the embedding learning process as shown in Table
4, where SGSketch is still much faster than Dynnode2vec
and TIMERS with 656x and 119x speedup, respectively.

6 CONCLUSION

This paper introduced SGSketch, a highly-efficient stream-
ing graph embedding technique via incremental neighbor-

hood sketching. On one hand, to overcome the challenge of
capturing the complex structural dynamics of a streaming
graph, SGSketch is designed to gradually forget outdated
streaming edges to generate high-quality node embeddings.
On the other hand, to overcome the computational challenge
in learning node embeddings from the high-speed edge
streams, SGSketch incorporates an incremental embedding
updating mechanism, performing minimum yet sufficient
updates on impacted node embeddings only. We conduct a
thorough empirical evaluation comparing SGSketch against
a sizable collection of state-of-the-art techniques using both
synthetic and real-world streaming graphs on two graph
analysis tasks node classification and link prediction. The
results show that SGSketch achieves superior performance
with 31.9% and 21.9% improvement on average over the
best-performing static and dynamic graph embedding base-
lines, respectively. Moreover, SGSketch is significantly more
efficient in both embedding learning and incremental em-
bedding updating processes, showing 54x-1813x and 118x-
1955x speedup over the baseline techniques, respectively.

In the future, we plan to investigate embedding com-
plex types of streaming graphs, such as heterogeneous and
hyper-relational streaming graphs, and also to study self-
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adaptive forgetting mechanisms to better handle varying
dynamics of streaming graphs.
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