Giuseppe Cuccu


Research Statement

Machine learning methods are often designed to work on data which is clean, precise and readily available; meanwhile real-world applications typically provide data which is incomplete, sparse and often misleading. Real-time performance is often a requirement, along with generalization to unseen conditions and limited reliance on prior knowledge or bootstrapping. My research aims at addressing control problems through reinforcement learning neuroevolution, by taking on each problem in isolation while keeping into perspective dynamic applications, and ultimately assembling systems capable of wide adaptation.

Keywords

Machine Learning, Neuroevolution, Recurrent Neural Networks, Evolutionary Algorithms, Unsupervised Learning, Parallel Computing, Artificial Intelligence.

Publications

  1. Giuseppe Cuccu, Julian Togelius, and Philippe Cudré-Mauroux. “Playing Atari with Six Neurons.” ArXiv e-Prints, 2018. Bibtex PDF
  2. Giuseppe Cuccu, Somayeh Danafar, Philippe Cudré-Mauroux, Martin Gassner, Stefano Bernero, and Krzysztof Kryszczuk. “A Data-Driven Approach to Predict NOx-Emissions of Gas Turbines.” In 2017 IEEE International Conference on Big Data, BigData 2017, Boston, MA, USA, December 11-14, 2017, 1283–88, 2017. Bibtex PDF
  3. Jan Koutník, Giuseppe Cuccu, Jürgen Schmidhuber, and Faustino Gomez. “Evolving Large-Scale Neural Networks for Vision-Based Reinforcement Learning.” In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, 1061–68. GECCO ’13. ACM, 2013. Bibtex PDF
  4. Jan Koutník, Giuseppe Cuccu, Jürgen Schmidhuber, and Faustino Gomez. “Evolving Large-Scale Neural Networks for Vision-Based TORCS.” In Foundations of Digital Games (FDG), 206–12, 2013. Bibtex PDF
  5. Giuseppe Cuccu, and Faustino Gomez. “Block Diagonal Natural Evolution Strategies.” In Parallel Problem Solving from Nature - PPSN XII, 488–97. Springer, Berlin, Heidelberg, 2012. Bibtex PDF
  6. Vincent Graziano, Tobias Glasmachers, Tom Schaul, Leo Pape, Giuseppe Cuccu, Jürgen Leitner, and Jürgen Schmidhuber. “Artificial Curiosity for Autonomous Space Exploration.” Acta Futura 4 (2011): 41–51. Bibtex PDF
  7. Leonardo Vanneschi, and Giuseppe Cuccu. “Reconstructing Dynamic Target Functions by Means of Genetic Programming Using Variable Population Size.” In Computational Intelligence, 343:121–34. Springer, Berlin, Heidelberg, 2011. Bibtex PDF
  8. Giuseppe Cuccu, Matthew Luciw, Jürgen Schmidhuber, and Faustino Gomez. “Intrinsically Motivated Neuroevolution for Vision-Based Reinforcement Learning.” In Development and Learning (ICDL), 2011 IEEE International Conference On, 2:1–7. IEEE, 2011. Bibtex PDF
  9. Giuseppe Cuccu, Faustino Gomez, and Tobias Glasmachers. “Novelty-Based Restarts for Evolution Strategies.” In Evolutionary Computation (CEC), 2011 IEEE Congress On, 158–63. IEEE, 2011. Bibtex PDF
  10. Giuseppe Cuccu, and Faustino Gomez. “When Novelty Is Not Enough.” In Applications of Evolutionary Computation, 234–43. Springer, Berlin, Heidelberg, 2011. Bibtex PDF
  11. Leonardo Vanneschi, and Giuseppe Cuccu. “Variable Size Population for Dynamic Optimization with Genetic Programming.” In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, 1895–96. GECCO ’09. ACM, 2009. Bibtex PDF
  12. Leonardo Vanneschi, and Giuseppe Cuccu. “A Study of Genetic Programming Variable Population Size for Dynamic Optimization Problems.” In International Conference on Evolutionary Computation (ICEC), 119–26, 2009. Bibtex PDF