Bringing state-of-the-art machine learning into real-world solutions

Research statement

Data coming from real world processes rarely respects the carefully engineered requirements of most machine learning methods. Partial observability, noise, redundancy, missing values, unclear or under-defined objectives, real-time performance, limited resources, incremental discovery, high dimensionality, continuous spaces, sophisticated tasks, constitute but few of the challenges.

My research interest is in bridging state-of-the-art machine learning and real-world, data-driven problems. On the machine learning side, I advance the state of the art towards robustness, resiliency and performance. On the data analysis side, I devise novel techniques and practices aimed at producing optimal training data out of real world collections.

I specialize in the following approaches: reinforcement learning, neural networks, evolutionary algorithms, black-box optimization, autonomous control, predictive and prescriptive analytics.

Bibliography

  1. Jan Koutník, Giuseppe Cuccu, Jürgen Schmidhuber, and Faustino Gomez. “Evolving Large-Scale Neural Networks for Vision-Based Reinforcement Learning.” In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, 1061–68. GECCO ’13. ACM, 2013. Bibtex PDF
  2. Jan Koutník, Giuseppe Cuccu, Jürgen Schmidhuber, and Faustino Gomez. “Evolving Large-Scale Neural Networks for Vision-Based TORCS.” In Foundations of Digital Games (FDG), 206–12, 2013. Bibtex PDF
  3. Giuseppe Cuccu, and Faustino Gomez. “Block Diagonal Natural Evolution Strategies.” In Parallel Problem Solving from Nature - PPSN XII, 488–97. Springer, Berlin, Heidelberg, 2012. Bibtex PDF
  4. Giuseppe Cuccu, Faustino Gomez, and Tobias Glasmachers. “Novelty-Based Restarts for Evolution Strategies.” In Evolutionary Computation (CEC), 2011 IEEE Congress On, 158–63. IEEE, 2011. Bibtex PDF
  5. Giuseppe Cuccu, and Faustino Gomez. “When Novelty Is Not Enough.” In Applications of Evolutionary Computation, 234–43. Springer, Berlin, Heidelberg, 2011. Bibtex PDF
  6. Giuseppe Cuccu, Matthew Luciw, Jürgen Schmidhuber, and Faustino Gomez. “Intrinsically Motivated Neuroevolution for Vision-Based Reinforcement Learning.” In Development and Learning (ICDL), 2011 IEEE International Conference On, 2:1–7. IEEE, 2011. Bibtex PDF
  7. Vincent Graziano, Tobias Glasmachers, Tom Schaul, Leo Pape, Giuseppe Cuccu, Jürgen Leitner, and Jürgen Schmidhuber. “Artificial Curiosity for Autonomous Space Exploration.” Acta Futura 4 (2011): 41–51. Bibtex PDF
  8. Leonardo Vanneschi, and Giuseppe Cuccu. “Reconstructing Dynamic Target Functions by Means of Genetic Programming Using Variable Population Size.” In Computational Intelligence, 343:121–34. Springer, Berlin, Heidelberg, 2011. Bibtex PDF
  9. Leonardo Vanneschi, and Giuseppe Cuccu. “Variable Size Population for Dynamic Optimization with Genetic Programming.” In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, 1895–96. GECCO ’09. ACM, 2009. Bibtex PDF
  10. Leonardo Vanneschi, and Giuseppe Cuccu. “A Study of Genetic Programming Variable Population Size for Dynamic Optimization Problems.” In International Conference on Evolutionary Computation (ICEC), 119–26, 2009. Bibtex PDF